Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation
  5. It can be largely used as a drop in replacement for fuzzywuzzy. However there are a couple API differences described here

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.
Note that from RapidFuzz 3.0.0, strings are not preprocessed(removing all non alphanumeric characters, trimming whitespaces, converting all characters to lower case) by default. Which means that when comparing two strings that have the same characters but different cases("this is a word", "THIS IS A WORD") their similarity score value might be different, so when comparing such strings you might see a difference in score value compared to previous versions. Some examples of string matching with preprocessing can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and distance.

Simple Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("this is a test", "this is a test!")
96.55172413793103

Partial Ratio

> from rapidfuzz import fuzz
> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.9090909090909
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> from rapidfuzz import fuzz
> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
84.21052631578947
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Weighted Ratio

> from rapidfuzz import fuzz
> fuzz.WRatio("this is a test", "this is a new test!!!")
85.5

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.WRatio("this is a test", "this is a new test!!!", processor=utils.default_process) # here "this is a new test!!!" is converted to "this is a new test"
95.0
> fuzz.WRatio("this is a test", "this is a new test")
95.0

> # Converting string to lower case
> fuzz.WRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.WRatio("this is a word", "THIS IS A WORD", processor=utils.default_process) # here "THIS IS A WORD" is converted to "this is a word"
100.0

Quick Ratio

> from rapidfuzz import fuzz
> fuzz.QRatio("this is a test", "this is a new test!!!")
80.0

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.QRatio("this is a test", "this is a new test!!!", processor=utils.default_process)
87.5
> fuzz.QRatio("this is a test", "this is a new test")
87.5

> # Converting string to lower case
> fuzz.QRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.QRatio("this is a word", "THIS IS A WORD", processor=utils.default_process)
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 76.92307692307692, 1), ('New York Giants', 64.28571428571428, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
('Dallas Cowboys', 83.07692307692308, 3)

> # With preprocessing
> from rapidfuzz import process, fuzz, utils
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2, processor=utils.default_process)
[('New York Jets', 100.0, 1), ('New York Giants', 78.57142857142857, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio, processor=utils.default_process)
('Dallas Cowboys', 90.0, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-3.1.2.tar.gz (1.3 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-3.1.2-pp39-pypy39_pp73-win_amd64.whl (1.7 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.1.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.1.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.1.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.1.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.1.2-pp38-pypy38_pp73-win_amd64.whl (1.7 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.1.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.1.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.1.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.1.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.1.2-pp37-pypy37_pp73-win_amd64.whl (1.7 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.1.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.1.2-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.1.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.1.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.1.2-cp311-cp311-win_arm64.whl (866.7 kB view details)

Uploaded CPython 3.11 Windows ARM64

rapidfuzz-3.1.2-cp311-cp311-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-3.1.2-cp311-cp311-win32.whl (943.0 kB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-3.1.2-cp311-cp311-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-3.1.2-cp311-cp311-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-3.1.2-cp311-cp311-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.1.2-cp311-cp311-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-3.1.2-cp311-cp311-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-3.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.1.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-3.1.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.1.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-3.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.1.2-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-3.1.2-cp311-cp311-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-3.1.2-cp311-cp311-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.1.2-cp310-cp310-win_arm64.whl (863.5 kB view details)

Uploaded CPython 3.10 Windows ARM64

rapidfuzz-3.1.2-cp310-cp310-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-3.1.2-cp310-cp310-win32.whl (940.4 kB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-3.1.2-cp310-cp310-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-3.1.2-cp310-cp310-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-3.1.2-cp310-cp310-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.1.2-cp310-cp310-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-3.1.2-cp310-cp310-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-3.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.1.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-3.1.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.1.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-3.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.1.2-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-3.1.2-cp310-cp310-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-3.1.2-cp310-cp310-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.1.2-cp39-cp39-win_arm64.whl (865.5 kB view details)

Uploaded CPython 3.9 Windows ARM64

rapidfuzz-3.1.2-cp39-cp39-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-3.1.2-cp39-cp39-win32.whl (942.1 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-3.1.2-cp39-cp39-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-3.1.2-cp39-cp39-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-3.1.2-cp39-cp39-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.1.2-cp39-cp39-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-3.1.2-cp39-cp39-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-3.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.1.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-3.1.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.1.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-3.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.1.2-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-3.1.2-cp39-cp39-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-3.1.2-cp39-cp39-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.1.2-cp38-cp38-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-3.1.2-cp38-cp38-win32.whl (943.8 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-3.1.2-cp38-cp38-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-3.1.2-cp38-cp38-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-3.1.2-cp38-cp38-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.1.2-cp38-cp38-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-3.1.2-cp38-cp38-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-3.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.1.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-3.1.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.1.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-3.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.1.2-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-3.1.2-cp38-cp38-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-3.1.2-cp38-cp38-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.1.2-cp37-cp37m-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-3.1.2-cp37-cp37m-win32.whl (939.8 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-3.1.2-cp37-cp37m-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

rapidfuzz-3.1.2-cp37-cp37m-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

rapidfuzz-3.1.2-cp37-cp37m-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

rapidfuzz-3.1.2-cp37-cp37m-musllinux_1_1_i686.whl (2.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

rapidfuzz-3.1.2-cp37-cp37m-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

rapidfuzz-3.1.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-3.1.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-3.1.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.1.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-3.1.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-3.1.2-cp37-cp37m-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-3.1.2.tar.gz.

File metadata

  • Download URL: rapidfuzz-3.1.2.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for rapidfuzz-3.1.2.tar.gz
Algorithm Hash digest
SHA256 1b1b2eab728efc239c8aab97b4821f8e10dcd5a1b066365d0e38023e3b2289e8
MD5 093790e9196260db7598ab66176a29a7
BLAKE2b-256 2973b41cac4dcb1c8fde87fe6f1ce6e4e08de688305d48b99e8bfbba2654a57b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 178bb9e57d940f22a828ec916639268c3fd6ee1d45e1cefd7a7022645d816ce0
MD5 232a99e4b60b811e6b47f5a83e8552e2
BLAKE2b-256 791f8c52f31448d39f92dd38b0fd4a9256bcb63f7410a1418de016516cd9e2af

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 35219597d11f2d863b1bb774e98b6a0e1881d96033cf90b580b1d82192b5c809
MD5 5abaa39e05c328d2100f1fdf370935da
BLAKE2b-256 18f144f2a47a6e1401f8e2d8a1ee177dd64f5c670bb4103658f42a01126a7a9a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b6e847d7558255483b399b6931e425143f68b8e0c176d30034c36a87dda4b9a9
MD5 bea07c49b3ba35e65eadf1b639b70d59
BLAKE2b-256 5e4608dc1563654cce95a0d42394c051ffe62fe87626361e2f98d48c42475dac

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fa439e73f8aa4f66e89fbc2bce6b2ae882d75ea4e4d75e5e584376db4f5fd73a
MD5 382f44c8005581b49172ad47c2a6f0bc
BLAKE2b-256 cdcb45c566cb2b7bdc00dc1de872528584f0d677e12dd7168c75d4bb5c75612e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5a2e2203c4b7ecfe78a443810fcf2fcc1e1d96d59d3e704734e21b6f710df3f1
MD5 827439bd97b43c6f224b251e027c8c6a
BLAKE2b-256 48c6695106f4cac690b5e0447bedb8f82ed38786948d1b369f9bf9e1b637511f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 2510fc00b47a8355485b0014b49b58437594b48a0f08d557de7ea9819ef31967
MD5 6e0a0774effc610441db6cf6097b4e7e
BLAKE2b-256 60664401831c879978dede81c5249e2e513826ea1a7bf8ca923c6b838f3c8323

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6ceaaa418e594438240bd287f093bca33c7ee3b6c40e8ce6a74ebdcc9f280f9d
MD5 81e5caf99f6337a1b3cfa4a6c08a9ed7
BLAKE2b-256 9464c10739fa70cce15894bc3d0d71c7fa7fcaa142f0a82aebdd53f49f977bdb

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 090bd5976d2af005c143fac5364af7eb6b71831a708031983dd78867070517d0
MD5 72edb726299f3e4b3f1d2354977d7de9
BLAKE2b-256 c95f64c003bb2057e70de86daafb7db9be1991a3f01fde3f87d2ec88022f3cd8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 94af8500ec952154144f54918d150f04bd2e520c94a27bdd186f57323b0b7b5b
MD5 325a5a12203a0d6fb54ddecf796cc139
BLAKE2b-256 5e525bf3f8c62aad8e2f6178f4c5db4be51df99fada90e8a05ec43c74a92d2a7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8be1910ff15bc5f22ac5fadcd3f0877a6eb9eba40f2d17303e8cd898d36f49f5
MD5 787e9c75397291c0e81f20708b95539e
BLAKE2b-256 c726241394cd71dd0d4b007fd068eb285329a15e5211641d0af880d3a7542f44

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 45c5e5d813569c4b613965bbfc7e5413615731aea9f932ea6f1854203ea52f9a
MD5 a5a7778298b074abf9d14541c08eb3f7
BLAKE2b-256 2ac3c85fd13aa6e579baf95ac46b513473bb090acc64f495e023f0e936033e7e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 70bfe4be52b300973f16206ace8216b9a5607c89039f5ced1eb048a60e098624
MD5 8ed791c897be6adb383c6eeba4d34cb5
BLAKE2b-256 fe5e7862bb93f0aafc3ef30594683186425ad8bc7651770aa64082e6e48df031

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 24b84c09ad66c24fbaec0d1f72e74d0cb7ee86e8bf6429281c69377dba76ac67
MD5 6c0efbed009569cd413c134ed0a18cbb
BLAKE2b-256 c7e85c2375eb9a4de9fe2f603724d5cfe009971a65ebd6ef26330a2b866d01d4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3bfeb47bc0be4b032462ba066b4198e79ef96a57a6bf5f6b64f1c63e5362000d
MD5 3889e51d6af5fa1e082be81f608ff94a
BLAKE2b-256 e9f2b45586299e785549233a17222955b553bd99ab3cc2803c5aa5768eae7415

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f3c69967ba33327e8e22a3a0ff3c22b3879ad0f885a097ff2a5c1fe7dbd8505f
MD5 1d2de6c7c8aca5b5f24616280b14da82
BLAKE2b-256 01bd733b2442f416c4844d0ea82a18e9a708259a6ef9072a9b501bed25537e70

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp311-cp311-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 c0ee0733a17e9cc920838b46c43bab43c0e2cee78f091d8c788b162088ffc552
MD5 71e376904a920d59dd64fb70757385f0
BLAKE2b-256 bef3a944fb6e87025e2718ec9cf04ad327e000aa1859e40ec7e17a7af3e06320

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 173378a1e9503e0239e422515c8dc4dcf70048070cb1d8301adc2722de1625ec
MD5 1252b76deaacd0af636da4858b5a0494
BLAKE2b-256 07ba8b969f0a8d43e3f51922511820e4956fde6c9798fc0eb01eb8c5bfcf5911

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.1.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 943.0 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for rapidfuzz-3.1.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 fa910442085e9e141259110e4a228f6a2860fa7bd85872707188f9ddd2479153
MD5 d04b5ee109e4dad8074161f1fa94e889
BLAKE2b-256 9a045e5f62e3a906a7ba4bb5abdafb906e1faa826bbe8f5cf080a6717b805339

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6031a0985b0ecc72f3f9704efb4a2e7db77c315f732a953a13fb0900204c3047
MD5 ba3b4b1731001fd230fa93e8f610dd9c
BLAKE2b-256 fcfc49ef0a90422eacd743092a81cdb5f19ea50c667611a05b99f7d69e6c73d0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 6e29be51831c5a839268cddfa895a4833dfe6541611759bdc485eb8ebdf0b310
MD5 e44bfbec9c56762cf8473f13c46d0dfa
BLAKE2b-256 7adb1660113048293ac058233305527295bec3ce89a844ca65f70af6a7bf5349

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 45131c2bf9b6c739ffde137e6c56af65786a17a53b0c6e6ca3bba762bb063a9a
MD5 b7eeacd7c7636ad6073ad1e517574a6b
BLAKE2b-256 26fb385daa626618238bc97f07d83e1c5ff4d1fa525f5097becd336fe7b3c906

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2bd27356081b0b5ea3164dc45945e56a9ff3aac89f6df83835852ed377e274a0
MD5 7d9b260c0fdc720e04c01733be1dbc0e
BLAKE2b-256 121c8a66b9918aca8b01214dd58c56468428a3f49f98b8fc6de1cbfca5437249

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 5f1f6f18f23f2744a58b0d02f07d31f5fc104ba2e6c81fbb51ecd50e96a3374c
MD5 7ed01c37e7068b6b51b64e9122f261f8
BLAKE2b-256 97a90bb0abd5e2e030ddd44f0cdb19802330589dd97e9a287385c99d997f8187

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b93f443705985f5d8c3594015caa2e89749875c9596c834dbc9f86d3c8331a5a
MD5 7ef3031620e4c6f8b9a71cee30f181ab
BLAKE2b-256 077586c2114e7cdb27ecbc874ef77ce46f5b9fd9db1f681847d7b8841a401e5b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 f1b9e00ae857fdd6d52bd6d7e1b5598c54bcd0194f4626abfd2eb4e93a8dfebd
MD5 e0ee4ee0f859a65603ae768fef1064fd
BLAKE2b-256 53047006ff87271a3bbc7922c3a421fba3e588c47b14face324ff1d5c81ca697

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 4aec1e9d5416030f77de7e909af2645cc935e999da7e15d59d7e23b37a7a10ed
MD5 fbf51e5dcdeba834f75737d51ba3ccd9
BLAKE2b-256 7320faa263855618e006621952ecc86cec7b1feef523f48d10dac81f20dac92c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b5d3558e949f3de0081a5f6f8fa74a5a260ca9612e03be9cab8d7289c6bee8ad
MD5 4be2d9c63f207be5a21828619e074105
BLAKE2b-256 ba2370dff8e66b5ffabac628c78540020c8fa8dbd100246b441731063c3b4316

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bd04785eaed247cc79149e1c0b01a4ca60efde6976e617231f5bb5ec84eb4c80
MD5 29db876dd1c4b8d8c6479f84de949689
BLAKE2b-256 6af15a53ae1677ecf2b03109190e07c90e757ff435ae8771230ba5b80d6a3b92

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 493e00f8664ade67574cf0e7984f53bc1dbfd018b0a8102e326bee002acdcd3f
MD5 22e6d600ad3a4bed75946c6c4c172c02
BLAKE2b-256 a64e463ef905171a8236a617b5c21f6ffc4a58a93c363e3736f2d812851cfdd2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3dbd9bf09ed895a01d1aca3d82b1ce3656d1b121650ee8d640e0e17ba24e9e31
MD5 f76405bae9bb9db55b4c39411093d460
BLAKE2b-256 7bcb0b1332c5d1a172f0eb809d14745152629752363db2f77d39c5426dc5198e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 45e639069ecdb2aa33a2dc4a2b4c30f0bc35067830dbe5786031121ae9ac9eb6
MD5 ed357d8d514de9933d6275b5179e2c45
BLAKE2b-256 89f591c8565a76ef4fcec67fd20279642d24fbd79b29e69beb3418f3fc2f198e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp310-cp310-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 0a44d6bd5b4b510d5bfa64363d888070fedf55d7044564e9685fc9b6572a9fa5
MD5 d2f5c7eb1cdb25053953411df116c546
BLAKE2b-256 ef2ca42fde5856baf302f625b2c25f5858e58bcbc803dae271387d17c4793bb3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 555053d9c4ed1ad7d0bf78617ec474ab436a7be94966e98de79cf226d7e9a341
MD5 245ead85d8a01cbd74600bf4850f19cc
BLAKE2b-256 20d94503200d7ccef9fddfc738db3c732c0705535de959dd1323a4dd2cec8ca4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.1.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 940.4 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for rapidfuzz-3.1.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 ddf043aba44e951a6c8ff1addee57d9c3438f1ab3a7edd87ebc951621d8befda
MD5 7975aa9f8f362c4f4a3e092d5fde4855
BLAKE2b-256 c2d77d80891c0e040a88b62d2a4b7704f12e50fb2165df4fb22337fd30a43189

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 39943285af1b3884bfbf4d51376bce180f0456a5b04e766416c1af9a4b62b93a
MD5 e6b592ef13e908ef53bba03d6ed27087
BLAKE2b-256 79643c2b828ee4eb093b91a421d53eb01337139df9b4931184602ba59f502e74

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 3ca6fac652b195f8eff608b00c0c79889b7cb2984125abfbd14f6fb3f6effe25
MD5 2886468633a272130c263281c46d188b
BLAKE2b-256 aa1bb5976dd51ec56ba768ffce3f5d0466f44befb7a38685878292900b049f2a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 15e3586077863d61bf948a0541c7d077ddf4b4ebc59aca1568514bc9a10b8172
MD5 2e3df184d96e89c9201d8baf20879860
BLAKE2b-256 c61dfd02544bde646669a27a22ad7eb650fc6a6cb7a99fd32541fef41805640e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a45faa1a24fd3e078567ee31b953fe6e5819e9286a14f68c72c5689f14242f68
MD5 27b9c0a57fd1db324cdc33fa1cd8564b
BLAKE2b-256 09cab7b2f390ec5a71d35632a46d35e0643f42e4c1f4975a892c6e52dcaaef84

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f0e128aa3dcc422c55d55de39dbbcce1401947c4215a5dcd36331151e8ee77ce
MD5 1d33681f204bade234afeee611f6f467
BLAKE2b-256 fdb25edec60a43b5a46d819a1538ef0e224f2cc14f03ba05feca77bdf1d21781

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3d93e61486d3d4767e46b108e19586038ce4e8d374c719a1dc0b1077d6007a11
MD5 f659b4aca1f73dfec1fd68d6eddd5a23
BLAKE2b-256 c73f074006ee7946bef71aba8a1226a637ed29b0617690ea379787834ccc418c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 47d532d6132d5fa40a3f1d3ea7c8752ca5e2ccf50a1aee5c5da16be7f04d8218
MD5 b2745f376b373749c62701ea9c3d6ede
BLAKE2b-256 2b346a21483bc55f228b346a937daec05a26e0780df525c1405146900933fc72

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e05b0e3d1803071221eeea695a5a247f3b66f55c3d2e9c2a13ed33ccf67a3f30
MD5 1b3095da0dc15251c9a9355e5e50f079
BLAKE2b-256 1786e78472290697b96d403be92deb79adb36bc518b3f4db0d62716cb8a4d8a7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0d4b09c39125b5f21c62a6e08e6649fed6951ffc76a0a7e56c7b29e234002721
MD5 25917e1557b0ecc981e3fb81ef706978
BLAKE2b-256 e37143bf140dc3965b879805e93b4a0f919e4bb7ba77398a4b93cf7cb9e84f58

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 85a85d2a9e8c7af690fe4056c1e48ce641a77cf48688751ff95c86f2a44fc5ec
MD5 5de3d44053de2c2d9e1bc86cf1b91ec4
BLAKE2b-256 fdcb912a3a024497e482c826810992b89e16e019996b6ccb3d1e25840d0834be

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 105496b727923ea98e6a788becfd018e0da3510338f19d2c7b642775dcadcc2a
MD5 e8f49e6b1bdcb00b2ab224bbf4a7adc3
BLAKE2b-256 93971f562be3f06cb930cd71c2cbf4a9ae2705bec117ce42e2b4b88d4a23c6be

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 710e107a0977d53b29a68d89fef476fb378dc97cbbe81729f9e7dcc55c86c844
MD5 ffa1f76719ca501c766cb64effff3f73
BLAKE2b-256 765f6897253ade7ff0ff979dba129d1b937d474b33748049d33571aaea476fbc

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a7c41b1ab1532993d203eda9ab82bb8b7269717a7dc424b05ba39f1e39be5ddc
MD5 e1472d69ef2c4cffaba81f7ee610d3c8
BLAKE2b-256 419c97b8e1c5214e4775293e184e33a35efcb09907e939b700c8a1851d56a4a9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: rapidfuzz-3.1.2-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 865.5 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for rapidfuzz-3.1.2-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 f28e33a5940cbaec2095aab516423728aa11d93d01ab6574c304894abe71e007
MD5 273e764e66b8b75df1e7ade366437535
BLAKE2b-256 1a2fa6705f1f39530503c3a71f8103fcb3cd30847f43aaf2c3ffc2e317a5a4fa

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.1.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for rapidfuzz-3.1.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e88af8e86fb011adc0221419a5615ed507a54cd74956b07345b8881d81a329e5
MD5 1aec6c0f2920a9066d1f15bcae449e14
BLAKE2b-256 bfe9ab3104bbf1af3a1d0230a466a726cf5f0b64f172b224fc18f07560e9a57a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.1.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 942.1 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for rapidfuzz-3.1.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 37238a2e8066e1573d2035906c77e58d4bbc5c50812bb667acb7975960260fed
MD5 781d8aae16f19de6fca88f3ec6b7a685
BLAKE2b-256 ab35a89430f38d323c7959de418fb89a829a38298a883022034dd8289ed7fc47

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7361a2879b827516203f61d12af8bbb7bea504d7b4d5c02a745bd6bb3fbd4326
MD5 929cd32aa2cd04cd9563a018187e97cd
BLAKE2b-256 877b3b29f1a8167dc2da2653b320ff75ddcfcacdd6639b649b86a464437d5d8c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 09bb9c0a7006ad6782a3ff1a50843b80551a771ad6736d66943acd3dcb68030b
MD5 0f66f0dc5ebbbec6ffc5c4394c890299
BLAKE2b-256 c46ae1a4ab6b231d84133aad2d7460c60dcd0d2db4973af940c2a0a3d8daffcd

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 77a3724f13fbc3ef867012f353d064459f618918f74a3276bffdb523e39350c9
MD5 5fe6bcf3fd1e26a6614620bbceb8dd13
BLAKE2b-256 65bc28181ea4b071c4bbf21c6f5936b61d8599abd453918ea4d4a900db44a0d5

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c0c15395d1763d89aea084d24564d0b6808988f05a0303d58dc633c27939fcb4
MD5 ce3ea06a26eee4b1b4fa8b4c6225fce3
BLAKE2b-256 45e52306ed796f60b95184d5afa7d3ec7fb86a9ed399d05b1bcda755b5f68769

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e7fc11a86be3df506149d1bf59e9b3edc818fbcada0a4786697b54707e6fc374
MD5 167ac1dd75a68560dc5ee2b0634fa9a4
BLAKE2b-256 35475ebc13fa32ed3dc9b4c0887e3d8226c6cacc998deaf6d2680d0a30c5eb26

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 178b32d806c62e4dfe1b19427af27547b565ded64f844d6d19203cede4f4f7ce
MD5 c8c6ab44ebbbef0cead52555e4527c99
BLAKE2b-256 afe399c8b2d54f954d63c07c4a9fc51b467fb55f2048ac6b9627c4b0053a2d6d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 bbe026e4c8ce47d7f5b802b31e6a0cd35e402b80ff29fa9373ec5ece54629aff
MD5 53df386ce01ec10065c5eb06edcea1a9
BLAKE2b-256 29887ccfc700414bc8be04915290462a741e9aafc0debc983d2c72211272bc61

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 621ece875ea3150bee10605ec2be957055bddd23abafb981047fe7840027f1b0
MD5 ed5c1f2916ced4dca343e58fe0cc4848
BLAKE2b-256 d6c1a9ffd4b772aea1ea1a239126982bad24f5bd011ac82bbd0459c02e30cac2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 93c004f0656d683ea69f8b6e41cd14313b94e9d108529c9dca4a9e864d5dac48
MD5 e9c292a9120546ee2be700ad8701c186
BLAKE2b-256 3112055bb31d626d7d35f2a728b086a95b2ae9d313e1c06aa9c5decf93896772

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 37aa3caedc3553d38076a9f90abf8e6affa35b6b3db2e06c414636a95dd646f2
MD5 2de56bfb84b40bda750c47a3ef41e59f
BLAKE2b-256 35bcc713b199f3b9b5311e563e6b84744d76b6a845ac8d3e2972f827cda322c3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3c764f61cbb999ee92ea4e46e81a1e09d75ad00433cd19e9622808134d619a1d
MD5 690f0ae0b5d40c53e7222177798f7e17
BLAKE2b-256 2076f9c49f3cce1e0bd75118a0429787eeefa0810d6bde060b302b7257685538

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1a392b4ca7bccd5e98e767305bb282d3effa466f52b8c803d7def812dd61775e
MD5 84b9cbf12c34c6a3e46398b5f7e40bf0
BLAKE2b-256 56b2728aeecbb181ef990f9fdd2ea3a58a9e98ef74b933b7d4aad82791732361

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 eabb81ff00550d77e6a91b127f08a2e3feebc238596c37dad29dca4df4c212da
MD5 c4853fb3496f81e4f5753636b3f55a0f
BLAKE2b-256 cd09c3854d8ccd7d8c32b81fcab092a3640869de5a074a458ab40ec6724d97e7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.1.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for rapidfuzz-3.1.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 017a8b5c96665426977df7e55c2e80b4177a918c802fceb6aaa31d89c7dad961
MD5 b4a88be1478a0830439b2fb85f5c8227
BLAKE2b-256 7593055bbec497edf66d1df4e34487035c29f4608ab64f455062e7affe2386d6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.1.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 943.8 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for rapidfuzz-3.1.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 3ad583c2f6595f8c261bfdac1485449e900c580b4dff25ecec2abc13dde29447
MD5 cea43e7d4952789ac7871b8059453325
BLAKE2b-256 aa462302fc354d432f644e9a43de04b1dcdb86daa39ff756eb87b76067c14ee2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b9abdadae018d7d7fa15e850d5c47ec5e45cf3796258d503986ce17ba4d8a71d
MD5 37de62702c46ee4c850ac828c865b74a
BLAKE2b-256 3182a6efb4d143222346667cccc8642c8ad5ac5025728552b5ac1ed1f7b9d4a5

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 0bef51399bb733fe7a464183c35ceba092b6e06aeee6fbf52d8759e7f2bed263
MD5 c60466bf35739aca94d037fa51593b33
BLAKE2b-256 7535dd3137dc0d2491c11230e18912b4a3cefc1ee6cfdc8867631cca799c086d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 7553b67e575fe506fcc760f5ca3582185cb5599845ce27d63cd653a37fede925
MD5 3dd282ef523f3bfdcbc213592fc72671
BLAKE2b-256 f200cc29a485c3e31dbb051aa1c979f7ad9e759c35e87e50dcacffafeb78f9dd

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 66fbe9d6764c92a26e3c1c391476ce29e99c5bf1b823051a2bbae4e1d23671be
MD5 20ad771f1fceee8d9d907ff9abfea1ed
BLAKE2b-256 f84fe6112a227bf04b4cd4e0df8e7d98ddbd8adbf2ed2b8422ad3fcfab7fcdf7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 d30297b1ca6666db9171f500ac731e41d57fb5105d629b9115000d3e47cc5823
MD5 0a2749a109fcf414df2d4960b6cf4d43
BLAKE2b-256 0a6aa4936a0a5da10a3477afb028db69d9ec35c34cca4060e23d3003ede1fcf5

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a9dd80426417b07e3b86be44b7f7076086cd8290e1bbf1aa391f79e2807b1b8c
MD5 7ba4bc954ff4d89a15cfc0739eb9ba00
BLAKE2b-256 5bce56180d42e0710e1579414506a27cee1ae5812d912aa9aab47b8320679eb1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 5156692990dd9ddbd4734ff50c6b511c054aa660177fca64d214de57d54257a4
MD5 372ee96593e94d48ecfa66346cf95265
BLAKE2b-256 a316ca7970bd613f37404e9b9382db7c14303dac344a250a130d47c97f398d14

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ef867fa13f7f064200a41299a442d92180b178edd0fe81a1f5222739b2572249
MD5 682265e663f7c23fe30021689b56c5e9
BLAKE2b-256 1ce6c2143b253fda24492761b5f646191c7f19ca36c9c236e69ee413ad9c1268

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 60332a597794c3b184d240c8306d6b2fc4e6fd4606c1186bb08af41986b827cd
MD5 ac7dc6ba1733ae0d3fe26fccb7a6d278
BLAKE2b-256 7b5ba15dcb2decfcaaaa95dbdb7be8caa9b55c39b53868f0eed568c990348a7a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fa05dd24202001c2d9811cae12ed9942de240faff3cb37fc25ba2722026b7acb
MD5 89203b122db4749184e267f139f5bf48
BLAKE2b-256 5ecb57b6dbe269635a43025fafce4893d1165b382c10add0ab4814f1fd297b3a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a996bf1859fb103ef34c24fe13d420714bbd4a43c50fa2cf44bb7d60b6060de3
MD5 3db91ecb428fc8639f4e95086289ca7b
BLAKE2b-256 395e157e36b0cac48a1f5e458104a320939459113b20c7a4ebc3c90a5d15adce

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 785e330257b5d6ad1b59334d5af2253fccee6f921feb85e8e18662479f29be4f
MD5 20400edf3c53bfe118a11fa0e94bcc51
BLAKE2b-256 9e71b5b00aa32f1c6d5b49b64b6699673813f54ab748b267fb2338c52217ae3f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5289d882afb7e1ec7c6d33493f7964cc75fbaf298dcc1e3fbb1f0039560ddc7d
MD5 09aa9d97fc1fea206b0540de2f081530
BLAKE2b-256 3d4c437224e188f710b4528b13ece461ab3b3b0c08e8dfff2f780830fc46f79c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c00b7ece60047c3e022e6769f98a343a300976764711ac354c71229f1185787e
MD5 d3bc97ac131b34896c0babfbfbcb213a
BLAKE2b-256 6d8c295dfadbebd67196aa07caeeffae32254d9503529c93850db04d40ec413e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.1.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 939.8 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for rapidfuzz-3.1.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 4f97190786e089e7a413d20b6c3964981fb1e21d7580c094dde08dbb17fd1171
MD5 5f229c84907bdf5ea5312490318951f8
BLAKE2b-256 8a1c5eede5c1dee631aeaa5dcf947340fc4f1ca4c9401d6fd72131c68f8dbbec

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a9c0bdb945a8fc6cb8d661da3d3969dd0a26202d7c17adb896c393c12cce9d10
MD5 5771403f6e2ef150a28b32c4e5b08b30
BLAKE2b-256 0bf6d34f82ce466239be4878a3ff89922718b55d92d5438da3254cceeb38e435

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 7a88342b03c6c41b0ee8f5504d3a30bf47070f87b8bcfc63290e908ff0a212f5
MD5 3686d462099b67d72e3e4d9f98f96910
BLAKE2b-256 42b5e81a1551305bbc3abb9626bdac5c3c5d66e02fc23192c355d34576200156

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 d45a0c8043e3e543032475d334c4058070865bc75b162dd11959aeebe75dd27f
MD5 1a84dea88b36bb48bc74e5bd8a5a9cd6
BLAKE2b-256 0b3c36e2429719f2b539f4aba9d06113b3e18786499c59b1667dc55dadc146d2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 54a76e7b9093c99831bd5cc6513caf1689ec7d6e5123ec547444776fdf309592
MD5 ece41efe7ba59c29eb8e3e06191a5b85
BLAKE2b-256 30f82f912870f22c5e339c1b36b83e55bdfccf35f0305f5d65e9e1009039b664

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 2e03f99ffca1774ef1fe0bec473cb95a67af254ba03a2f3ff241581edb8b7954
MD5 5173e8874c24d2981b0de9891009fd58
BLAKE2b-256 5e5a34f580d4f76bd38baf895ea1e88ef523d8f1b712b78b2507817c13653b57

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bfbf2e8923874379d035d08f38ef25595ab13a074605fc78b04c79ae3d6b6bdf
MD5 0f45fa27a40d519be4fb5721e83b7bfb
BLAKE2b-256 71efe6d42ebfb3cc6ea6af5ca2b753d163445713126bd434cb50fcfe6a1f93a7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 702a238fdc50d5d545f381d817f9141baff51d3014768286a07433a0790d33ce
MD5 1214d7a7b9dd09a3e5bfac39ca7b7d2d
BLAKE2b-256 ec7b210e6aff39e474f380988da805a09c3427e37a7847206f22d206d1763649

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ba1a336b41b71326b2ba735ce9d0b6b22c5160b23fddd9024e0717ead3e0bb90
MD5 00caef3f77c77803090485035b6a2719
BLAKE2b-256 54bfc610955085599799142a70d856d97727fec66ea2acdd643b2d02f1e3fa77

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 be05b3fc71b5a92085b4017551b6e3e1c13199c762f82dea0c3fbbae86d24f66
MD5 8e5fc49e2c059993a9f413f2cd7e1990
BLAKE2b-256 7992d7c960e204c991cb4dc507b216015305dba1a880c52867a87eabcbaf860e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0df7736854b85ee1bfa775e0cde33a1af16ef0f9127e11f1232bf125af6b038b
MD5 e01c464cc6b47bf54ccb618e48e42768
BLAKE2b-256 66fa1bd43777a056f4e4fb3558cd615433d6d622a6d87b7de43de779b072a7df

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.1.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.1.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 afa9a09ff78e40b2372ce2d4acee44165d2f7db7e253d670db93fe8a5d4b00b9
MD5 6ba381e91916dcbda85f9ec701d71e1c
BLAKE2b-256 6672acf174d1c4d48c559a3a4c07b670f7f710d81fc435eff7b558fcf97a86fa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page