Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.
Note that from RapidFuzz 3.0.0, strings are not preprocessed(removing all non alphanumeric characters, trimming whitespaces, converting all characters to lower case) by default. Which means that when comparing two strings that have the same characters but different cases("this is a word", "THIS IS A WORD") their similarity score value might be different, so when comparing such strings you might see a difference in score value compared to previous versions. Some examples of string matching with preprocessing can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and distance.

Simple Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("this is a test", "this is a test!")
96.55172413793103

Partial Ratio

> from rapidfuzz import fuzz
> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.9090909090909
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> from rapidfuzz import fuzz
> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
84.21052631578947
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Weighted Ratio

> from rapidfuzz import fuzz
> fuzz.WRatio("this is a test", "this is a new test!!!")
85.5

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.WRatio("this is a test", "this is a new test!!!", processor=utils.default_process) # here "this is a new test!!!" is converted to "this is a new test"
95.0
> fuzz.WRatio("this is a test", "this is a new test")
95.0

> # Converting string to lower case
> fuzz.WRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.WRatio("this is a word", "THIS IS A WORD", processor=utils.default_process) # here "THIS IS A WORD" is converted to "this is a word"
100.0

Quick Ratio

> from rapidfuzz import fuzz
> fuzz.QRatio("this is a test", "this is a new test!!!")
80.0

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.QRatio("this is a test", "this is a new test!!!", processor=utils.default_process)
87.5
> fuzz.QRatio("this is a test", "this is a new test")
87.5

> # Converting string to lower case
> fuzz.QRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.QRatio("this is a word", "THIS IS A WORD", processor=utils.default_process)
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 76.92307692307692, 1), ('New York Giants', 64.28571428571428, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
('Dallas Cowboys', 83.07692307692308, 3)

> # With preprocessing
> from rapidfuzz import process, fuzz, utils
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2, processor=utils.default_process)
[('New York Jets', 100.0, 1), ('New York Giants', 78.57142857142857, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio, processor=utils.default_process)
('Dallas Cowboys', 90.0, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

This version

3.1.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-3.1.0.tar.gz (1.3 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-3.1.0-pp39-pypy39_pp73-win_amd64.whl (1.7 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.1.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.1.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.1.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.1.0-pp38-pypy38_pp73-win_amd64.whl (1.7 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.1.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.1.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.1.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.1.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.1.0-pp37-pypy37_pp73-win_amd64.whl (1.7 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.1.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.1.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.1.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.1.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.1.0-cp311-cp311-win_arm64.whl (859.8 kB view details)

Uploaded CPython 3.11 Windows ARM64

rapidfuzz-3.1.0-cp311-cp311-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-3.1.0-cp311-cp311-win32.whl (936.4 kB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-3.1.0-cp311-cp311-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-3.1.0-cp311-cp311-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-3.1.0-cp311-cp311-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.1.0-cp311-cp311-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-3.1.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-3.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-3.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.1.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-3.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.1.0-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-3.1.0-cp311-cp311-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-3.1.0-cp311-cp311-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.1.0-cp310-cp310-win_arm64.whl (856.5 kB view details)

Uploaded CPython 3.10 Windows ARM64

rapidfuzz-3.1.0-cp310-cp310-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-3.1.0-cp310-cp310-win32.whl (933.8 kB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-3.1.0-cp310-cp310-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-3.1.0-cp310-cp310-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-3.1.0-cp310-cp310-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.1.0-cp310-cp310-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-3.1.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-3.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-3.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.1.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-3.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.1.0-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-3.1.0-cp310-cp310-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-3.1.0-cp310-cp310-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.1.0-cp39-cp39-win_arm64.whl (858.6 kB view details)

Uploaded CPython 3.9 Windows ARM64

rapidfuzz-3.1.0-cp39-cp39-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-3.1.0-cp39-cp39-win32.whl (935.6 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-3.1.0-cp39-cp39-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-3.1.0-cp39-cp39-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-3.1.0-cp39-cp39-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.1.0-cp39-cp39-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-3.1.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-3.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-3.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.1.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-3.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.1.0-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-3.1.0-cp39-cp39-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-3.1.0-cp39-cp39-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.1.0-cp38-cp38-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-3.1.0-cp38-cp38-win32.whl (937.3 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-3.1.0-cp38-cp38-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-3.1.0-cp38-cp38-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-3.1.0-cp38-cp38-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.1.0-cp38-cp38-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-3.1.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-3.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-3.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.1.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-3.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.1.0-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-3.1.0-cp38-cp38-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-3.1.0-cp38-cp38-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.1.0-cp37-cp37m-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-3.1.0-cp37-cp37m-win32.whl (933.3 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-3.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

rapidfuzz-3.1.0-cp37-cp37m-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

rapidfuzz-3.1.0-cp37-cp37m-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

rapidfuzz-3.1.0-cp37-cp37m-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

rapidfuzz-3.1.0-cp37-cp37m-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

rapidfuzz-3.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-3.1.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-3.1.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.1.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-3.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-3.1.0-cp37-cp37m-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-3.1.0.tar.gz.

File metadata

  • Download URL: rapidfuzz-3.1.0.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-3.1.0.tar.gz
Algorithm Hash digest
SHA256 5571e38ef9452cc89203c9f30fabf23b1fc59dcc2063762d0b037ebeb7c40a58
MD5 2d2293075c472b917659e9b1cc1cf1d1
BLAKE2b-256 4ca42d161abdb4a50240078568fdab68e45031f07928cfef364e08f535334c77

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 53789a4dacb9d2001d71e8a255064222bd7c8b34cfae4120a8777fb8235e5fe1
MD5 96972af28ef39b69bb9abf59942a6e91
BLAKE2b-256 f545f3bdaf13905695886c2f3528e549e23bfc6de41121c1c0f386ab7d1e8198

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 55e1d086d373ecce7176dcd67863dccca95400b76f2908f714711ae52ca997e5
MD5 ee8e5dffd94707551162deb67d881371
BLAKE2b-256 92f35a67fbbf5c226bb212ffef727e0cc7f4d3b21ce80b0bf6531e362c827214

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d52f3c5754738b9695b81e5b3b9185e9975defdb9755617063b827386019d6a5
MD5 9fbcff4cdf5b7125b0c22aee59611c8e
BLAKE2b-256 5bb99e6b6281278f9aba45de229e20a67dfe00ce6d9340e7f897bc14c5ca309f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 814a9926e943093c315e6a7d78b425d03f76a8ea03f4c706af43bafaba257e2f
MD5 33df4ac1c499178f909a2006278eabb0
BLAKE2b-256 f36f891af047847c1799aea19e2265a941a476799a5b52be96119d10f0cf8d79

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f425aefa94c79e304c896addf97ffc057750840f0821b5a098071a56a4c0e922
MD5 a858654801fcab0e0a9183b39e8c01bc
BLAKE2b-256 894bb66bd161a6ac3215cc8670bc747daa7d40f154c917245f0a6defdc2910cc

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 38e7fc847162a9fcd1c73e2874af456f72e20f8643e55b0637677854a1d618dd
MD5 08997aa8d2aacc1370fb0f7acc67267a
BLAKE2b-256 acdfa35edda5106ee3de08cb4010fc7dad13a18a7975cc6d0cd1f4c99e50bcda

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 736ee37c47d8b48951fbc553d5ef7d71e3d868c818b8d0853a1e23a01701640b
MD5 087baa37581899037c1e4528fa82b474
BLAKE2b-256 d36cceccba1478424ea23a0b49bd2ce419c19dbd8b596fa7d7a652e7a53a81b4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 86c6fd31e5c579d65deb4783c4335a457b6fbc0d6f5fa40ed9357b8d1b599262
MD5 fe8e956db7873179402e0ea41e1c67e5
BLAKE2b-256 952bbbc5735692788274a16eba09aa9bd9f9b9cbe273997186f9e6d0f3bdb3f4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7349691e553b9b5490d1a37e4f450ecc940633be2bc171320a17a75a38097d74
MD5 b166470205fb347f3ce0262b28bdcdfa
BLAKE2b-256 eb88f372ebaa967821dd796180eb87c356a36e0e6ee57f3ab62d044d876ba69a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9c40acaf9d73120d19062bd97e435b30696cae248610095ccd97f16f9a685915
MD5 b317bda75b8d0e213de83709784e0f95
BLAKE2b-256 8c62d28867aec2694ee80c8556acd352c25a4a9ed5137652affc2612c8cdae79

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 06c7ebba86efe27fb0d06ad2209e09a325cbae846cf0dba4d1a713c6a25e3cf1
MD5 1b6d54f22099b42eff7b42ebae51ba24
BLAKE2b-256 560d8f87d027036ba5c246f3cbab208de46b3a4d663f9040b11ffa51d5a45da8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d820632b15ee16f066ecbee9081c280b27738fe3f3aeb8e6f3cff6b99b46825b
MD5 7ae2894f212a174d09320feaf7a94665
BLAKE2b-256 1353216a36d0a0966749c02903091e783c63261603cdb4e2959a40aac06320cd

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 406f46646626df090b60fd7a5a135c4f70fecb181019b81ad913634a630431b5
MD5 27c2610c66e833ff120c674c1ea95c87
BLAKE2b-256 03e830405f7b4f76bb9571664f5eec07edb0fdd3e91ab71daf11367921107c5e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0fb7294e08a6f6174faa99d7619e030593e0f89e16ec1a5699d5aafeca147872
MD5 372ba0f623eafc125f74c7916e8a934b
BLAKE2b-256 0638429ece8785940b2c9ef547e91ff98493cd482403aa3273bc067d3b8629f5

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d98a80bb3c3834118e4e159c812d77cd1f2384f248d7aaafce2d50eb45603dde
MD5 a59eeb32aec1901144960b0ce8abb9f4
BLAKE2b-256 ea56ad1a74ca5c587b88dedd778be6af352a086e9a6d5d7863275e9416f44d5f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp311-cp311-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 48640c20c0074a27e8626a94f5b6abac5900dac0fa385ed3b2bbe44ec5be3838
MD5 8be1e08c97d78ff88a327ebaf8255a87
BLAKE2b-256 c630baa9d55db47db56f405b8566b7e8723ba1a779e2f592ba2f8a0b31e422a4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 19413d18de87b89bbfba7289cd9ea3ef1aebf2d5a857c22bc93cd637108afc25
MD5 75e349a6eaaafed1a12700dd71db3ed9
BLAKE2b-256 a817b769c8d26be70c2137c24fdea51738c39e49014fe87c69e337b9ee4aa94a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.1.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 936.4 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-3.1.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 344a213efabda2d5c75a3b8e735a8fd87681df94fb789c9bb399e5d852785b15
MD5 8dcbf398f6818fef9a183a43234069cb
BLAKE2b-256 964aaddeebbbe260abb86885e17f9bcef62cf9dccd2baabde3f74a9a5a6a2962

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ce69229bae58ff293108594494d509301bfecd7798ae87e3d6918feb9c7746d2
MD5 884e790d94e196c2bfe5c90608af5233
BLAKE2b-256 211377b2caaa5a9e1827a6fe398547fdb4bdd4e12a394ed885597c403065c8ef

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 9e6b69e38d0249f8b04d3cef508b9b3eafeb2901aa42b3d056c4b6e6b5692b25
MD5 344182a7616a0f881fba8a4ae7d02047
BLAKE2b-256 64342eb5cf100b19079eef7eefab3f897d349364c3597b69aa6ac447fedc28cc

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 c08164b17dd23b0e609daaf2a826e0b0a30affc0b8c12dc0fbb334e75afb677a
MD5 4d0bc56ca8f52963b6a250e3bad73139
BLAKE2b-256 c93b6b72fc7dbcf2f2404d4c63bb6f63fad357df30d4975c63fd94cd25382e75

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b27ca51d3df8cf7818a61acc131f29b407703a181a22c89913c798681eff24cd
MD5 283390473ecddf2e42f94dbb4b7ef2b5
BLAKE2b-256 0a924986c296594da8734d96c8ef221c7d76a8416e42c57ff0bea7c342f2c64c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 232eed0e61c826712771e95b241a7e97aac8163b1d925b6fb7d48e6ecb8f57f6
MD5 01692f1b13133f0f1cbcb351d643af53
BLAKE2b-256 2e4089b791985fec448c450ff40f74f22805f9f5d0c63922882600a7877121b9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 16a1a896e9d6c140b170b2b4579117c6bcd79525913fb9d58b10b75ff131c7fe
MD5 8195d7b2868dc29878b853fa0f1032c7
BLAKE2b-256 67e6c48fe38eb116c4b930239d7506390e2aa24007d0d76df6bb668a7d60e447

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 f7730b86560e428a4a654233414ada5a61975a39be9a2688fabc6fca6b946c8e
MD5 d96934bac76f74a2c2ea0543a9bf3273
BLAKE2b-256 d0fa903edc571e698cbbd6e44581231f483f6295b3c683b71d077c92ccbc5cae

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 1bf2866b122c6e1a76e577ae0a2bf44b68c66f1ce27da6e24b200711fa2d8356
MD5 a69d84bee660b53e6454ea4cf7a5131b
BLAKE2b-256 fefd7bbe06f939a0ab67d8c6bd492a39a42ce544b3c15eb78db11a42316b19b3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c5df0b52aad127edf037cface4b68532ce10b6487aa2e73510947da551e131c7
MD5 331aca609a539b5ca75a844a623aac37
BLAKE2b-256 84d1561b9e38037fb69a5741742c3cc4f99988ab5604a4f347bcd3802ce502f8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ec9bf22d0a8da08b7caaec43bb246133408ee65cf7a890530cd65c8d7d465a09
MD5 8540918590bac12ee914d06a8472b521
BLAKE2b-256 b76edb495ae997c2efa1e144e6586e47fcebc78d02266ebe6f9befa5837af29a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9e5053a4ae2c7d5073ee4a9fd0ac342afd1d2452b3fa52173fd9a6a8eda85b15
MD5 6d38242b2c246da561b715742d2560bd
BLAKE2b-256 b2140d0d6f0e5a6ae94f23bba0382b673b2357f375b55a517866b46b2e823214

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9e1b66e1c271bb0cad8cd488c5bad22b00045528a7ab5338d6bfba475bc92b7d
MD5 7efcad9766bf26510157c7c76a8ebb3d
BLAKE2b-256 cb74db4a13a05c0de61fcc299d10fe759827f8c6ec45f8889b1acae89b96b168

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8fb25ddb61a2e3b1cdedde6bcad7c4a09674f89f2d90b24e1b7b296689d1dfed
MD5 52359ee1ef71ff812bc8d82b6422ab35
BLAKE2b-256 9ddb5e802ff9ecd8b3195d1918aa264ef6aa9b3acf0f047eeb958c9e95fd5fc6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp310-cp310-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 ae46ecb7872ee64f318d0936cc85de57fea6cf5d182774aa514cad6a6aa18893
MD5 da02253dec0e4aa295086db7958069ff
BLAKE2b-256 d03c24313acb52b278196c55828e64fea3404ae7be3be364029c2bcdb16a31ad

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 df692c11f592c795eec91f635eba049ab5fe63b10fc8317a19371940e483e13c
MD5 2f36267dadfc3610a6623c2ac97eedd7
BLAKE2b-256 1c1800b7ebfa8699ca63e423b6f01c14f39f5d25431abe4a27fe172329fc0a9a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.1.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 933.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-3.1.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 4a27561f9ade80ff127ea3cefb38ac68b6e568bec4aa88ac0c79dfaccb96f203
MD5 d9dd80b56636deace3fc2804b94e3880
BLAKE2b-256 23f38cd198316ad0fea143c3fb98a461d2df16e5add4c7a65415455ef549c70a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4ae7e677bd458be4c24d218d8c66c0c58188153fe7fc4beaab1556a05a627749
MD5 7c905ed33d5beba6363c5bf8c7dd83fd
BLAKE2b-256 aa24e6da08be5a394704a93190cf3b4baf0cd6ccb823349981ceb5f8e1b542ff

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 ec61acc5ed8e58b32d35c7911647ece0ee7a453716c0363a4de8b3951967a417
MD5 28e646a6649a48b15d80bbf991cb97f6
BLAKE2b-256 21738009087d3a3d3401433696759081005881cf300f806ac3e2bb1d2850fe1c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 aa8fa7c873a3b2bde4a12c49304d5a067588379e25cc9d987de7d72c98b09508
MD5 7527344e489df005a0513c20a1b34e11
BLAKE2b-256 7303191f6f7ed9fbe42577e3f616a6da783bd001f2623b833f454caa63e3fc26

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d9c74e1f51a2d293597dbaacec2cb833264eac64b3dabac782d8117acd3fe18b
MD5 c72f8da3f3faf55735f970bf8d150042
BLAKE2b-256 42efda7afefffa8de600f5952bbb31be3f54d49f864eb8df70ad73b38fb32949

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 df0fd069bded565b8db571bc603750ad46174f31e542e6bf9091fad5bc3fe72e
MD5 0ab88dd29484326e0f4964081f82d4a1
BLAKE2b-256 99b8f3c8bff05e962e06826752c4fe37b6bab187e9d5cff2ebe7510a51a403f2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 71d8f4b6ccaba4d2f13b123280fc5bd4dc17251f7ccad011cfb3b061c5ecf0ee
MD5 9a578cb46c0708dac563ee1e5372655b
BLAKE2b-256 385800b7febad58d6a3e85eab134c90b53d30410d1ff1b3b14be312aa7a27ba1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 1f07f6c8f31b46c4ac32cbaf7583a520aa273e17576ca91e1f3dd1bf90436db4
MD5 813448e7f9bd7fc740447648922002e3
BLAKE2b-256 21ec208ddbd2d960baf1e31101a40d7cff655233914c819ce04e42d216309ef3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 cf01fc028902b18bfb389fa5a8b0dd22b83283cc18844d14731cd69ab45f2e73
MD5 400e3ee2fdd70e11a1b01ee9b27fd2ec
BLAKE2b-256 1c784c01c51ab37336d69e5a8d434eb9802472edcf04833549571884c6a8aad2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d7e96099f728300f47772c390662440083d7631517720ed4adc5081fa6ac21a8
MD5 9dfca294823556632538736f846bc25f
BLAKE2b-256 49d73be60dbb34223384604ac37ebfa7281a84a6500548ccb2aefd2de798dbe8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7d0724c7df783cb8bcf74714779a7edb9eed400447f9f69fbf14b98a745a6fa9
MD5 394f5d34633f2280383e6b88fa0ca7ef
BLAKE2b-256 f5df30dc5ab822ceac93f99209bd9ea54b2b954fbeb0e5a7cfabe356520291b3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1bd67ca32f4313884760af528723f2b6225a683632e400fb935acd4965c016c9
MD5 677db3779e4a4ade210f3c2ae79a092e
BLAKE2b-256 998ca38de39f2b20c7d9e284ca79897bbd915645b3522f9727671f66a8fa3527

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9242f026d47f2856ee4be13e1d1d49bdfab0eaf06913c463d66430e1c6cbb554
MD5 be780b5b9f1ef8c8b9eb074e55aa2e5f
BLAKE2b-256 59aee0ef365944433fecc8190b1396f95159fa07a5bfc6a16e195453d5789894

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 156bff36ae590097407d1681872b9fc07a0d35fc8d761f81787873f1a2e6551f
MD5 4c23bbaba736ee10b205fe944a03a42f
BLAKE2b-256 3d6a88e0beaea52339b9f7cdc536d0f7a762ef002402d19e71cf8a59ddf5929a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: rapidfuzz-3.1.0-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 858.6 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-3.1.0-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 7b9632a23f7308c5db732a36318583e59dc862bf827338130b63dfe2424b4d6b
MD5 dcd23aed5a85a7be98f7605aff303748
BLAKE2b-256 c1c145c15d32f462321ffc918abd6026ed1be5bc9bfdfe0f82e98b54ce2a257e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.1.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-3.1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a4e505320749ea4c9aeec46718637c823f33fe80469597400059c8ca1fbbbea2
MD5 dc2f0133ccd2422c9c64c0b86e018999
BLAKE2b-256 703e8d617afec055d025615d38eb7dc3c0d7f1148d50501982e32f6df3ceff47

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.1.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 935.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-3.1.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 785de98c954d9c61354ab5efdab2a7d16deb9642e168a320e5f293c89cbc11c4
MD5 5debfd85301502600e78071ba53f4929
BLAKE2b-256 02342b30c63e4a23e69308ebe308af1120fb43f6d4f705a787d548c5ecb540e2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f1d736102ea27d02c45e6bb1a859be4e7c3ab88df261c66019433ca46b292d63
MD5 eedaa893c7508b372375fb3c6f6c6eea
BLAKE2b-256 28df45605a5d8885614a0847005331d4c80ce597a1a6feb041a04a27468c65a8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 489423ed9d415739665537f1337633e8202e1f3c893f11013ec41c7295809c7c
MD5 1007ce1c56ebaa6fa31220e72291d048
BLAKE2b-256 5db1bd157d19883ab58d7f8807516b1698cdc893140f468bb44ab7fca049563a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 38a86930027c8eb7e71662d0c8e69011166c9d27fa4400e9999d43e021d57891
MD5 fc3f9e7ab7b77397e33f4341550a7082
BLAKE2b-256 95d629a80f3ace3138a7fe0eab30547e25fcf063713c589238333f91d435cba2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 671491f57ef4fbe1028382b89cb52aa7dfeb80ddf2be57cf933bab4d37b3fbd7
MD5 9d4b8f44d93447faceed19b4634b0d4b
BLAKE2b-256 9f65a741f7f047147b8ecd6fd5136780e2a969f97130e00ce953c68bb1351f87

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e918fd975e0ff561635f2d9b2bb09eb9d3f83c9d2b7ed0df4cad30952062a54e
MD5 3ce5f001c815ab3354e5e4c5450545a6
BLAKE2b-256 f72d4c6cb8fbac993de486e49c94c6cfad7e67daa82d149cbf86c34940a40d14

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7e6b35079765e3d7427ffa601611a6f163bfe0858a70f3c28073ea285c4c8754
MD5 30a91e0a6ddb5ac0a24227ee14abe071
BLAKE2b-256 e03a237c889d854e9551b3dcce158653d1c188fef79d828670925c25d0d17643

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 f1aa34f56052be1bde88ef011e31097916dd3c2b32aa3fe9218153b9f2332300
MD5 2798a6410fddac9b6ba238a74039f6e9
BLAKE2b-256 7af963173c4a894411f42c1cc893e2572d42d413e0d73fa2947765b6b8ce516b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 7690c1b81ca2b33721a7c11aa2610da5dd8b91312f8d3b4828abea793a7cb3bc
MD5 7247169324719a7a9414eb2db98604af
BLAKE2b-256 02d3491baae8470ae024943345d6b2b3e617bd7403cd08316d0e9bf98e873fdd

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 264467fc730d13e295a42362e331143b2431baf9bffaa0dbc73773ed7667525a
MD5 cd6280a9168a6c97eeeaedd0e17118f3
BLAKE2b-256 4f22863a58258cbf19b7e07468311ac1b374dae13cfad6ce7c724e7057b4c32e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7fcbffe5e73c775cd4657f2b3e30981dd9e6fa6f3e089cd819b4c6782a785ed6
MD5 473f8764de760d8d95fa399fa7c76f06
BLAKE2b-256 d55d76755321f7579f329097b992a681cfec8df98c46109e6cf716f45a970047

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 568ce3eeae6bd027dbd358ba9bbe45dfb6fee53bf69ff8b92b7a837d935bb702
MD5 76e84deeb2d9efaa8cd2b8dc3c28b298
BLAKE2b-256 a6f5f11893a83605ef927729ce23798f39041fbd5efc8940d93b97d57b9616a8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7804f758bc7685837242bae7404470d6b0b1fcb182ac674e1a301336a71cb7b5
MD5 91e063ef8ed44101797f90d11aadcf05
BLAKE2b-256 2a2f600b3e68dfd01642a5d983e6a0caf1e8709664418017230828b012625c3b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 45103921c13cf80e064fceab8645cf24e2394fd09b9c753f3b68f0f392ffa190
MD5 f9de3d445a810bab44697e20bf533d39
BLAKE2b-256 89831359b3c867cd2b8ecb1ab4cd1880bb86e0e5a3b74f27748d770f5670db6c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.1.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-3.1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 623f9e339e53e5dfd2fe7146115238a598ae7356cdd517a3d0b106e049f0cbf3
MD5 3d7a2fc7bfee2b78ca3e985c4cf71e88
BLAKE2b-256 57c1000b6a135791c23b6ae4f616e9aa40da0bc4f62b71c8e6fcd6d17a750218

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.1.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 937.3 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-3.1.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 a3d6d9a3a83f3d04b1822d6df06ad197b7bccca1e37760531f44206f3509540a
MD5 3df759fd324d999d6e70f1c63efff674
BLAKE2b-256 251bceecf335f481a213fc63fd9cc919cdc6776ce2b26f5d2e68cd5cd497b5c2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 be308acb7395cb9844d9d6f29535da4264de6b6fe38655808c0441c0b0f0ba83
MD5 e8df80ad73542ccde121420d0bf4525d
BLAKE2b-256 a9815c59025247b17c29875bb3ffd006b9a0e7c31c870e69cbdcc935d2fb879a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 29fa6a22f421a081bbd1dd25d0a7ffd246777da8d00e3882a83bb4dfb8ed21e0
MD5 89d9c45503502dcd0f4de9b0e8cd5dd9
BLAKE2b-256 a0be0b80a76a050a6779aafbf85a6243d46418e04e177d84edad900d2b63ae72

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 36db1b8df4e9d9d28292fab4238ee264ff90f13b6a77b4b89eefb5c447deee07
MD5 b873d8d56b481e5c4fe77c92cd8a9b9d
BLAKE2b-256 ac9f64b1f0649d23eace92dbdbc7bc5676b4b6dea8a6268c21958182f4c65788

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 29f6a4b732789076696e9686ccbff3bb45f3bdc59d78ca4592e57cb8ba27e4d2
MD5 83a0af4246e0f10733b8d6e7fc95561a
BLAKE2b-256 2a618c352f91d838fb9ab0fa7ed88f4e03b380ea0ba437535809396d36f55222

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 cab747e5f9478a2f7048cb4ab77b6ff8360acf8abaa55548d766f4844ecc84a8
MD5 d8b4da921454eced7f1b7b489270e7ee
BLAKE2b-256 343bc88324feaf671c771f4b389b6b6afa68b89830696a1b310b3906ffb59d2d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 481d80b0613d250d4ff4e152f3bc84eaa0ed72d45c30af28cbc7416206019d87
MD5 715564f0cc5c9c2ed20de41bc44c4fbf
BLAKE2b-256 9fd80650ba70bf493acaa38addcf254181fa1f4a8dd24d595fa9f90c04e18959

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 1b78aefa18f392f9afc98cc1e6e4f8ca9961f79603565b0dcec8fcd7f9df6396
MD5 f83783af9c56ed1447cc50ef788f1536
BLAKE2b-256 fbac13d8abeed6070fc95db65141f4bfbb58cd8d45725392dd8876cd7d526430

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 c0e242a99ce7d5927f1ca4741ae72a4f9e73a06b5e36c99e2263134d313d92d4
MD5 221927d5cde441693c80a7e671f88301
BLAKE2b-256 2bedea32969051945d41e8eabbc70bdb6e2e73b7cbb94caefad1ed1bd43f0eb9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3d0a085961b22f0550dc295b0682c4944b181c5d7e7e9b9a14a241e379d394f1
MD5 db688ba9ad244f863deffa0b79386344
BLAKE2b-256 7b9717e0ecfa81a3e5b6dff8436c598b216d553a79b674fef5664943c56283f6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d2b6813aefa9e918181584c8437bcf3ec4737fbb51c164c5979bbd5cb2adc8c5
MD5 41c103fdef03b8d3f7b2aeeb6929666e
BLAKE2b-256 d92c48de11ce938fec56aac45f688a9f0ec2244ebaf70d708270aa852df5dc64

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d66cd0edf3066099ab14f02b97796d077b041db122d75f7d2efd04a4c2b918ed
MD5 75d78e1b83a86af8e96825967f551451
BLAKE2b-256 1280cb776dee2cedb43dce1847927ea056c97c56f6923810c01aa37d50c91d49

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1e606bee8665a223fbbcf05a071700a9d826ded087d7bd5029cf96b991a25cf5
MD5 167bbab092078dc3b1b593effe2fc739
BLAKE2b-256 5ea4a01d2b1a25c0376c56037241a0a20bd275d43ac67795c2ba645564f7b916

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 284bfc02c87d1ed1fc054b9e6f5014a4f7b85f4f3213e5f95021afe36297b9e9
MD5 834c76af43e30202e044704515985beb
BLAKE2b-256 eb89975c8a614c85df96e9f4fb207dbe23963c51c7c49d1a65ff3b05473b11fe

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 254237773a4843d4c7e8307bb2940e93e3d8cf596c999b8ac659caf05007e0a0
MD5 d5afa26544adc6df7614e25690259298
BLAKE2b-256 db331f3301694336847c6871d4bbb5b503c727b560cc2c48ad681f999a995787

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.1.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 933.3 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-3.1.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 8b231cb3bba5f22ae07f03adb721204ffa8ffad75484ce3341245cd59037641b
MD5 8e98da37f6911e31a8fe9743f1c1d239
BLAKE2b-256 db7556bd39af96905921ad3069b5c4eb09d3adea39a3b20a18a0f4db70747ca2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3046544209b4aaca2171068789e196e98ae91d7896141a43b3627c7bb3e4c04f
MD5 30b248ea786e8f3793d740e75a8b4c47
BLAKE2b-256 514b49bf799d13222957be50a13b6c6a6348d743d9c3e750860d45499ac5845a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 514c1a0ccdb796f61676b7abbb420b717b77c1826d65fc3a62faa9afd8c87c94
MD5 c09055402fe769d2649937d16adf277f
BLAKE2b-256 c1974c3ef74b6826726ec700ed8288a415b75fb878622df3ad7cb936782bc3f9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 03080921776e52be240bb522486a2de258adee50d58bd490fcc23c0ba8845ceb
MD5 b5c7a91bee793c306a89459b577c18ce
BLAKE2b-256 59d225b8e77877e33594d16f646e4ebd11072acd1fd21346271c59db024092c5

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 7216cd3720727768013fd826db5378210d05af0a4fd047e50080be51d352c958
MD5 7ce4065941c49ed9e5b10d13df130725
BLAKE2b-256 d2372d94909de3679c0c94fe4c13ef2811bf35d3a4b057a1f8ba4387ba27c4f1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 b38b39940a8dce1a04cf3c389918ae141ecf5562f0ad7b1daae0e7505aafc6d0
MD5 04c3370703ac83a437d9d632d049ad67
BLAKE2b-256 5e453021615ce4d7aca3b2264d50030fa62dd04e062c25af72a87ace1b5e564a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 20654bac010b87e64a41d9b3c9bdcc99c74a72746e6175aedf6dfce0cc484e6e
MD5 f936e546a1ff05b9be285cfed17511ba
BLAKE2b-256 17b5ac049f4864c9cfd201902c3157619dc645079122e2a86a9f1879634128b9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 a8f486c48567829789d4923033b7acdf4f8940e8a31f6bbfa96cbc918c1b96fd
MD5 55589266fc3ae1679cbefa99530047e3
BLAKE2b-256 b2b7e75155908673b7098145b694c70fd92297b1fa331ea7866b248d211ebc0d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 cb1f63cbd7a366d359860a5e18f988fa96bab2b2ae118134f494af313e13a075
MD5 7e2bbfe068a01f564ac21fcae19eec64
BLAKE2b-256 da4f1ba5b33ecb1a6c9b7a8660bf9b0b14a7c405a0ff6118e389ba3776d9b816

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 55b2cead6c5be3f694f510e6a6fb92c9fed25791e271e01db501c53f1c92bad9
MD5 4053b6b60887d09ed40a150e58f06af4
BLAKE2b-256 38daf2d791cdc032e48968625ad17ca6e0de3c158eb8896f2210b08586647f53

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 091fd97691596953a41a356ffa73d1db7fdf80a48f241b3c359eab48858f09f4
MD5 40193c2df65d43ff65707f8c69e6a225
BLAKE2b-256 a54eba2e5b9687d23385da5e9f217ff74e68cf38eaa19dbe314d845ee50297e6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5a7d832ccb9cd1cea92a30a46181c6efd71b08743bbc31f4faf0bccb8694a655
MD5 895d341b6f92033d280334180fb1fd52
BLAKE2b-256 1ae13683183d5b0b62124c4dd3fd2f710e4bd82b3d0098a7cdc5674a32be01a3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page