Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation Code Coverage GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation
  5. It can be largely used as a drop in replacement for fuzzywuzzy. However there are a couple API differences described here

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/rapidfuzz/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.
Note that from RapidFuzz 3.0.0, strings are not preprocessed(removing all non alphanumeric characters, trimming whitespaces, converting all characters to lower case) by default. Which means that when comparing two strings that have the same characters but different cases("this is a word", "THIS IS A WORD") their similarity score value might be different, so when comparing such strings you might see a difference in score value compared to previous versions. Some examples of string matching with preprocessing can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and distance.

Simple Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("this is a test", "this is a test!")
96.55172413793103

Partial Ratio

> from rapidfuzz import fuzz
> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.9090909090909
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> from rapidfuzz import fuzz
> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
84.21052631578947
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0
# Returns 100.0 if one string is a subset of the other, regardless of extra content in the longer string
> fuzz.token_set_ratio("fuzzy was a bear but not a dog", "fuzzy was a bear")
100.0
# Score is reduced only when there is explicit disagreement in the two strings
> fuzz.token_set_ratio("fuzzy was a bear but not a dog", "fuzzy was a bear but not a cat")
92.3076923076923

Weighted Ratio

> from rapidfuzz import fuzz
> fuzz.WRatio("this is a test", "this is a new test!!!")
85.5

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.WRatio("this is a test", "this is a new test!!!", processor=utils.default_process) # here "this is a new test!!!" is converted to "this is a new test"
95.0
> fuzz.WRatio("this is a test", "this is a new test")
95.0

> # Converting string to lower case
> fuzz.WRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.WRatio("this is a word", "THIS IS A WORD", processor=utils.default_process) # here "THIS IS A WORD" is converted to "this is a word"
100.0

Quick Ratio

> from rapidfuzz import fuzz
> fuzz.QRatio("this is a test", "this is a new test!!!")
80.0

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.QRatio("this is a test", "this is a new test!!!", processor=utils.default_process)
87.5
> fuzz.QRatio("this is a test", "this is a new test")
87.5

> # Converting string to lower case
> fuzz.QRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.QRatio("this is a word", "THIS IS A WORD", processor=utils.default_process)
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 76.92307692307692, 1), ('New York Giants', 64.28571428571428, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
('Dallas Cowboys', 83.07692307692308, 3)

> # With preprocessing
> from rapidfuzz import process, fuzz, utils
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2, processor=utils.default_process)
[('New York Jets', 100.0, 1), ('New York Giants', 78.57142857142857, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio, processor=utils.default_process)
('Dallas Cowboys', 90.0, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
    for word in words:
        scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-3.10.0.tar.gz (57.9 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-3.10.0-pp310-pypy310_pp73-win_amd64.whl (1.5 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.10.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.10.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.10.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.10.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

rapidfuzz-3.10.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (1.9 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

rapidfuzz-3.10.0-pp39-pypy39_pp73-win_amd64.whl (1.5 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.10.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.10.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.10.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.10.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

rapidfuzz-3.10.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl (1.9 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

rapidfuzz-3.10.0-cp313-cp313-win_arm64.whl (847.3 kB view details)

Uploaded CPython 3.13 Windows ARM64

rapidfuzz-3.10.0-cp313-cp313-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.13 Windows x86-64

rapidfuzz-3.10.0-cp313-cp313-win32.whl (1.8 MB view details)

Uploaded CPython 3.13 Windows x86

rapidfuzz-3.10.0-cp313-cp313-musllinux_1_2_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

rapidfuzz-3.10.0-cp313-cp313-musllinux_1_2_s390x.whl (3.2 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ s390x

rapidfuzz-3.10.0-cp313-cp313-musllinux_1_2_ppc64le.whl (2.7 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.10.0-cp313-cp313-musllinux_1_2_i686.whl (6.9 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ i686

rapidfuzz-3.10.0-cp313-cp313-musllinux_1_2_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ ARM64

rapidfuzz-3.10.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.10.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ s390x

rapidfuzz-3.10.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.10.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ i686

rapidfuzz-3.10.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.10.0-cp313-cp313-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

rapidfuzz-3.10.0-cp313-cp313-macosx_10_13_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

rapidfuzz-3.10.0-cp312-cp312-win_arm64.whl (848.4 kB view details)

Uploaded CPython 3.12 Windows ARM64

rapidfuzz-3.10.0-cp312-cp312-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

rapidfuzz-3.10.0-cp312-cp312-win32.whl (1.8 MB view details)

Uploaded CPython 3.12 Windows x86

rapidfuzz-3.10.0-cp312-cp312-musllinux_1_2_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

rapidfuzz-3.10.0-cp312-cp312-musllinux_1_2_s390x.whl (3.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ s390x

rapidfuzz-3.10.0-cp312-cp312-musllinux_1_2_ppc64le.whl (2.7 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.10.0-cp312-cp312-musllinux_1_2_i686.whl (6.9 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

rapidfuzz-3.10.0-cp312-cp312-musllinux_1_2_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

rapidfuzz-3.10.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.10.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

rapidfuzz-3.10.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.10.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

rapidfuzz-3.10.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.10.0-cp312-cp312-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

rapidfuzz-3.10.0-cp312-cp312-macosx_10_13_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

rapidfuzz-3.10.0-cp311-cp311-win_arm64.whl (853.9 kB view details)

Uploaded CPython 3.11 Windows ARM64

rapidfuzz-3.10.0-cp311-cp311-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-3.10.0-cp311-cp311-win32.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-3.10.0-cp311-cp311-musllinux_1_2_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

rapidfuzz-3.10.0-cp311-cp311-musllinux_1_2_s390x.whl (3.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ s390x

rapidfuzz-3.10.0-cp311-cp311-musllinux_1_2_ppc64le.whl (2.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.10.0-cp311-cp311-musllinux_1_2_i686.whl (6.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

rapidfuzz-3.10.0-cp311-cp311-musllinux_1_2_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

rapidfuzz-3.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.10.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-3.10.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.10.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (5.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-3.10.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.10.0-cp311-cp311-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-3.10.0-cp311-cp311-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-3.10.0-cp310-cp310-win_arm64.whl (852.4 kB view details)

Uploaded CPython 3.10 Windows ARM64

rapidfuzz-3.10.0-cp310-cp310-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-3.10.0-cp310-cp310-win32.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-3.10.0-cp310-cp310-musllinux_1_2_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

rapidfuzz-3.10.0-cp310-cp310-musllinux_1_2_s390x.whl (3.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ s390x

rapidfuzz-3.10.0-cp310-cp310-musllinux_1_2_ppc64le.whl (2.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.10.0-cp310-cp310-musllinux_1_2_i686.whl (6.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

rapidfuzz-3.10.0-cp310-cp310-musllinux_1_2_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

rapidfuzz-3.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.10.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-3.10.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.10.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (5.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-3.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.10.0-cp310-cp310-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-3.10.0-cp310-cp310-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-3.10.0-cp39-cp39-win_arm64.whl (854.2 kB view details)

Uploaded CPython 3.9 Windows ARM64

rapidfuzz-3.10.0-cp39-cp39-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-3.10.0-cp39-cp39-win32.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-3.10.0-cp39-cp39-musllinux_1_2_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

rapidfuzz-3.10.0-cp39-cp39-musllinux_1_2_s390x.whl (3.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ s390x

rapidfuzz-3.10.0-cp39-cp39-musllinux_1_2_ppc64le.whl (2.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.10.0-cp39-cp39-musllinux_1_2_i686.whl (6.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

rapidfuzz-3.10.0-cp39-cp39-musllinux_1_2_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

rapidfuzz-3.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.10.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-3.10.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.10.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (5.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-3.10.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.10.0-cp39-cp39-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-3.10.0-cp39-cp39-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-3.10.0.tar.gz.

File metadata

  • Download URL: rapidfuzz-3.10.0.tar.gz
  • Upload date:
  • Size: 57.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for rapidfuzz-3.10.0.tar.gz
Algorithm Hash digest
SHA256 6b62af27e65bb39276a66533655a2fa3c60a487b03935721c45b7809527979be
MD5 14ac09f686749b118e39e1134f570a7f
BLAKE2b-256 8143ce16df67029b8e4f528fd1b3fbe5e9fcfc6fcc16823c66349260dd93750e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 50484d563f8bfa723c74c944b0bb15b9e054db9c889348c8c307abcbee75ab92
MD5 2abbea5517de6c271196958200bdcf46
BLAKE2b-256 2288a38224c3059a464e7f32115af6eb9cfae755e2a6bb1a4e95cf74227b656f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 20bd153aacc244e4c907d772c703fea82754c4db14f8aa64d75ff81b7b8ab92d
MD5 647845d51df20875a3a72cc12dcba4de
BLAKE2b-256 93ba33a44d2f455aa79dade45447a3a5e37fa42b0879ba6fed4539eca0aaeaad

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d4688862f957c8629d557d084f20b2d803f8738b6c4066802a0b1cc472e088d9
MD5 b3e5dde6a460a060b039dfcdc541bbd7
BLAKE2b-256 e11406a92d5d18d51f87c297bee7ba466e974c8285e08d71dcb8f2b55696bc48

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2fe5783676f0afba4a522c80b15e99dbf4e393c149ab610308a8ef1f04c6bcc8
MD5 5a564d7304dfa9072678ac79001962ee
BLAKE2b-256 7ce3ca9727768e7d2363306bd39987f881c5a80629cc402d14b17bbe9c4c0d49

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b67cc21a14327a0eb0f47bc3d7e59ec08031c7c55220ece672f9476e7a8068d3
MD5 5e789d43e9a91658d71894cf9d207d0f
BLAKE2b-256 a3effe526fcc3f5bd7c957f33416f425614835a1a209035edf2ba7ab0d9c37e0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 f744b5eb1469bf92dd143d36570d2bdbbdc88fe5cb0b5405e53dd34f479cbd8a
MD5 8fa3662b04fbb46b1db2051b5da2cf42
BLAKE2b-256 9d201cda42f5454a465fe276778823a54472f0aa61c28a9def1924d5380eaaa4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 94c48b4a2a4b1d22246f48e2b11cae01ec7d23f0c9123f8bb822839ad79d0a88
MD5 166dbbaa3365f2877742a2131b76f52b
BLAKE2b-256 e6bcb1276451315cc07215dd16a998875c30cff16d6c4ba2b88128066d509a11

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7947a425d1be3e744707ee58c6cb318b93a56e08f080722dcc0347e0b7a1bb9a
MD5 f77e78e906f8063deaabf2d64ff9c6df
BLAKE2b-256 94efd62af1ee39e8d5bfde3ce600f98be6885a1971840285906af54adb1937cd

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 399b9b79ccfcf50ca3bad7692bc098bb8eade88d7d5e15773b7f866c91156d0c
MD5 50667e9dccfb3e875c9c010229231321
BLAKE2b-256 2aedda9e31ee0e5cef47d41f5d35deee8b95b996e310296db8ec164b36be3fd2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f0a547e4350d1fa32624d3eab51eff8cf329f4cae110b4ea0402486b1da8be40
MD5 16b2a2d169fda65d59ed8a94f5dc212e
BLAKE2b-256 935dcafada4abaa0db6a135ec32d42c8587135652c6b9545b8f8e487409710a0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 116c71a81e046ba56551d8ab68067ca7034d94b617545316d460a452c5c3c289
MD5 2be1c4f096a70557102c898c1ea26ccc
BLAKE2b-256 7802bf1836e9f23462f24e8018c65facb98c6b0f641ac95a8a32b707a7be9ef0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 5897242d455461f2c5b82d7397b29341fd11e85bf3608a522177071044784ee8
MD5 3fa2000bc7239a0c2be952c6ba7564c6
BLAKE2b-256 713305ea13bc25115c73fa39bbe17ebe5782f2745c06c05554aad52e48e9b1aa

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp313-cp313-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp313-cp313-win_arm64.whl
Algorithm Hash digest
SHA256 eda4c661e68dddd56c8fbfe1ca35e40dd2afd973f7ebb1605f4d151edc63dff8
MD5 409b0b4f5e8572e55c51ed2f7abb9ec4
BLAKE2b-256 fa5115e04a4cccf3b4b2a93fdbe413157e0568538fd61a0fef9bd4d8accd326c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 fa9720e56663cc3649d62b4b5f3145e94b8f5611e8a8e1b46507777249d46aad
MD5 f492ec6ab2b195a3a8261cfd17331039
BLAKE2b-256 590e939808bf07fd1e3d809c54c03bbd4266ae197f5aca6eb1edf2c592cc57eb

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp313-cp313-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.10.0-cp313-cp313-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for rapidfuzz-3.10.0-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 d29d1b9857c65f8cb3a29270732e1591b9bacf89de9d13fa764f79f07d8f1fd2
MD5 efc809b012c9015b454ef849842c7496
BLAKE2b-256 1fb1ab98a0a1511ab6695118d083bbf49afa6246fd445034be2aa13faa4914b4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 79e7f98525b60b3c14524e0a4e1fedf7654657b6e02eb25f1be897ab097706f3
MD5 543f05f9f209f23ee8bc1bdb6ecee4eb
BLAKE2b-256 6ea73e733f55907873e9ec56710f80d5fc8296ddf8f5c74b530f275c98d53e4b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp313-cp313-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp313-cp313-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 5dd6eec15b13329abe66cc241b484002ecb0e17d694491c944a22410a6a9e5e2
MD5 67785e45b94454eba60f00f168c51c9a
BLAKE2b-256 416a4abcecb5604950b8f7caba93becdb5c0220ec1ee32b4176f26c5748d7806

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp313-cp313-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp313-cp313-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 b5363932a5aab67010ae1a6205c567d1ef256fb333bc23c27582481606be480c
MD5 dcfe80e5ea795a267ea25181070deef6
BLAKE2b-256 e3007faa67320d2fcf669b4de39fd0ed45465d9106d72f2c879a462cb5ada95a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 949b5e9eeaa4ecb4c7e9c2a4689dddce60929dd1ff9c76a889cdbabe8bbf2171
MD5 441f04869b002a090845606b7da99929
BLAKE2b-256 b78efea01820046f27e4ebf547c256e7065f7c53f0e6fa458e7a42002a39acc7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 c77a7330dd15c7eb5fd3631dc646fc96327f98db8181138766bd14d3e905f0ba
MD5 6609ac01ffcbbded2c9556efab3baddb
BLAKE2b-256 1f632eb57053c3af2e3e5e209bd30e74838eee0c384ba9dc3cd71253edb829ff

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fb6ec40cef63b1922083d33bfef2f91fc0b0bc07b5b09bfee0b0f1717d558292
MD5 8c12e699e12b0b2fa08fec5f5bc208e1
BLAKE2b-256 d6667a6e7614a4495ebe295a8f0961562b5957ccd4e1e364a5ab0272e622fa00

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 916a6abf3632e592b937c3d04c00a6efadd8fd30539cdcd4e6e4d92be7ca5d90
MD5 751befc684eab52d51fc9250c8328d6e
BLAKE2b-256 5e191074dcc30e162c7d9f5626dbf4b686e7c15ec5d25c6201741518dcbe37ab

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 545fc04f2d592e4350f59deb0818886c1b444ffba3bec535b4fbb97191aaf769
MD5 c60f35f145974345340cf1ffe899adf5
BLAKE2b-256 37f800236ff2dd9bdc7561ccf6693840dd47e74bd73e6e7e974e03637e869ff8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 094c26116d55bf9c53abd840d08422f20da78ec4c4723e5024322321caedca48
MD5 1b19719d863dea89d00f92d0fdd93e30
BLAKE2b-256 2c634ef6acfa96baafed7fa52efe8b744de54abfee0838aa539b60045fe02816

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b33e13e537e3afd1627d421a142a12bbbe601543558a391a6fae593356842f6e
MD5 6d3fc1a60e237f7bc79451ef7c658200
BLAKE2b-256 7ba5a76ca37c8e6339a78944766b633fa7b82728a52fdcd5e67a934b2f04647d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 886882367dbc985f5736356105798f2ae6e794e671fc605476cbe2e73838a9bb
MD5 81f389cdd90c0586fb2261cb37c06517
BLAKE2b-256 9b2fa65c74e10c9fc2c7a5003390fc269c423554a174725fe18d11b33cf70b1e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 fe5231e8afd069c742ac5b4f96344a0fe4aff52df8e53ef87faebf77f827822c
MD5 84ee424d2268643a7ab7fd298020164e
BLAKE2b-256 05f1552aa54764fcce4d3db6eebcba5160bf7aa15aea87a89282a67cab7aeeb9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp312-cp312-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 9eac95b4278bd53115903d89118a2c908398ee8bdfd977ae844f1bd2b02b917c
MD5 07edcfe051e51d7892de09371d680f9a
BLAKE2b-256 45fb3d0cff4cea5450be47a8dd90764f68496c2c1f5f1ef3cca3b286cf70d847

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 50e3d0c72ea15391ba9531ead7f2068a67c5b18a6a365fef3127583aaadd1725
MD5 1e053c8f3f717273cbe8ea00b19b93ac
BLAKE2b-256 72959d4cba6535cafa8c21e58138955cadb7cb497e508cd92e7d75d7c6bdab64

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.10.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for rapidfuzz-3.10.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 2db9187f3acf3cd33424ecdbaad75414c298ecd1513470df7bda885dcb68cc15
MD5 9fd56dd6d2c4164ab421d1fe20833deb
BLAKE2b-256 816e9ed55e266d2359a1b93c204fc68d332d5254420eb30f7df860eaaaeb150c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e89605afebbd2d4b045bccfdc12a14b16fe8ccbae05f64b4b4c64a97dad1c891
MD5 a04a188f08ccb945dbfe4729ba48b661
BLAKE2b-256 aa9e778bcf792afa252f225a52f263bd7dc4042cce7436bc5a81721ac6d70276

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp312-cp312-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp312-cp312-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 c50bc308fa29767ed8f53a8d33b7633a9e14718ced038ed89d41b886e301da32
MD5 6c683877a9c16b007804c1656b114f1c
BLAKE2b-256 6f797e4af9d046d8315f7f42020e1c8232689603a4d9ea0f8d177dfa7c13629b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp312-cp312-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp312-cp312-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 b0445fa9880ead81f5a7d0efc0b9c977a947d8052c43519aceeaf56eabaf6843
MD5 08fb08deea7fd9766d7af8904697f5c5
BLAKE2b-256 92ca790026bfacdcf7e458bc72a18086bdd5d06a3d369f22a1ff5011ba132de0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 bd393683129f446a75d8634306aed7e377627098a1286ff3af2a4f1736742820
MD5 828973260f54a4fe4bf8373ef1b2cfeb
BLAKE2b-256 68ac8db7aa643d758b621e0e84d29b4f502b615aa751249107454de55b0fb214

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 8a6405d34c394c65e4f73a1d300c001f304f08e529d2ed6413b46ee3037956eb
MD5 20bdebc7e917c9969f0ee3b33d0e90b5
BLAKE2b-256 a960ec2b616f3dd5b0a80987c8b183c45183d28a0f678e8f4aace074e2e3a341

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 76a35e9e19a7c883c422ffa378e9a04bc98cb3b29648c5831596401298ee51e6
MD5 54caa5b6f46ae927f44998a83c812404
BLAKE2b-256 15e628fcaedcacaf6b56e7281d67e1aba88d743c8978a12b9cebedcfcd7c31ab

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 9178277f72d144a6c7704d7ae7fa15b7b86f0f0796f0e1049c7b4ef748a662ef
MD5 3b8c8eac3e17fc795b3c82da1f5f6e74
BLAKE2b-256 e2ba9e5ea2868701292f07b6357ac04333b50088a4f2b3155ccbbb95b219c788

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 96ad46f5f56f70fab2be9e5f3165a21be58d633b90bf6e67fc52a856695e4bcf
MD5 b6994b4c7fc3a2da0119853f7a123783
BLAKE2b-256 563c4e25243649486ec945fedc7b973c1cc6533a39f01f7771cb62aace3515fd

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 34f213d59219a9c3ca14e94a825f585811a68ac56b4118b4dc388b5b14afc108
MD5 cd51523fc9c58845a3cf055f321d7952
BLAKE2b-256 6f540249d4b28b3ed3638d2d02061d422f78ddcf733baff9e8dffc5bf59e3f84

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a86d5d1d75e61df060c1e56596b6b0a4422a929dff19cc3dbfd5eee762c86b61
MD5 0d867a377b730423e650fe365276fa24
BLAKE2b-256 54bc27f296de09867c902aac9864bdbbe09a1cb26d57ade701683c40a5b59e88

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a425a0a868cf8e9c6e93e1cda4b758cdfd314bb9a4fc916c5742c934e3613480
MD5 1b0fe32bdcc0668d62320be8b97d9984
BLAKE2b-256 b5d13ddea7077f2a0627deab019e8dc59c9777a90feddbc649408bd1f0a29ff2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 7dc87073ba3a40dd65591a2100aa71602107443bf10770579ff9c8a3242edb94
MD5 d42d58992521abd00d0b242b48622d03
BLAKE2b-256 f96d5cd4c1ef9c9021e310a178a5392670e6309fb6a0baf9843d477891b2be97

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp311-cp311-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 10fdad800441b9c97d471a937ba7d42625f1b530db05e572f1cb7d401d95c893
MD5 100acf56666bf6b5ad8f90a40cba59cf
BLAKE2b-256 82c76f23bef568c1e33e428210959e00964fec9a090f8cc084fa97d3bbfe6f54

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f9f0bbfb6787b97c51516f3ccf97737d504db5d239ad44527673b81f598b84ab
MD5 a3d1f73d1b00f104c46acabefa11d7c8
BLAKE2b-256 60481bdb509cc379a15fc70bb23297ad7f11bf8c5a5f14d33fbc1a657d58f1f4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.10.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for rapidfuzz-3.10.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 4df75b3ebbb8cfdb9bf8b213b168620b88fd92d0c16a8bc9f9234630b282db59
MD5 15bb0ab1ff1495a7ceabfc239855eae0
BLAKE2b-256 e183b988895450934d379fccdf8ab1d25fd581c21b2d54e4fc2047ec0fef4e81

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 2026651761bf83a0f31495cc0f70840d5c0d54388f41316e3f9cb51bd85e49a5
MD5 b13943d6c4036fd0785a5db8d1a42c26
BLAKE2b-256 ed359c7efc53fdfd8af72ffcc179284975f11d7f06db84317c7b245708781e45

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp311-cp311-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp311-cp311-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 803f255f10d63420979b1909ef976e7d30dec42025c9b067fc1d2040cc365a7e
MD5 25596b9c371c026d4b3e6b7343331696
BLAKE2b-256 61e0a4ba196c34787052ee48b4c86eacaee4e8d4902da64e0cc1c94f89291a53

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp311-cp311-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp311-cp311-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 7f3a6aa6e70fc27e4ff5c479f13cc9fc26a56347610f5f8b50396a0d344c5f55
MD5 c38c7f02e2a7cd0a013f2b495b8d2865
BLAKE2b-256 116860160de39f075c8c2f81a24bd778ad506b7f356e7a28c16efc83abf7bfcf

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 a9b8f51e08c3f983d857c3889930af9ddecc768453822076683664772d87e374
MD5 c586432f527ea879c48e6ace804fed93
BLAKE2b-256 4d8c3749d7262c071715cbea2fb191359954289a254076ceb77447f0649fbe18

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 5d350864269d56f51ab81ab750c9259ae5cad3152c0680baef143dcec92206a1
MD5 22f3dc74cff1de3cbe8c0f2f289e8b10
BLAKE2b-256 5a070759f70214d87bdc03334f9da2498cb35a9ceb8ae9637578a8845efbcc9f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 457827ba82261aa2ae6ac06a46d0043ab12ba7216b82d87ae1434ec0f29736d6
MD5 d0912805e7b3527236d9fc90bf67e845
BLAKE2b-256 ed825a3eb4ef6dcf757bde6d94bbc14be4e7fd30cf226f383ff00c75ec0b64c8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 ea2da0459b951ee461bd4e02b8904890bd1c4263999d291c5cd01e6620177ad4
MD5 1215846f421b5a30000f0d447936c99d
BLAKE2b-256 349a1799f6e0ca7a4e0d512c21a748b8676fb926715e20aa9908018f63776e37

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 c9e29a13d2fd9be3e7d8c26c7ef4ba60b5bc7efbc9dbdf24454c7e9ebba31768
MD5 12caca13107ed660230e2412302e3c70
BLAKE2b-256 573aab7a902b11ed6b5810cdda9c6e20956e7313695cc704c48d66dc81889bb9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 288f6f6e7410cacb115fb851f3f18bf0e4231eb3f6cb5bd1cec0e7b25c4d039d
MD5 f62b91d5a38362c121f4596b504ba58e
BLAKE2b-256 c30ea750c2a921d7c4b13a1519b6f27a5640a7cf97b8aa15abac37cce828707e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c582c46b1bb0b19f1a5f4c1312f1b640c21d78c371a6615c34025b16ee56369b
MD5 b2462e0ffac8584fd7c046744f005bac
BLAKE2b-256 59f0c69b0d1a06486b28dca0e96fe78ecf027f791aae789b2d1623dd1317f7fe

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 69ef5b363afff7150a1fbe788007e307b9802a2eb6ad92ed51ab94e6ad2674c6
MD5 39f896e0f65125166f9bcc562f607fab
BLAKE2b-256 7bac5ea5a468184ba902cc6ef856e7134342bf9eafe832ae7af1b2b307c8e6de

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bb0013795b40db5cf361e6f21ee7cda09627cf294977149b50e217d7fe9a2f03
MD5 0f89fe9e534663cb6e506a3221bd920f
BLAKE2b-256 bbb530cb52dffa8fd69b0f1d25b0946074135245c1ee705fb75e8dccdd6c9562

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp310-cp310-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 ae7966f205b5a7fde93b44ca8fed37c1c8539328d7f179b1197de34eceaceb5f
MD5 162cd8360a998fe3574cbb163aee7aa7
BLAKE2b-256 83e5822c879f1bf1debf35f1e203de6273871366575af6864dc96aebcaa1330e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 43dfc5e733808962a822ff6d9c29f3039a3cfb3620706f5953e17cfe4496724c
MD5 d6eb491ba51ba65a3879cf7fb971851e
BLAKE2b-256 c16995051e280220a3785b54ed1b65b2c82450fa9cd7bab8b6eea578199e48b4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.10.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for rapidfuzz-3.10.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 56fd15ea8f4c948864fa5ebd9261c67cf7b89a1c517a0caef4df75446a7af18c
MD5 f06eb230503baf7763e0907fc3eac799
BLAKE2b-256 ea006543ee8db94036448b74f5922553ec08bc6c3a81b44dcf86dcae0a5b7e42

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 0ec338d5f4ad8d9339a88a08db5c23e7f7a52c2b2a10510c48a0cef1fb3f0ddc
MD5 d65fb8df504563d581664217ab9b3507
BLAKE2b-256 d359414c855b545a588a9ad4d96247077f677dac951d08a62709760bc2e387ef

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp310-cp310-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp310-cp310-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 f39a2a5ded23b9b9194ec45740dce57177b80f86c6d8eba953d3ff1a25c97766
MD5 b5ad16db8ef7584fe6475d8a906e807e
BLAKE2b-256 218d92dc0bd5387b8b4a5ecc82d710dd754008d52c83eafd48d32dda0ce076af

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp310-cp310-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp310-cp310-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 ce19887268e90ee81a3957eef5e46a70ecc000713796639f83828b950343f49e
MD5 6cae611c784709e9064a46f077b3d78d
BLAKE2b-256 d6b6bab329e6490ca7dd4e36b90c5185b0ce7a85c1405b7bff7179fa5d3bd9fa

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 b54853c2371bf0e38d67da379519deb6fbe70055efb32f6607081641af3dc752
MD5 d2e9b4bbf107d308ec79e49045f17001
BLAKE2b-256 dc149e0c4365371872311c2e5d496f41f86d3327471516db9892b726b55259b5

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 aadce42147fc09dcef1afa892485311e824c050352e1aa6e47f56b9b27af4cf0
MD5 61f162fa9086614e00d8e253500e6eae
BLAKE2b-256 baea9c981ca6080f7dc6298473d7a3100b845c96c4beecb0ad4c9bd080aa330a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b11a127ac590fc991e8a02c2d7e1ac86e8141c92f78546f18b5c904064a0552c
MD5 75f7605dbc395ccbcde37d1ee9ac6106
BLAKE2b-256 1cdabfe72cc3579e798b038f41278afc56da28facad1bb580f1c6bb36882bdbe

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 6cd67d3d017296d98ff505529104299f78433e4b8af31b55003d901a62bbebe9
MD5 8da1890174fba24d3050dd03672e3594
BLAKE2b-256 c8bc2e7203db3a2cf07a65d7aaf89f7deb7875d2a006f12d0d69cb6d94cd864b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 3084161fc3e963056232ef8d937449a2943852e07101f5a136c8f3cfa4119217
MD5 8c49f92c4e49310a5dc63238488a6c3c
BLAKE2b-256 8ab5baef2c85095b30a3032709c8b523c1bd4e9db9f630ff7e07806e99ca2e2c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1af60988d47534246d9525f77288fdd9de652608a4842815d9018570b959acc6
MD5 6dd14ce49081158a20a2816bd8f7b4d3
BLAKE2b-256 e6eabb28f8680112fbbaeb1da7f84a66addb4b90b423dd3bb5184d525068bfcb

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a68e3724b7dab761c01816aaa64b0903734d999d5589daf97c14ef5cc0629a8e
MD5 4e67c814a5e0878cd46de91d1e2345b8
BLAKE2b-256 a4b7af0f8c6015c24f899f8e7de12258468069ad7c0a2c79544a84177e6dd95b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 718c9bd369288aca5fa929df6dbf66fdbe9768d90940a940c0b5cdc96ade4309
MD5 afd5ab7f14bce6af61c0a46857a39b28
BLAKE2b-256 673c999fcad4fea8ca27113f4f6dbc65978648abe6d5764eeb71e62baa319b60

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 884453860de029380dded8f3c1918af2d8eb5adf8010261645c7e5c88c2b5428
MD5 5928f0badf32272b120711393848fbfe
BLAKE2b-256 1702558443e8d2cecf243a8465a4e6167d66dedd8aff6dd91cae4b4daa4fed8a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: rapidfuzz-3.10.0-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 854.2 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for rapidfuzz-3.10.0-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 b0732343cdc4273b5921268026dd7266f75466eb21873cb7635a200d9d9c3fac
MD5 2e362c729b5ceb533a286870b6178d4c
BLAKE2b-256 52ed754bdf13e2317cb07adbe4a977cd2a36d37fd7f86571dfa2271768285cf6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 47aca565a39c9a6067927871973ca827023e8b65ba6c5747f4c228c8d7ddc04f
MD5 1ea350bd8ad156f92b1603feb789eb4a
BLAKE2b-256 8bf8847b09340cedd2c6394d7d73805b6f1929d35061319fdd06a64bde8031e3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.10.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for rapidfuzz-3.10.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 2e9be5d05cd960914024412b5406fb75a82f8562f45912ff86255acbfdbfb78e
MD5 286ae76ce950e05d47b7cce40363cf9b
BLAKE2b-256 9c471faa4737270b276de3c3eedf427de1f198a03639bf2d7b46adfef3fb7ac2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e5ddb2388610799fc46abe389600625058f2a73867e63e20107c5ad5ffa57c47
MD5 0aa7e8a9b1c6903b4f9726df1c2eb58e
BLAKE2b-256 d56cd28b26ae21f3a9fa033d159c337d09016fbea1b248d07ecdc787f4a218c7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp39-cp39-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp39-cp39-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 4dd3d8443970eaa02ab5ae45ce584b061f2799cd9f7e875190e2617440c1f9d4
MD5 8ebc12e7bec3c14a4b4d22c98ebc9cad
BLAKE2b-256 37660f125d3bda4c6565d30fda23b3d7a853648fb8dfa040e50b3376b1be2954

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp39-cp39-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp39-cp39-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 63e4c175cbce8c3adc22dca5e6154588ae673f6c55374d156f3dac732c88d7de
MD5 15a98b462a3fb7f3c9c92e51bb418888
BLAKE2b-256 f3aa1fc75674d3303faa0d3b90ea2d6685294b887bc6cf6cd506daeed0d8ed4e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 f3a0bda83c18195c361b5500377d0767749f128564ca95b42c8849fd475bb327
MD5 7fc1bc35b41b39a27260debd30cdb4ad
BLAKE2b-256 f243ad03231c726ef2599a2274d5e5f33ce16ff2f417386ae9aef4c63db54fcf

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 26de93e6495078b6af4c4d93a42ca067b16cc0e95699526c82ab7d1025b4d3bf
MD5 a474717e4459f9e0b9b6959ca70e54c0
BLAKE2b-256 360e5bfbef3076928afc434283424bafc0d5f0f8957109fd3b85d9b1aa7895b0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ec9139baa3f85b65adc700eafa03ed04995ca8533dd56c924f0e458ffec044ab
MD5 633e78f7f0cc1bafed0bf9ced64713ae
BLAKE2b-256 ec156fb34382ed9de3a917208a901b750d30d860c37fbafaa5f10df0c3cb004b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 4bd1a7676ee2a4c8e2f7f2550bece994f9f89e58afb96088964145a83af7408b
MD5 995db541e3cbb4f576695388a2a13331
BLAKE2b-256 3633b5bffa3bf6caa95ae0c647f2e88e9a69d37192fff32783887343ab232ab3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 98f6ebe28831a482981ecfeedc8237047878424ad0c1add2c7f366ba44a20452
MD5 a8770bb678c1b252a190b142deafaa2b
BLAKE2b-256 a5e5844061bdcd9a345d3606e9c087d3bf84843c1ef16618ff419b6c0bc4ed4c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7c4c82b1689b23b1b5e6a603164ed2be41b6f6de292a698b98ba2381e889eb9d
MD5 32cffd123ede50c74be4bfa13d94ecc9
BLAKE2b-256 00f1d1e424f850f9719ba23ba65381ae91e49092deef8d1056e2f03ba034623d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ca366c2e2a54e2f663f4529b189fdeb6e14d419b1c78b754ec1744f3c01070d4
MD5 bbebd15594fa0df49d3fdf49a7554155
BLAKE2b-256 c1f09639d52ac280a31edf7cafe0344894823f9bd025e045104d4518c356efb5

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c038b9939da3035afb6cb2f465f18163e8f070aba0482923ecff9443def67178
MD5 1e25b84770a2c02eac59ebb1109c750a
BLAKE2b-256 d56e7058e3a4fc252950d9d54c22db14fba0d6e25a4d898b6d891dfff9abdacc

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cffbc50e0767396ed483900900dd58ce4351bc0d40e64bced8694bd41864cc71
MD5 b9921f7a5b75d2a5901992f576e5b914
BLAKE2b-256 bda77f2b544c7d5c8a0c18127c1d596ea99d336c2f86dde37a04ba898675e0fb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page