Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.
Note that from RapidFuzz 3.0.0, strings are not preprocessed(removing all non alphanumeric characters, trimming whitespaces, converting all characters to lower case) by default. Which means that when comparing two strings that have the same characters but different cases("this is a word", "THIS IS A WORD") their similarity score value might be different, so when comparing such strings you might see a difference in score value compared to previous versions. Some examples of string matching with preprocessing can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and distance.

Simple Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("this is a test", "this is a test!")
96.55172413793103

Partial Ratio

> from rapidfuzz import fuzz
> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.9090909090909
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> from rapidfuzz import fuzz
> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
84.21052631578947
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Weighted Ratio

> from rapidfuzz import fuzz
> fuzz.WRatio("this is a test", "this is a new test!!!")
85.5

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.WRatio("this is a test", "this is a new test!!!", processor=utils.default_process) # here "this is a new test!!!" is converted to "this is a new test"
95.0
> fuzz.WRatio("this is a test", "this is a new test")
95.0

> # Converting string to lower case
> fuzz.WRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.WRatio("this is a word", "THIS IS A WORD", processor=utils.default_process) # here "THIS IS A WORD" is converted to "this is a word"
100.0

Quick Ratio

> from rapidfuzz import fuzz
> fuzz.QRatio("this is a test", "this is a new test!!!")
80.0

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.QRatio("this is a test", "this is a new test!!!", processor=utils.default_process)
87.5
> fuzz.QRatio("this is a test", "this is a new test")
87.5

> # Converting string to lower case
> fuzz.QRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.QRatio("this is a word", "THIS IS A WORD", processor=utils.default_process)
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 76.92307692307692, 1), ('New York Giants', 64.28571428571428, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
('Dallas Cowboys', 83.07692307692308, 3)

> # With preprocessing
> from rapidfuzz import process, fuzz, utils
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2, processor=utils.default_process)
[('New York Jets', 100.0, 1), ('New York Giants', 78.57142857142857, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio, processor=utils.default_process)
('Dallas Cowboys', 90.0, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

This version

3.1.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-3.1.1.tar.gz (1.3 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-3.1.1-pp39-pypy39_pp73-win_amd64.whl (1.7 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.1.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.1.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.1.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.1.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.1.1-pp38-pypy38_pp73-win_amd64.whl (1.7 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.1.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.1.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.1.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.1.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.1.1-pp37-pypy37_pp73-win_amd64.whl (1.7 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.1.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.1.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.1.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.1.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.1.1-cp311-cp311-win_arm64.whl (866.7 kB view details)

Uploaded CPython 3.11 Windows ARM64

rapidfuzz-3.1.1-cp311-cp311-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-3.1.1-cp311-cp311-win32.whl (942.9 kB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-3.1.1-cp311-cp311-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-3.1.1-cp311-cp311-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-3.1.1-cp311-cp311-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.1.1-cp311-cp311-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-3.1.1-cp311-cp311-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-3.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.1.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-3.1.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.1.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-3.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.1.1-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-3.1.1-cp311-cp311-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-3.1.1-cp311-cp311-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.1.1-cp310-cp310-win_arm64.whl (863.4 kB view details)

Uploaded CPython 3.10 Windows ARM64

rapidfuzz-3.1.1-cp310-cp310-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-3.1.1-cp310-cp310-win32.whl (940.3 kB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-3.1.1-cp310-cp310-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-3.1.1-cp310-cp310-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-3.1.1-cp310-cp310-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.1.1-cp310-cp310-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-3.1.1-cp310-cp310-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-3.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.1.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-3.1.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.1.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-3.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.1.1-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-3.1.1-cp310-cp310-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-3.1.1-cp310-cp310-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.1.1-cp39-cp39-win_arm64.whl (865.5 kB view details)

Uploaded CPython 3.9 Windows ARM64

rapidfuzz-3.1.1-cp39-cp39-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-3.1.1-cp39-cp39-win32.whl (942.1 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-3.1.1-cp39-cp39-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-3.1.1-cp39-cp39-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-3.1.1-cp39-cp39-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.1.1-cp39-cp39-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-3.1.1-cp39-cp39-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-3.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.1.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-3.1.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.1.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-3.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.1.1-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-3.1.1-cp39-cp39-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-3.1.1-cp39-cp39-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.1.1-cp38-cp38-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-3.1.1-cp38-cp38-win32.whl (943.8 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-3.1.1-cp38-cp38-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-3.1.1-cp38-cp38-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-3.1.1-cp38-cp38-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.1.1-cp38-cp38-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-3.1.1-cp38-cp38-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-3.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.1.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-3.1.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.1.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-3.1.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.1.1-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-3.1.1-cp38-cp38-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-3.1.1-cp38-cp38-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.1.1-cp37-cp37m-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-3.1.1-cp37-cp37m-win32.whl (939.7 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-3.1.1-cp37-cp37m-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

rapidfuzz-3.1.1-cp37-cp37m-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

rapidfuzz-3.1.1-cp37-cp37m-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

rapidfuzz-3.1.1-cp37-cp37m-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

rapidfuzz-3.1.1-cp37-cp37m-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

rapidfuzz-3.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-3.1.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-3.1.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.1.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-3.1.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-3.1.1-cp37-cp37m-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-3.1.1.tar.gz.

File metadata

  • Download URL: rapidfuzz-3.1.1.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-3.1.1.tar.gz
Algorithm Hash digest
SHA256 a06a08be3cb7d7df7993dd16e84aaf59bd5a7ff98a9f1b3e893d18b273a71c64
MD5 f4eb9099d24e4b84a9ece42a36cf6a51
BLAKE2b-256 85b830109278e342bd1ce335aacafa8b295dbd34adc1a2b862a191f377cbba05

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 ef3ad80458e47723812976a2ea1282ff207ad20e6cb19da1917f76699bd5aaa5
MD5 8a50f9f81495a9b30c4f7c8e925c60ec
BLAKE2b-256 c9435e923ab71bd21020388621ef9b56d2fa6676812b94fa80c2e2e198ff52a9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 69d503a7641b5a63aa53c7aca0b857d38f48cd7bae39f8563679b324e3d2d47a
MD5 ca98b027a31a026bcf1aec9ffc15932b
BLAKE2b-256 57e48f6d2ec9f76255c29b8d3bca9cfb1f6300448326b1406fc29989fc4e238a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a4afab735bb0ac3ec9bafcc35376ed336d26af6140c4d81e4c869e77df77ecd5
MD5 a602eee5b688a0a2ad3fa581d15dbe16
BLAKE2b-256 504d0431b7878b27864ba279bd9ee96f3f6ba2931c103d2a4f24276787cb02f7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 39c7d0dbd77a7f28ff85a1dff2afb2ed73e5cd81cca3f654450ed339a271c0ab
MD5 4ab2b53429d0ad2d2f7ed460c5d3b725
BLAKE2b-256 85d3d471490799c9eb96a702c1d3465c2e815c77761cef40f36d8d34d63002eb

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8243bb4bb4db7c3501932ced6a978b284e19c3619b6802455e47bfd0905adb81
MD5 eb0e5a1e7637dd70401b9b32f2dcd6ed
BLAKE2b-256 98ab48eadabd2dbad0ef3a42321e09a4914d9190fbd735b865613a68ff9fec4b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 4a64ddfb7084b678da7778c1263aee2baae5a2ca55ec5589a022defc38103eb1
MD5 847b79b734ecadba700c2fb606a0678d
BLAKE2b-256 ff55589e847561dd7255cb98de8714c25d3178c123a33151bb7fb11da6cf1c63

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 819d9317c3d86b508d87ab1bca5867f3abc18b902c822bc57366ccc6330a030b
MD5 bf6fae8de781495643f7021c1c124fdc
BLAKE2b-256 52ca8b2efef15e99a149e454bb9d36965c4932b36119b423dad7514242b3becd

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 362e366e79fcc9a8866b41f20ef4d2987a06f8b134096e659594c059aa8a6d88
MD5 851dd53c011464a67314b4d2e8547e38
BLAKE2b-256 d9be08520c486b02ad87ae388fcce621f4af79f23264c776fcec26ead857a443

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 79f5a3ab7ff6c46336f38690f0564bc7689cefa180257ed9078c42f75b10c9d2
MD5 e1a9831acb9ea2af8a9813049ffe88d6
BLAKE2b-256 cc709a708dd6f7e2d3eb201c0e3d8ee31309f89a680bf002adab19f8620f52fa

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f7acc5c9c7cf567372de5b6c817f93db508e7b9bd7f29bd6187df8d2cc60ced5
MD5 f86fb9920e08ffa0b765d98613296772
BLAKE2b-256 fd60aaae74678e542ede6dd4c607d4c060cd94fb8b8381672974a69a16f72c3d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 15260263a0c7bffac934a53b6622d77e06e10929ee4d2e62ac6f70c13988f351
MD5 a209aa019cb11f18278d76cd67f9a39d
BLAKE2b-256 148339bc9274545d1e1fc8039e8d4e4f93ab2694bc9f4054e37f4c5f3050b3a2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f1e23665be5918f979180130babedab9317fbb34cdae237c7defad7e86bc684e
MD5 000a2173bca3b1b38a5f6360f327f223
BLAKE2b-256 de8115aaf8101289e0f0529ccc40e57184f99ac582e1aed91b5e6745e5ad74bd

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9ff1a517de2b1e80ddf1a3037a6ebca9925154c1af70751518d50d5c332e1ec8
MD5 4d8fc60f6be84331422f1d089546ef0c
BLAKE2b-256 f56e8613259ce272b1bb3fa32fc856948e2002bb0862d18e50d3ffe8a8c5006f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b408ac3c7f8c3414bfd5c6044ca4bb385b390bcf5eae3ad884cef48628c131ae
MD5 a25d890344576b1df5a02257ab69d758
BLAKE2b-256 96dfc731ac7bccc780cd7184dfd46cda4926644795fd825fe61161106f11b7a2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a8b8f32463781e4703965c9cf7a609a19a74478f332e0d62cd9d0e7a9db91321
MD5 703a6a2c03096c9a9dd122c5b1be31ee
BLAKE2b-256 2e089ee4c73cbbbc4252224f58e09e3fb55106520e952da20814a85a521d6a98

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp311-cp311-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 ea3e46a534de97a6cad2018cb950492a0fcacad380e35440ce3c1c8fef96a261
MD5 4a39976c7cf769b73f28eedc13c15dba
BLAKE2b-256 c056a46f3b5b9fc352a6df25f51c392a078a47c93f2a25ebf508a3003a21694e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b7c65112c87568274d399ad7a62902cef17801c2bd047b162e79e43758b3ce27
MD5 b8bcc8b7f03b4160c508ea3490c9e74f
BLAKE2b-256 833dc3d75b4a9d196c8048c7e237519eb01dded50a3371bea0752d57299ebf0f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.1.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 942.9 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-3.1.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 cb08db5c122fea4196483b82f7596e50ef9cab1770f7696c197bf0815ac4dd17
MD5 8916ea26f1d074902bb2a3092426c2f2
BLAKE2b-256 c37165151d42c79e1e60e5628f41d223ac108595f461fb6006a7555fbded8b52

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 53e3c588e7ea158fa80095dd0ff53f49e2ede9a8d71a3a5b964ca045d845a9b9
MD5 7d2f9776878ad3721d473e6dfc67e7e4
BLAKE2b-256 31e2b696ffff6bf884ef5d0fee0052b53ddf9622fb124bd276af459af9d940b1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 1465ea085154378e69bf4bc5e27bdac5c94684416882ace31865232adc9239a2
MD5 ef11d1bc9d79e4878f79e62435133081
BLAKE2b-256 abbf21b08efeb5d5be9bb8c1b2f9f5d86404567be2771fa768b6f80845d90407

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 10313075642a9f1f948d356f4f0803ae28a496d7967b466b9cae1a4be8aa4df3
MD5 84290f64ddd624b8affba2c656e4110e
BLAKE2b-256 9f0506485e7060da9ae0c0afb8c3f608def98a6698bc95cd85680bb451887cf9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 6f767d4823002e65c06ea273f952fda2b88775e1c2d508564f04d32cdd7f65b2
MD5 1b9c27af17756b58751bd0712777dc76
BLAKE2b-256 af6c43e5cf578797e255cefc626f9c1371240661773563e00cf4e994e0a7dbe9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 68d910048b36613701ea671de68f701e2c1ba2839295238def840ff1fc1b15f4
MD5 493e1069ecfe7539acb655ec5b088823
BLAKE2b-256 1b23fecbd6f9deb1aa76f280aeb4ae8540b6a2745d4455ac921e98998502663e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6f32791ee045a7b3d6a56208a55d996d5f7a32fdb688f5c5ee899cb7589539eb
MD5 a53c3ce0592696e95460073abcfe764a
BLAKE2b-256 66f7517ddade3f714109bc16502936a96fb5c63f2067273462f47536172d9a98

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 3f2cd9a3760080876fc59edb26926e51d6db44dea65e85f1eb04aa5f58c3bc41
MD5 2f1e6297a8d3a498ab6dc91cf736d795
BLAKE2b-256 82727ae9b2a628e2ce168d3816beddbe7492d5a2b23b6bc6350ab2265aa45d92

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 c089ce856919e03f4dd8f9168d60ac580d30cd0451fd60dcdef73010eca68973
MD5 e2c25a65fa6fe8b781f4d8239d3f3354
BLAKE2b-256 2f7b9f40ae7a58e0c47529523812a8f2216052da1c0a60cb8797f838a57073a0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e6772eb7cc4429f1eae5a9b41e5b0b1af8f0d50727c6e338d9ad5bceee01da5a
MD5 67cd7925f9b05a02f121f9eaa4cb7d7c
BLAKE2b-256 d83109e9ba3d44939a83571648ac982745e7bd58dc422c41da3d7385e54d0587

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 17b017f9e1b88dfd6d9b03170ef8e86477de0d9d37fbfcbe72ca070cacbe1b65
MD5 c70d95c00dabe93d6431013426faf1fa
BLAKE2b-256 f802bff3d12f57d2f4dc25cadc0c721a40dfa22e5c535588c548d27be3d07c58

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7f2024f83a9300440e845b441e71726471f7567021c1d80796ca02e71c5f0dc2
MD5 f23e3d9b998222d3338fa16ea2855511
BLAKE2b-256 7fd9bf91e551227188f64ee1b5f3e8733d8ccca1fdaedc853ae1c2bd05b842a7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 91946c496e6f380939dbea14ff6ce6de87480445c09d03964f5374101462594b
MD5 5c559f15483e8f09b8258772f732bcf0
BLAKE2b-256 13851e305b0667a38af25bfa0ecd43c20b23f34f3638db4f9af2d8c46081e6c5

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 58ca539cc6ce385d650138a9b1908b05622c2dd08a23d5aea4890523ef3774d5
MD5 5b59e9808c599db4909cf66f7ec02b2e
BLAKE2b-256 1ab5147a26e9237b5a824e1df7e4e2aca285fe3c82e622002afbaa1c9fabb865

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp310-cp310-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 e549da8d68ad4ee385c918ea8b9efeda875df9edf6c6b48df927bd061c00bfef
MD5 dc115389b25d71b5cc5b484b2b983b38
BLAKE2b-256 510fddea4b1b0e4703833b993d5d6210ce6ed1f98c2cc43a402e9eda3414e915

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7c74fde444bcd13ef3a803c578b28f33b4f9edf368f46ca3de57fda456065967
MD5 7ce51a1e6ac3a37f1b04a619a7e3fa73
BLAKE2b-256 da89f47b2a2832af0ceb9577f7fd2e674d08ad76ad1d0236424dcad0e88c7571

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.1.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 940.3 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-3.1.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 ef6c38040d868dcc0132fad377aafeb5b2da71354759e77f41ae599316df2dee
MD5 91e6fa5c94e7f82981dfe4ddca0af5ec
BLAKE2b-256 4a897eeba16a998a201760297291d87bb3acb7e0587af044cd822ca649d9cee5

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 de784bbe06d32e66617cd20766c37aae2438902d54b3fa608d2e0a929ca705f4
MD5 e98e3bb38f5b8a33a5d4ea767b84e846
BLAKE2b-256 1ef03fa9d12effcd02c44571fc8c655ad6db953d3ace5de64e2d3fa2ef9e60d9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 e0755f5ac6c3d1dc2505eb2e6eaf5508ff17b42c084406714fbabf2d50d098b6
MD5 f63898083078bbccf2bd2e545577dcc6
BLAKE2b-256 57cb35e6e790694099aa8c9595a754ae39ff9b5c59c19a7d7d63d17a9f4087bf

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 f25d1975e846d07990cf946a5927a932aa7cccd308ae9979b03a58ff1cd80087
MD5 966ba0016e309d1ec46c7d51dc95db1e
BLAKE2b-256 e8297eb355707961ca21bf988cb1cce1a277440d5beddf03a48b42d96bf0fa34

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 cdbf9a76ea47f14026daaed43a2c2150ab0e9a4d5396909f028380f33e61c522
MD5 d76befbb2c4d4bf9c6784c1850c68058
BLAKE2b-256 2dbfb080c166913913feaebd2492577ef5f669c443347377b284b8c294343b5c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 b4995792e106c3f1ab6f56dd6089918b065888e2e55a71e3fea8d0f66bf30989
MD5 f2ea798c3504eccddd12342c393a1651
BLAKE2b-256 8e7e7873b215d7eaeb8e4570b14e3b7bc4fd52685cbe5f40795a40abc4523206

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ec5523d5c08c639cd4e301d42f3ad7c6fb061a1f1cd6b5b627e59af345edfed7
MD5 3d7282b58cc6ce117e3ad389f8d07ad2
BLAKE2b-256 121e1043d7376f42e2dcfc68c24bbd0f5676557e07ad71ae0a9d37ff82adc0db

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 3b3e953dcef0302eeb4fe8c7c4907e50d175199fc07da05ad6bd1d8d141ff138
MD5 5b6b6cd515c8be257bcbfae6901e7178
BLAKE2b-256 e81a8e6d9bd47f9efeddef16225aac0f1a5c1247e8bc1aad11d29db347af9257

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 0843c53d54d5b7d6122d8f1d7574d8c91a7aacc5c316f74d6e33d98aec82949d
MD5 918bf1d8c677eaecc1841ff2d5fa6863
BLAKE2b-256 bccb011e37898c40aea05fb97120e7ab10ff5e3ac512ae924529ee73548ee3ff

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fdd2ab5ab56fcaf839a9f58caa8756dbfeba0b3dc187850b763d0a1e6ee9c97a
MD5 06da81d48ee305bb4624e4bc6c6f074d
BLAKE2b-256 88849f4bbd3cae4ae2141393bde33a780c866d4ca81e790ac1c35629264601a8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 88e77ed7d0bd8d9be530c462c921904ada8d3417671eed749784c5a315af334d
MD5 122581b9c05376e1c8f277f3931839c2
BLAKE2b-256 4b417ff843df720b3a818e8dc7051473800e9a8018510f7252df70faf93d39e1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cdee4f4d04761ce167538adbefa01a64e7cab949d89aa09df39ef0d5e859fb2a
MD5 c4abc8d0e84171338f7fddb1d714d614
BLAKE2b-256 f2a56326b3586eaf9e37f2e79a3b361d282aa05779a83af8c0233f30387b252a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 167dbce2da6bb5b73d43e53434c5a9d7d1214b658b315420e44044782f4c482b
MD5 2f6f33e8f37fae07434c1b171672c77f
BLAKE2b-256 ddc3d1f2d729baa0b4179c446bcf888b2f265f2af43c7d16bc7f35e0002a66b6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 17e4cbe6632aae7c35101c4b7c498e83f6eacf61be0def4ff98167df30dc69ca
MD5 6a01d040d30912737d64e198b90af296
BLAKE2b-256 128f5bc33b9fbc6f969ecb2f3cb1d3c0082791c8ce2a487497c6f070b3280a28

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: rapidfuzz-3.1.1-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 865.5 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-3.1.1-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 5e11e11880951e767342b56627ab2dc9d3ef90e2605b656e9b5e6e0beadaaf0f
MD5 abfa91946f8f02c42a1011b9865c3dd7
BLAKE2b-256 1db18268a04ec7cb65d7e3833d4a1e06d9c999dbabd1084ba2f07529b819c2b6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.1.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-3.1.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 16c506bac2e0a6f6581b334a7802c2f0d8343ec1d77e5cf9452c33d6219abef8
MD5 e48831b10d30eb96d892a89e920e270f
BLAKE2b-256 53f8ad65822b9cb22e7d6a050a157980560958b1384b706a956f7b5d94d304cd

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.1.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 942.1 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-3.1.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 9dc7154889937ca5a004d17f62b4798e0af52f69c38eb3112dbdb52b006d4419
MD5 14559bd9871331176d65f956f757c3bc
BLAKE2b-256 3fb8488cb0f52cacdab5ec71a8ed1e3a95714512e3528ac6222ee364c913d47a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 408007b4bc5a0a0cb9bfcdcc8cffa9b71fec6ee53ccdf9c26b57539f7e264ab5
MD5 9e5c24b706573a36fe5c9a02f1c92e31
BLAKE2b-256 62451e646c800b39c6211691d11174b16bcaf0925bdacb3309765e490ca22d00

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 fb7049dff52cded65184a3d2ff45cfd226bff7314f49a8f4b83f943eea9181a7
MD5 6b982c245d5e522879cd61f8e6c9a870
BLAKE2b-256 dff8579becbb974ef16f5186d69794bdd945460a3df106991f0dbe460c6746b6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 8c85bb6946fb02231d1e60ab45c36ecee04ecf7f725e094f5beee798b6b7d36d
MD5 586be01a45c6cc162fb112bb8c04d5c6
BLAKE2b-256 fe2411fa79168ee4872091726adbcde144761264aadc85afed381eea5ac0d2dd

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d72916d27fb88741bfb576b0b0639354ca00f5e91046171c985262c68a86bbb5
MD5 7b5a9cba28e9cffba31b2e84085030e4
BLAKE2b-256 aac7cfffcbde6b93c3b92953074976b935f3e5ecc9b84f8f0b8c65cdbac10c8a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 7726f67e4a0b2b4392f03aa62e16b12a697156c6735df27b21bd3ab561b01659
MD5 9546b33ff65e6e175c7229d79bf4d5c3
BLAKE2b-256 de84e670a2882171ff5ebcc18e87e0b7393302cd7c978a2b24ca497aeb602b67

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 10f56af1d46fbeaaa0dc50901c2dc439c7a455cfdac2f1acf6cffeb65ae82c48
MD5 3df39061d9146e198d86a3ad91f369ec
BLAKE2b-256 1a51dd620ed0fc869ef7d27b2deaea1383bc862ce54ec43c606e9cbe6512351c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 6d4da453fbd8793ebb11bed396f8a4b9041d6227bf055903447305dd7942312f
MD5 38c1a4417d948bba93325c85959feaa9
BLAKE2b-256 a3bbb5f174f45adeb0e644eb6e653e62cd4e108b50b07220e5651ddb37040c84

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 086a2d84c2e497e3ab160ccf164e319bca874d9383d008fcadf91ede8ac7997f
MD5 de4aad386be532b877970417efa69875
BLAKE2b-256 7506b81d55faa87e6bd1f26e5c73aa45b3475a5fcfb496e652c81ca348b4e8ef

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4019def8a18bc867ac61f08a542bf474a7a9b3f662f5d5cd169c9135866562f5
MD5 da77c53bdfca8965d9c6398e7fa8937c
BLAKE2b-256 55aa8c0823dbe3f9240649ba61f14a52d3ad8997eba2bad976a8c01fb7d604c7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4e951c874a0e5b375b2af9b5f264eefc679c0685c166ee0641e703ef0795509b
MD5 2e83fe72d5a01924ce17234310b7f4b1
BLAKE2b-256 7ffaff94a2b27b9c23dcebfbcccba6b678591dcc8e737a7a658e4258604f6dd6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 351d253fdee62d6d0e80c75f0505accc1ce8cc73a50779c60986ef21c92f20f9
MD5 fad607716bc7a9e73149ba5236e72fec
BLAKE2b-256 9a9bc1df4dbf4d45a282d6a1467a078509a9b56c3ffabeacb941d70e9d238c01

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a293370448f2e46fdc6e086ac99923015bdc53973a65d3df35aefc685e1a5809
MD5 c08d452103bc75277558f2304c03813e
BLAKE2b-256 7cb9ed064581a9730981b2fc3cd2fb6fbfaa19b9d6e95a44d87e45975df3b4d8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8b966344ed4122a71ab8ccdca2954db1ce0d8049cb9bcac58db07558f9d9ec32
MD5 8f841cf473c20967e286600f165927e8
BLAKE2b-256 3dbdf748014860dfad1e2257eb42b281c564a6100a6e59ef27778e9cd528b774

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.1.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-3.1.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7af18372f576e36e93f4662bdf64043ac23dfa02d7f768d7e7e1d0211bb9cb35
MD5 c19af7c6afd3d901b746788fdecb8715
BLAKE2b-256 098ab41db305b746a71cf5e58848147d700c4d0a354f034a68de5b8617d80025

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.1.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 943.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-3.1.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 6c0e96821029c46847df4ff266ea283a2b6163a4f76a4567f9986934e9c4410c
MD5 1c33aa17f4fc566547ee4ed96f8b31d3
BLAKE2b-256 afcd30067ff9269d64bdbc1fd9d0d06db2338d2573cdb986006ea155e8259323

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 49d900da023eeb3bfbe9feee126312eb9fd0458129aa5a581e4d8d8bf4483d14
MD5 e220d0c7a93b6fcb8e20ca290ba6c466
BLAKE2b-256 56c7b5878963d2f4878523aa865c4bbe6381e0b47d3a991222547c9a26cfcd75

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 851b44130393139cb336aa54c681d595d75a3160b7be330f3acc0c3b9dabce70
MD5 50cd441c2e5664e7286488dd05759e91
BLAKE2b-256 90681f4b38fb6a955f2efb74211a0b984728f0fb1074804946f52687aa83c191

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 c53cf36cdb10819b7154fefdbffbef442ba567d9c1ca74a7e76fd759ace45e6c
MD5 6b6c533062a8c91686a2b9df95c70681
BLAKE2b-256 4474ea147b99e215c73ac06b3fb42999c6edce7643f1d8c51e463be012df6b13

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 7e181411958d04d5b437a0981e87815e8f1b1909f5ae0e339246d3bc464f53e7
MD5 3367c2d6c4bddcd29569288bd9bce043
BLAKE2b-256 b6fb237cf3a612e4163e01f6d28c5d3f37b80d2b69ff47e7417ea685a471e3fe

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ccc1b5b467766110085c80bb9311d233fccc8ed1ce965aebba3125e1bab04cba
MD5 0526bf44522cc281e9aa1b98464f419f
BLAKE2b-256 fa356e4480fdc922bbc3509ecc48d565043bcdae7c941fb8b23371d7a3efae65

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d4d509e9aa011e1be5e4da7c5062dc4fc3688714687110536925980b3d03ac6
MD5 a61f6124471f6e1d3ecadcf967a400ff
BLAKE2b-256 0e6d5605fe9c8690d09e83198ee47e0f744326c296e57514912ed4ce31700b34

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 d5fe8054c244bf63be2380efc275edd86da3a706460d42911dc3ff914f3260a5
MD5 e1d42d52ccaae7362fc25e5c631246e2
BLAKE2b-256 9ff52de64bde7a29e05f78e7419ba6528960cd6c564fef770623dc68c267bf5a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 09a6f5cd9f1282da49b8d0747c40f3fea2d64ab5e4c2cc2295baf87ff7a0d062
MD5 32b59212f6ff59bcaba5081244bbb8bf
BLAKE2b-256 e290381766c37bcd88bcf2f55745b10baf12967d56957a5aa837cfd1bc99d0de

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 83b48b789f2da1688882cba595c40179194ab15ec17ea1d4c9de9ee239649904
MD5 81c83ae35451272f7a05aee389539fca
BLAKE2b-256 7f521554f5c1aabfa5494ca1f4511799ca186abbdeae23a1d0917b90e6ddf02c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a4a751f216fd1222a4a8c7ceff5180872a156202c3bdca1b337e5a5b09298dfd
MD5 0df68f21c15d9a096d1c1c42398b859d
BLAKE2b-256 8738d907c8bb6700a148bc89a8894b4d67d786bc9d706db5327497d023bd05a1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dc7f25e20781c8d42e813516ee4ff9043ecce4a8e25fc94ee6732a83d81c1c99
MD5 034d685b0faa5f8e1dfb40e5cda26e50
BLAKE2b-256 9d2216d4e82e791f7f91bd29c46cf925b5112e7506684361fd04f316c6ac9e58

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 788fb03c5acb5b48f5f918f4cbb5dc072498becf018c64e7e27d6b76e63e68b8
MD5 c2af13b8240f0d8b460dff46d50ebf1d
BLAKE2b-256 4957f7bffdb26cc138c78015ab1011eba0d69b124d68500b6f8711907549b9cd

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 51bb8f7aa4fe45618e75cdccf08491c752a7f137ffbf7d3afd1809791ac8c326
MD5 9b8717904400a22de76397cea340ac23
BLAKE2b-256 a183ca73988c5936c2c7512e9ff9e667997f8c4344f9c6f7437b87bcc65c7b2a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 32a5c47b5153f25eb512dbb91f9850225d2dcfb3404a1c48406726c7732b0726
MD5 59353506477ef1a2d12d8a634872cede
BLAKE2b-256 cc2fc49cc87bbbb4b30147bbe10b5c3257843e670e3b378591776b70717b3889

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.1.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 939.7 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.3

File hashes

Hashes for rapidfuzz-3.1.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 6ede2d42ad55bd4e7a3394e98c5f58ddace78775493391732d32be61268a4116
MD5 04b67c3fd6289e7d5f869c749a2553c0
BLAKE2b-256 73d8555d75a09ae677bff1da72cb23a589794bf981304b424688483229a3c8f1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 712331c1c70c79a219c2ac233b4e25e75ffad51042840d147d5e94519c7d8a1a
MD5 666e96425928557792e4194d0e5e500a
BLAKE2b-256 1dd0777ded68d185f772b2ed62953767f0995e11412e94a603e70c9350073664

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 d3264e4a02e4148e30078104fb0c1b6c8eb166ddc5ebe843a22433f58f87dc47
MD5 cc7f69b3c9f535517a5104faa4b1fe0c
BLAKE2b-256 a0ceee970491e247905406ddefa673c254f66b628d67102ab6f76b2be14389f3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 b1bf8aba99b267aad0a01dfb44ee39803676007724abcfb72129c350476b2341
MD5 299d700e1c2517dfa047280a0f509024
BLAKE2b-256 6d7138a04d0c3d0f2e0a5c550f32d90995d06ad3735a29f3dba7020e65792be7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0de229cb613be060580c71c1674acbde57921c7ed33d7a726e071a2562924113
MD5 0a5e7140c64d88347b2a68014ad42586
BLAKE2b-256 0818331c5624672da809ac0d294a80fc917f108be998296719a95783d65f217c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 aadc5a8b9859737a8f87831215b7fab0c04afeb960bb987c528421a4e6dfb8b6
MD5 bb30a37a394f65c8d107f126173b84d2
BLAKE2b-256 8e0278e4dca1f34fa2848c66ed38cafaee219a4ac9f7a493fcc1699311960ac3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8c07e16ab38e717931319cff1340debbf2ef940a1cda4eb70e323079b62df306
MD5 78e2c07a76c414686c42e79498f23b30
BLAKE2b-256 79105cf2952bc32944672c0c5fa2c6e8b896b2df767b7c6efe83fc3242a9e8ac

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 db5e71e5a810d2f1163c914e01b3ba241409a98286ac4850ff26076115ae401b
MD5 4bb4e92d436d8d988d0619c5ed4e33ed
BLAKE2b-256 7d6b38de39117619dae6c2c7b7fc0041ffc67b88b8e920f67867e37c76816a2a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 25eea5c8006b6c8747ca204675c9e939f3c4d27167fb43b2aa211443d34f9abd
MD5 8924e8cf6da10031e38dcfc7ab05fedb
BLAKE2b-256 1d7128ee19c45189ed230159609f464bf113c5d5e3bfc63f726da44605c9936c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5a371846f45ed9d24927a8d5222884536c1e171543396b36250fafb2e848bc92
MD5 c3b55ac19e743f8fc75cf237ccb44ebf
BLAKE2b-256 46a1cb56e9a9480b2105327ad45ff28a37661720d989307eae4781b202e0c774

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 51f21f37aec6bc117e9083181ddc3cbbcbf56b6506492b128d8e836d3545ca80
MD5 6f340c0a094bfc636b38efe3f3569198
BLAKE2b-256 e37b5accc11494e80e4bfc9fcac34e53075c5dd0ce615d885598998d5a6880ec

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a8bb256b34fcad4f3fa00be6b57fe35bcb54f031911195929145c67d9738ffec
MD5 75ee5c5fee5dc3f0108b064cdfd5afbe
BLAKE2b-256 a3b6055a7addf28bb171ffab5e99466c97aa24b975a7da7dde098d9aee69e09c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page