Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation Code Coverage GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation
  5. It can be largely used as a drop in replacement for fuzzywuzzy. However there are a couple API differences described here

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/rapidfuzz/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.
Note that from RapidFuzz 3.0.0, strings are not preprocessed(removing all non alphanumeric characters, trimming whitespaces, converting all characters to lower case) by default. Which means that when comparing two strings that have the same characters but different cases("this is a word", "THIS IS A WORD") their similarity score value might be different, so when comparing such strings you might see a difference in score value compared to previous versions. Some examples of string matching with preprocessing can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and distance.

Simple Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("this is a test", "this is a test!")
96.55172413793103

Partial Ratio

> from rapidfuzz import fuzz
> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.9090909090909
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> from rapidfuzz import fuzz
> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
84.21052631578947
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0
# Returns 100.0 if one string is a subset of the other, regardless of extra content in the longer string
> fuzz.token_set_ratio("fuzzy was a bear but not a dog", "fuzzy was a bear")
100.0
# Score is reduced only when there is explicit disagreement in the two strings
> fuzz.token_set_ratio("fuzzy was a bear but not a dog", "fuzzy was a bear but not a cat")
92.3076923076923

Weighted Ratio

> from rapidfuzz import fuzz
> fuzz.WRatio("this is a test", "this is a new test!!!")
85.5

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.WRatio("this is a test", "this is a new test!!!", processor=utils.default_process) # here "this is a new test!!!" is converted to "this is a new test"
95.0
> fuzz.WRatio("this is a test", "this is a new test")
95.0

> # Converting string to lower case
> fuzz.WRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.WRatio("this is a word", "THIS IS A WORD", processor=utils.default_process) # here "THIS IS A WORD" is converted to "this is a word"
100.0

Quick Ratio

> from rapidfuzz import fuzz
> fuzz.QRatio("this is a test", "this is a new test!!!")
80.0

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.QRatio("this is a test", "this is a new test!!!", processor=utils.default_process)
87.5
> fuzz.QRatio("this is a test", "this is a new test")
87.5

> # Converting string to lower case
> fuzz.QRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.QRatio("this is a word", "THIS IS A WORD", processor=utils.default_process)
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 76.92307692307692, 1), ('New York Giants', 64.28571428571428, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
('Dallas Cowboys', 83.07692307692308, 3)

> # With preprocessing
> from rapidfuzz import process, fuzz, utils
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2, processor=utils.default_process)
[('New York Jets', 100.0, 1), ('New York Giants', 78.57142857142857, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio, processor=utils.default_process)
('Dallas Cowboys', 90.0, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
    for word in words:
        scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-3.10.1.tar.gz (58.0 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-3.10.1-pp310-pypy310_pp73-win_amd64.whl (1.5 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.10.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.10.1-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.10.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.10.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

rapidfuzz-3.10.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (1.9 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

rapidfuzz-3.10.1-pp39-pypy39_pp73-win_amd64.whl (1.5 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.10.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.10.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.10.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.10.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded PyPy macOS 11.0+ ARM64

rapidfuzz-3.10.1-pp39-pypy39_pp73-macosx_10_15_x86_64.whl (1.9 MB view details)

Uploaded PyPy macOS 10.15+ x86-64

rapidfuzz-3.10.1-cp313-cp313-win_arm64.whl (839.1 kB view details)

Uploaded CPython 3.13 Windows ARM64

rapidfuzz-3.10.1-cp313-cp313-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.13 Windows x86-64

rapidfuzz-3.10.1-cp313-cp313-win32.whl (1.8 MB view details)

Uploaded CPython 3.13 Windows x86

rapidfuzz-3.10.1-cp313-cp313-musllinux_1_2_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

rapidfuzz-3.10.1-cp313-cp313-musllinux_1_2_s390x.whl (3.2 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ s390x

rapidfuzz-3.10.1-cp313-cp313-musllinux_1_2_ppc64le.whl (2.7 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.10.1-cp313-cp313-musllinux_1_2_i686.whl (6.9 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ i686

rapidfuzz-3.10.1-cp313-cp313-musllinux_1_2_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ ARM64

rapidfuzz-3.10.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.10.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ s390x

rapidfuzz-3.10.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.10.1-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ i686

rapidfuzz-3.10.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.10.1-cp313-cp313-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

rapidfuzz-3.10.1-cp313-cp313-macosx_10_13_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

rapidfuzz-3.10.1-cp312-cp312-win_arm64.whl (840.4 kB view details)

Uploaded CPython 3.12 Windows ARM64

rapidfuzz-3.10.1-cp312-cp312-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

rapidfuzz-3.10.1-cp312-cp312-win32.whl (1.8 MB view details)

Uploaded CPython 3.12 Windows x86

rapidfuzz-3.10.1-cp312-cp312-musllinux_1_2_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

rapidfuzz-3.10.1-cp312-cp312-musllinux_1_2_s390x.whl (3.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ s390x

rapidfuzz-3.10.1-cp312-cp312-musllinux_1_2_ppc64le.whl (2.7 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.10.1-cp312-cp312-musllinux_1_2_i686.whl (6.9 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

rapidfuzz-3.10.1-cp312-cp312-musllinux_1_2_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

rapidfuzz-3.10.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.10.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

rapidfuzz-3.10.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.10.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

rapidfuzz-3.10.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.10.1-cp312-cp312-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

rapidfuzz-3.10.1-cp312-cp312-macosx_10_13_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

rapidfuzz-3.10.1-cp311-cp311-win_arm64.whl (845.8 kB view details)

Uploaded CPython 3.11 Windows ARM64

rapidfuzz-3.10.1-cp311-cp311-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-3.10.1-cp311-cp311-win32.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-3.10.1-cp311-cp311-musllinux_1_2_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

rapidfuzz-3.10.1-cp311-cp311-musllinux_1_2_s390x.whl (3.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ s390x

rapidfuzz-3.10.1-cp311-cp311-musllinux_1_2_ppc64le.whl (2.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.10.1-cp311-cp311-musllinux_1_2_i686.whl (6.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

rapidfuzz-3.10.1-cp311-cp311-musllinux_1_2_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

rapidfuzz-3.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.10.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-3.10.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.10.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (5.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-3.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.10.1-cp311-cp311-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-3.10.1-cp311-cp311-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-3.10.1-cp310-cp310-win_arm64.whl (844.3 kB view details)

Uploaded CPython 3.10 Windows ARM64

rapidfuzz-3.10.1-cp310-cp310-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-3.10.1-cp310-cp310-win32.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-3.10.1-cp310-cp310-musllinux_1_2_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

rapidfuzz-3.10.1-cp310-cp310-musllinux_1_2_s390x.whl (3.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ s390x

rapidfuzz-3.10.1-cp310-cp310-musllinux_1_2_ppc64le.whl (2.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.10.1-cp310-cp310-musllinux_1_2_i686.whl (7.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

rapidfuzz-3.10.1-cp310-cp310-musllinux_1_2_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

rapidfuzz-3.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.10.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-3.10.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.10.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (5.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-3.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.10.1-cp310-cp310-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-3.10.1-cp310-cp310-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-3.10.1-cp39-cp39-win_arm64.whl (846.0 kB view details)

Uploaded CPython 3.9 Windows ARM64

rapidfuzz-3.10.1-cp39-cp39-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-3.10.1-cp39-cp39-win32.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-3.10.1-cp39-cp39-musllinux_1_2_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

rapidfuzz-3.10.1-cp39-cp39-musllinux_1_2_s390x.whl (3.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ s390x

rapidfuzz-3.10.1-cp39-cp39-musllinux_1_2_ppc64le.whl (2.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ppc64le

rapidfuzz-3.10.1-cp39-cp39-musllinux_1_2_i686.whl (6.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

rapidfuzz-3.10.1-cp39-cp39-musllinux_1_2_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

rapidfuzz-3.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.10.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-3.10.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.10.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (5.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-3.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.10.1-cp39-cp39-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-3.10.1-cp39-cp39-macosx_10_9_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-3.10.1.tar.gz.

File metadata

  • Download URL: rapidfuzz-3.10.1.tar.gz
  • Upload date:
  • Size: 58.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for rapidfuzz-3.10.1.tar.gz
Algorithm Hash digest
SHA256 5a15546d847a915b3f42dc79ef9b0c78b998b4e2c53b252e7166284066585979
MD5 5d5de0ea94bb98cdb090a5381f69427a
BLAKE2b-256 e139e3bcb901c2746734cd70151253bf9e61c688d3c415227b08e6fbf7eb5d7f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 39c4983e2e2ccb9732f3ac7d81617088822f4a12291d416b09b8a1eadebb3e29
MD5 c6cf27cb3d68d0c26a8940f22e3709f6
BLAKE2b-256 d822e0c350a394b3ff304b4ff1acfd07cbed5d8672cf2dc0252c7a84f2553088

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 073a5b107e17ebd264198b78614c0206fa438cce749692af5bc5f8f484883f50
MD5 f9906a263c667c38f993902b4d9a39c6
BLAKE2b-256 80295e0828a824a1c0cf1bbd83b0cd2fba4e3fa72354c64e82b209a2284a0e74

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 616290fb9a8fa87e48cb0326d26f98d4e29f17c3b762c2d586f2b35c1fd2034b
MD5 3694c02f1f1eb903752122067cfe6454
BLAKE2b-256 212ebacebb43935aec023e6d130de1c28e886426827613c4dc40ef5dfa7b0c0e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 187d9747149321607be4ccd6f9f366730078bed806178ec3eeb31d05545e9e8f
MD5 f56fa8ccc4ab3ffd1f171c862f4aee39
BLAKE2b-256 c19c7f201398ee1d40aa27c4ddd5b3e5aa184c55c578b2ddb3a1676022405784

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 565c2bd4f7d23c32834652b27b51dd711814ab614b4e12add8476be4e20d1cf5
MD5 62df9d0cc5c3f94baa2b1796cac8f358
BLAKE2b-256 cf8a4a591193b0d9e384906e2fb2ee7185c1fcc033aff619ba4a68da99581499

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 ac4452f182243cfab30ba4668ef2de101effaedc30f9faabb06a095a8c90fd16
MD5 45c455e5ae4ff547adff72542846d7ad
BLAKE2b-256 1034b26f0d4144a6b1cc81fc08a6b1f3193c3bf542701621e16be758bd2b00ae

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 cfcc8feccf63245a22dfdd16e222f1a39771a44b870beb748117a0e09cbb4a62
MD5 51224fbd41201a77299fa97a39253120
BLAKE2b-256 ddf5001ce4e28c5459fe233ca8f3dfa64f942e61351da89872c8ebb0a51d6cb7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 edd062490537e97ca125bc6c7f2b7331c2b73d21dc304615afe61ad1691e15d5
MD5 224b7fedc7c16ca651ca0a0e7344164e
BLAKE2b-256 bd1799a45ecfdd4475f1a5173085590eda02268138bc04c2d42dda671a6e6845

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 75561f3df9a906aaa23787e9992b228b1ab69007932dc42070f747103e177ba8
MD5 582cb02a8560ab3ac4182a4081a2df2a
BLAKE2b-256 64023578b02bdfa4445ce1ae0ded21b4ae0400008368618d01665dbd212ce191

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 65a2fa13e8a219f9b5dcb9e74abe3ced5838a7327e629f426d333dfc8c5a6e66
MD5 7567c4d52f44193df22b0565dd43d0b5
BLAKE2b-256 0a76d9d05b71c11e48cd3f5767794c8efa7e5d5a493d34dadcca06604140f085

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 425f4ac80b22153d391ee3f94bc854668a0c6c129f05cf2eaf5ee74474ddb69e
MD5 5ad0a14726725d5d35da8bcff6e88ad2
BLAKE2b-256 cade8b614488e3576c8a98ebd1d818bbf127e7e514a6a046981ee6699eb7be8a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-pp39-pypy39_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-pp39-pypy39_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 ac7adee6bcf0c6fee495d877edad1540a7e0f5fc208da03ccb64734b43522d7a
MD5 d17ed46451305e4cc37566fe6050b74f
BLAKE2b-256 64e12b555898c125ddcbff5b3e3309c7c8dc7e9243bfbac132893e4c771f11a6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp313-cp313-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp313-cp313-win_arm64.whl
Algorithm Hash digest
SHA256 8d1b7082104d596a3eb012e0549b2634ed15015b569f48879701e9d8db959dbb
MD5 d1ef04f1475958cb7863170d1518dcba
BLAKE2b-256 483c8213b3216b542f3bd43051dc5a1c44e0cd741abb97bde064e89f241c5a82

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 0e06d99ad1ad97cb2ef7f51ec6b1fedd74a3a700e4949353871cf331d07b382a
MD5 c2df4883e50f15c2d4fd1b1ddb066cea
BLAKE2b-256 9d9da69358047742dbc94516c71c07cfab4409d490578815c875949011e3f482

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp313-cp313-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.10.1-cp313-cp313-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for rapidfuzz-3.10.1-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 6729b856166a9e95c278410f73683957ea6100c8a9d0a8dbe434c49663689255
MD5 246dc6fc51a4ee8e264b050fcebec725
BLAKE2b-256 bfd351cc9f258b362fca8ced7c34046b66d8887551da0169c06c27ee8d2ce279

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 335fee93188f8cd585552bb8057228ce0111bd227fa81bfd40b7df6b75def8ab
MD5 37f4e812b7dcb74330526253aeb2c16f
BLAKE2b-256 d6772c22f438b643524b429731492665d91d9c654144e895f0051cee78d5928d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp313-cp313-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp313-cp313-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 e8e154b84a311263e1aca86818c962e1fa9eefdd643d1d5d197fcd2738f88cb9
MD5 10b88ec86fe41e09cba1d29be40a9cd1
BLAKE2b-256 cb7cd5c93a0e497a0430b4f0bfea22e41317c22357cd557fa9aeeafb9e991d9b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp313-cp313-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp313-cp313-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 1e96c84d6c2a0ca94e15acb5399118fff669f4306beb98a6d8ec6f5dccab4412
MD5 700d7ed61cf78a60e9e12613c25e2636
BLAKE2b-256 c34c99004b6ae04ead73d1e91829a78d9708c3c707aa83c1e782ea89f1ade491

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 c34c022d5ad564f1a5a57a4a89793bd70d7bad428150fb8ff2760b223407cdcf
MD5 dec97ed5671733d6e51e841951584898
BLAKE2b-256 c271ca9e092c6d904f9fabadac6361e52a484165ee5970f34e4dc70a647f36f3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 9da82aa4b46973aaf9e03bb4c3d6977004648c8638febfc0f9d237e865761270
MD5 3fc8b8bc46af3ca3157143ca4dd72dfa
BLAKE2b-256 57180877c12deb79cee67f6b8fbb662e2d038582d0e26d895ddbfdb88cea7e17

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0b75fe506c8e02769cc47f5ab21ce3e09b6211d3edaa8f8f27331cb6988779be
MD5 9b534cf095a325377201a7e25449c46b
BLAKE2b-256 bd72417ca8b5dde3c040c1cab1d5500fd24ffdf1a397cb86e36e958acb07cd65

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 18123168cba156ab5794ea6de66db50f21bb3c66ae748d03316e71b27d907b95
MD5 ac2c2ce5fddbcd868027e6fa502b6ed5
BLAKE2b-256 a7da7091eef23291997e7c379a396eedbac66a50a145200cac86a0313286403d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 237bec5dd1bfc9b40bbd786cd27949ef0c0eb5fab5eb491904c6b5df59d39d3c
MD5 4077435411c16390866e5dddf04636b9
BLAKE2b-256 f3a0f0e43fdaf3c3c1907aa377d3610c70b31830e4d6915b8a61b51b064fcbce

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9141fb0592e55f98fe9ac0f3ce883199b9c13e262e0bf40c5b18cdf926109d16
MD5 a4869e34239657f4a70abe09a43968c9
BLAKE2b-256 8223541da9279b21fc380e89e49e5acd863ba2e2b5d483eb5b6e0cfc427e4540

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6fde3bbb14e92ce8fcb5c2edfff72e474d0080cadda1c97785bf4822f037a309
MD5 eb17e11bb9ea6a5697f0d0336aa38c8c
BLAKE2b-256 ca1593a2eafbb4cc563d72112e4717b8c6f09e9de15f5a7709b832b8c9b81196

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 38b0dac2c8e057562b8f0d8ae5b663d2d6a28c5ab624de5b73cef9abb6129a24
MD5 990a3ce49e808c3d94e2926034e8f4a4
BLAKE2b-256 6f6a7e34ddc3d6d751c4dba0d58b681c99f161225730e9a2fa71969d2fa1d281

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 fc22d69a1c9cccd560a5c434c0371b2df0f47c309c635a01a913e03bbf183710
MD5 446708e3921df9a1ed57a9de4bf23f28
BLAKE2b-256 2f7a18aa6a51345e46886784e90a2c5bba62e45ee3adc554c12c3b97c297c4c3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp312-cp312-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 c5da802a0d085ad81b0f62828fb55557996c497b2d0b551bbdfeafd6d447892f
MD5 e8bd4fe8605dcd229d0e1302692b1c6b
BLAKE2b-256 56d3dd84c7ed88cd4391e78b3579ecf7141ebf8b900097da2d6911db148d4bb6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 aaf83e9170cb1338922ae42d320699dccbbdca8ffed07faeb0b9257822c26e24
MD5 43694a1565bc27a8f7100d7ea37a1541
BLAKE2b-256 58b6c5f5e8043052fdbd4aa4f41d93b0e72d089172237ed5ec42118683a9833a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp312-cp312-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.10.1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for rapidfuzz-3.10.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 f3bb81d4fe6a5d20650f8c0afcc8f6e1941f6fecdb434f11b874c42467baded0
MD5 df9f438d6ce3a1a05ecc9e7e8e7668f6
BLAKE2b-256 0b279f7a0dbdd5b478790c68297b0678bc0088b9068e667878e5d1359c3ffba0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d02cf8e5af89a9ac8f53c438ddff6d773f62c25c6619b29db96f4aae248177c0
MD5 e8e0c5e070235de1c82c0c409a96c456
BLAKE2b-256 14506484ce7091b815757d6f0c434b78b568d3e7a80b6145a2d9aadc65b16132

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp312-cp312-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp312-cp312-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 4ffed25f9fdc0b287f30a98467493d1e1ce5b583f6317f70ec0263b3c97dbba6
MD5 e21c6309a454997ce2a99537e5418e49
BLAKE2b-256 e8ca4e9dbc9bca8cd1b933cfc6f961179f883cead90689619ec0aa1a5f075b0e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp312-cp312-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp312-cp312-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 0fff4a6b87c07366662b62ae994ffbeadc472e72f725923f94b72a3db49f4671
MD5 089ff0b5a19224a6d5f763f7b6c2883c
BLAKE2b-256 b866ba6de8c1fe5c50230d4e0adb87dde39b143ac2a4ce959a3f8076266b1767

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 195baad28057ec9609e40385991004e470af9ef87401e24ebe72c064431524ab
MD5 e23d5dca095c6488259a3eab9201b31f
BLAKE2b-256 7c28f3aa5d3a56cc978e73baff951549425d1a722ec3b58cacbc74c4faad2127

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 191633722203f5b7717efcb73a14f76f3b124877d0608c070b827c5226d0b972
MD5 c943efb7049ac13460540627d28f26cc
BLAKE2b-256 3febe2f5b1643cf463b1b23c36875e711cae0091f6aaa1538c025a12cba32634

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c0c955e32afdbfdf6e9ee663d24afb25210152d98c26d22d399712d29a9b976b
MD5 81da01cbaaa1987845d3f9034778b6d1
BLAKE2b-256 3c05b8dcfbdc8f4e3e84abf86ea13ec9595ebaf7e5375011e5d49642705704ad

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 54bcf4efaaee8e015822be0c2c28214815f4f6b4f70d8362cfecbd58a71188ac
MD5 6ac54148ff9e53f5d73b48b050051726
BLAKE2b-256 976520a859278192ca036ead255dda49f4eac63dd8d666b3a902d7be3afd38ac

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a1d9aa156ed52d3446388ba4c2f335e312191d1ca9d1f5762ee983cf23e4ecf6
MD5 cfc7162b1ef7e57e72a399e3a9488806
BLAKE2b-256 970b2cdafff5dcb06ed6ede6f81a2f677c1f4cc08a47a6cf16862eb62903a84b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d99c1cd9443b19164ec185a7d752f4b4db19c066c136f028991a480720472e23
MD5 b35a22a0757598db08353638d4447550
BLAKE2b-256 46162a016051489f870d15f7cdcccf823ea5f474453dda5c20cf0044ed3122d5

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8e06fe6a12241ec1b72c0566c6b28cda714d61965d86569595ad24793d1ab259
MD5 da6a7fe66bda01dd40a4100b01543b80
BLAKE2b-256 13076accf77b78772de2a5590ef7965d3b7c9997c5a92e913e525765586aa261

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2316515169b7b5a453f0ce3adbc46c42aa332cae9f2edb668e24d1fc92b2f2bb
MD5 95f91caea70134957dab4224db6af78a
BLAKE2b-256 bd2bf343df6ae726d01aa31c5ff63f2a5807dfeffa671ebf2fb9be8f8b9b2026

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 1340b56340896bede246f612b6ecf685f661a56aabef3d2512481bfe23ac5835
MD5 c6f039f714efd33c9899eb9a27fe825c
BLAKE2b-256 77e9a7981ad1a7fbe4d76aa4fbbc8f2d6aac289ab62e60173f92fd3e05619f25

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp311-cp311-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 f1da2028cb4e41be55ee797a82d6c1cf589442504244249dfeb32efc608edee7
MD5 d8f39ed01b8e839ba26036aa171d4f1e
BLAKE2b-256 958a6057b41a8a6a2245a699c1beff62baa1021543e953e05dbdb355b953f886

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f98f36c6a1bb9a6c8bbec99ad87c8c0e364f34761739b5ea9adf7b48129ae8cf
MD5 2723b09188d09b60b8a3a70a4b63b36e
BLAKE2b-256 fc0bb15a8853672e6fca00d83b3a6c037c07ff16a73932a55e69488c46e6b9d7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.10.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for rapidfuzz-3.10.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 031f8b367e5d92f7a1e27f7322012f3c321c3110137b43cc3bf678505583ef48
MD5 86a74993e6ee9a725dcb7d7034f7d577
BLAKE2b-256 bd270cef6ddfd7b163b99b40a7fb1b1c15e0c9d25ec8f528b9f0af9dc2b980a2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 ec108bf25de674781d0a9a935030ba090c78d49def3d60f8724f3fc1e8e75024
MD5 a09231dae8d67819ce7595dee0d3b5f6
BLAKE2b-256 db692a00d3c7d29d084311b1ab0fc83ba228ce81f78e9a60f901d64c74c0f31e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp311-cp311-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp311-cp311-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 cf654702f144beaa093103841a2ea6910d617d0bb3fccb1d1fd63c54dde2cd49
MD5 7ca82953cb2e95219163a236e25f04df
BLAKE2b-256 20f9894a20e7856c9b29fd746ffca8f8360df8e4027b503ac5475439c043137f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp311-cp311-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp311-cp311-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 1996feb7a61609fa842e6b5e0c549983222ffdedaf29644cc67e479902846dfe
MD5 667bece1a5e1cabd06742cb8ad772369
BLAKE2b-256 eeab92c97b37ee24f68e2f904d8ef658bcfa47e3caf4d8491aa8bc5314704fc4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 365e4fc1a2b95082c890f5e98489b894e6bf8c338c6ac89bb6523c2ca6e9f086
MD5 95d69a59025d198e44496eb8b9c9817c
BLAKE2b-256 17e5f6c99fefbacef3676394b09ee66782d72710911c971c8730ef602e21fbd1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 8a2ef08b27167bcff230ffbfeedd4c4fa6353563d6aaa015d725dd3632fc3de7
MD5 2f34c2886fd02efb6b60f3168bd23f58
BLAKE2b-256 81f6a9fc68b776273282d6aeaadc6330740328bac29f8746fe8cceb9155e904a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 26f71582c0d62445067ee338ddad99b655a8f4e4ed517a90dcbfbb7d19310474
MD5 53ee383a90f3761a2befd60b2b246626
BLAKE2b-256 ac3dfa8444d7144129b1c67a2ba0660b44af03285fd641516ee294593d2acb91

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 666d5d8b17becc3f53447bcb2b6b33ce6c2df78792495d1fa82b2924cd48701a
MD5 00f6cf6516f772d4862d7d9fd91f0693
BLAKE2b-256 8267cf9f25a2dc02f8170c1c0b7f6d41aa39b0f28c3cd54140ec3cab315cbdf0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f12912acee1f506f974f58de9fdc2e62eea5667377a7e9156de53241c05fdba8
MD5 de363fadead3f8703a5df26cc679250b
BLAKE2b-256 0bc55f18cd956fcf95cbdee054cd4f7b7042eacc1430f6682fae0859deb9694b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 efa1582a397da038e2f2576c9cd49b842f56fde37d84a6b0200ffebc08d82350
MD5 b90344189a4e1af6dda082985cc806e3
BLAKE2b-256 187d0655a52c31227bf2880f28d3c01cc4f20b584210f849a1953e4c734599e5

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 00d02cbd75d283c287471b5b3738b3e05c9096150f93f2d2dfa10b3d700f2db9
MD5 fc1ee1862e9218005edf65e873ff05e4
BLAKE2b-256 0d69ddd0192b64cb55bca40ebcae48480fab0148334b9995eb9d5bd78b7333f6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ba7521e072c53e33c384e78615d0718e645cab3c366ecd3cc8cb732befd94967
MD5 00bc71949db3c804c7d9f2a457aa2226
BLAKE2b-256 41a7f8411b9b4037d1ea6707dee975e4ed6b5358192f5ba7aa544610df5c7522

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 92958ae075c87fef393f835ed02d4fe8d5ee2059a0934c6c447ea3417dfbf0e8
MD5 4c5f9007c7ecd603b6189f0eac55f47d
BLAKE2b-256 fb2c62efddd64bcaf39c03b928784777bb614028c5975ec7465d34eded34a7f7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp310-cp310-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 dfa64b89dcb906835e275187569e51aa9d546a444489e97aaf2cc84011565fbe
MD5 d6ebe36776fa2b04ed39bbd88491b5e6
BLAKE2b-256 41bfb0a575f1e2aa3c4cf01f9cd5c4b4103e093d31df8ffec272bfc5ad407f64

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 10746c1d4c8cd8881c28a87fd7ba0c9c102346dfe7ff1b0d021cdf093e9adbff
MD5 4ba926c658d51c89d11877a025549d88
BLAKE2b-256 cca7b74eec156c61856e2fbcc3272cdd4f9cd6cf4e8df4144e02adfda5f5ac4f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.10.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for rapidfuzz-3.10.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 36c0e1483e21f918d0f2f26799fe5ac91c7b0c34220b73007301c4f831a9c4c7
MD5 92e2bfbf66228710ac12a834a2660f61
BLAKE2b-256 25f3c44a170598e28fdfce7be271da57832cbadc420b3052a418e49a808124f7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f017dbfecc172e2d0c37cf9e3d519179d71a7f16094b57430dffc496a098aa17
MD5 5c77c7aa7f35456374b2e60e86d17db7
BLAKE2b-256 6124911b0ac2199a78ff8e0f4dcc2e3a5349ecc8841864bc04658f48b9ef73ff

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp310-cp310-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp310-cp310-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 bc308d79a7e877226f36bdf4e149e3ed398d8277c140be5c1fd892ec41739e6d
MD5 2aba7f9042b8d624bd026def93f1b544
BLAKE2b-256 0b8ba210b8526929b93b7aad42ce751740743a295849dfa52b126202004c8ee9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp310-cp310-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp310-cp310-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 1b35a118d61d6f008e8e3fb3a77674d10806a8972c7b8be433d6598df4d60b01
MD5 f0508ddc68bc382300b7a6062fdbc237
BLAKE2b-256 7be134decfa6d56c824daa75db833066ff71ab5eb61a21ec986a0ddbaf20b147

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 7b6015da2e707bf632a71772a2dbf0703cff6525732c005ad24987fe86e8ec32
MD5 245d0b465cc97c659a1fd886400b8ae6
BLAKE2b-256 6183441b5aef0a07ec3e6ea5b2f018d326a328aabe96c9e4808c8a25c39e852c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 ed4f3adc1294834955b7e74edd3c6bd1aad5831c007f2d91ea839e76461a5879
MD5 81dd654ab51432a7c051e6a56fcfbde3
BLAKE2b-256 7593538dd72e250f655261a53c454d9eb4ef0d4cf8e4855c765d1c8250dc9179

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 231ef1ec9cf7b59809ce3301006500b9d564ddb324635f4ea8f16b3e2a1780da
MD5 94428d6c7e4220938fe7a70f2d0f14ae
BLAKE2b-256 507d8ff52a37beb75874b733ae3197345479b53a112ba504b8d8e4ea8f48467e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 3c3b537b97ac30da4b73930fa8a4fe2f79c6d1c10ad535c5c09726612cd6bed9
MD5 15ce84d45f53285517826412d5f95426
BLAKE2b-256 44c08e4c19dde3504bd1027adbc7ef1a18f575bc041686cb0c5896392b12be97

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 3611c8f45379a12063d70075c75134f2a8bd2e4e9b8a7995112ddae95ca1c982
MD5 03c86e7c3df64d709fea89a6c971e952
BLAKE2b-256 961242cdf911896f02c780e9e194386177f90f2b36c94fe77e3d05cf5e7ebff4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9d81bf186a453a2757472133b24915768abc7c3964194406ed93e170e16c21cb
MD5 8791208d578c8ee4433dda24ba150f32
BLAKE2b-256 7e244df85f2dd2930d0aef51a9ec16f39b295619120abf317e44419f632f40df

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7f4f43f2204b56a61448ec2dd061e26fd344c404da99fb19f3458200c5874ba2
MD5 e435a490153d1d6f818980f8c4ec1bd4
BLAKE2b-256 dfe087499ca83521ee23b51e3311dd9d518cc5abb42c79dcd1869687cc8f529f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b31f358a70efc143909fb3d75ac6cd3c139cd41339aa8f2a3a0ead8315731f2b
MD5 ff6b701eccdab4216f7d4bae1a2f09fc
BLAKE2b-256 c4393f6c084a0d8b3e39fc46d9fee92dcb038aec90d001ff0ff445012658fd4b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f17d9f21bf2f2f785d74f7b0d407805468b4c173fa3e52c86ec94436b338e74a
MD5 c92459e5764082dfba567d7930f21dff
BLAKE2b-256 c99b5ae9defba2dc0ccd97de080cc487195dc5648c44073d4f54f75a7d1b207a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: rapidfuzz-3.10.1-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 846.0 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for rapidfuzz-3.10.1-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 9f912d459e46607ce276128f52bea21ebc3e9a5ccf4cccfef30dd5bddcf47be8
MD5 e209a8056f61bd6f93f2c9b0db1e2bbb
BLAKE2b-256 a223662b0ab0d7606881b7a0ac000b491072a5c98d47a50aa621499fd262cbf4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6b2cd7c29d6ecdf0b780deb587198f13213ac01c430ada6913452fd0c40190fc
MD5 fdb27a632bb5e3bcc085ffce3e4aaf34
BLAKE2b-256 11ffecc98bcb1d25975ba0606d6f1758743e46965d77c326d5985dcd8717cdf3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.10.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for rapidfuzz-3.10.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 567f88180f2c1423b4fe3f3ad6e6310fc97b85bdba574801548597287fc07028
MD5 3a0b232e6af6f869224de8ecb14d46b7
BLAKE2b-256 77fd7677c0910bb736f6a3458c4660a2538157360832237f0f05c177e0ce571e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 1e6bbca9246d9eedaa1c84e04a7f555493ba324d52ae4d9f3d9ddd1b740dcd87
MD5 964974719cc4f8ff3ba278372f51e9b4
BLAKE2b-256 1e93258aa534b92025714c4d236614d91981237ce462d2601288257c2948076a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp39-cp39-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp39-cp39-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 2cf44d01bfe8ee605b7eaeecbc2b9ca64fc55765f17b304b40ed8995f69d7716
MD5 842649a6c25b3716d8c5b3870a598f9d
BLAKE2b-256 30a0b86a69c6a1fa73840d0e8ad62ec70a513adccd0282dd61a344649abb7ee6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp39-cp39-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp39-cp39-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 bfa48a4a2d45a41457f0840c48e579db157a927f4e97acf6e20df8fc521c79de
MD5 7d25101aebc894bf25502a5f0bf83e55
BLAKE2b-256 8409da5a82c614dbde88e5a089dee4dc296666f7862b1de3c2eca0860d573a82

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 fe07f8b9c3bb5c5ad1d2c66884253e03800f4189a60eb6acd6119ebaf3eb9894
MD5 e467965bacd8ee81f899783d716ffda6
BLAKE2b-256 6a47cf42cfa64d4c5c6c5f401d0c235a1fe41239fe4c50f94d363d60ccada3c2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 bebb7bc6aeb91cc57e4881b222484c26759ca865794187217c9dcea6c33adae6
MD5 1781cee81c4b0f7995eae410ae52c7e4
BLAKE2b-256 83bba32c8a3efa47c8a66f211ca2eba93b99db4c277a0857ab3414c1da7ffaa2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9a0d519ff39db887cd73f4e297922786d548f5c05d6b51f4e6754f452a7f4296
MD5 3360b782275e58ccb0e3722976c8a3da
BLAKE2b-256 2233da9553ca63e4da1e8604f71ba35bced3de6c1378ca909530f44560630552

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 a7fbac18f2c19fc983838a60611e67e3262e36859994c26f2ee85bb268de2355
MD5 def8578f6228b4238d214eafab978c5b
BLAKE2b-256 77049631f72c5e1804f197492dfc6a10bc3c0e1c9ff090f4884f8fdba6514f78

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 9ef60dfa73749ef91cb6073be1a3e135f4846ec809cc115f3cbfc6fe283a5584
MD5 8b7ada02a137b78b470fcf52c95f8c27
BLAKE2b-256 09321a10fdf54f27e1a11a9b499123d1342527e717152b7aabd9887b898e37a2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 958473c9f0bca250590200fd520b75be0dbdbc4a7327dc87a55b6d7dc8d68552
MD5 1703d9059c5a470ac0f7d74aff9b69e1
BLAKE2b-256 1163b8dd19eaced9fbd2f753fc818e3a3aac528f85e7bee96572d40f2d8027fa

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 82cac41a411e07a6f3dc80dfbd33f6be70ea0abd72e99c59310819d09f07d945
MD5 a9c98265a951977abaa37bab7c159811
BLAKE2b-256 b86ceac26d04e34012a90d89f645866c67c26da986499c7f6d0f74deb45c257c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 440b5608ab12650d0390128d6858bc839ae77ffe5edf0b33a1551f2fa9860651
MD5 046a6379e23a4ec96d6ab5a9c4a96756
BLAKE2b-256 05533e975212d30804c174b0cea74baa7cae7da78319b22378bd42fc04a511ce

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.10.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.10.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 779027d3307e1a2b1dc0c03c34df87a470a368a1a0840a9d2908baf2d4067956
MD5 9c3d1ebbdf874b838b4c8983a94a2633
BLAKE2b-256 eb296aade26480cedd34eaa79e10702a8fa7197a9c2ebca4f481ea0ae5829ee4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page