Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation
  5. It can be largely used as a drop in replacement for fuzzywuzzy. However there are a couple API differences described here

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.
Note that from RapidFuzz 3.0.0, strings are not preprocessed(removing all non alphanumeric characters, trimming whitespaces, converting all characters to lower case) by default. Which means that when comparing two strings that have the same characters but different cases("this is a word", "THIS IS A WORD") their similarity score value might be different, so when comparing such strings you might see a difference in score value compared to previous versions. Some examples of string matching with preprocessing can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and distance.

Simple Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("this is a test", "this is a test!")
96.55172413793103

Partial Ratio

> from rapidfuzz import fuzz
> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.9090909090909
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> from rapidfuzz import fuzz
> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
84.21052631578947
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Weighted Ratio

> from rapidfuzz import fuzz
> fuzz.WRatio("this is a test", "this is a new test!!!")
85.5

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.WRatio("this is a test", "this is a new test!!!", processor=utils.default_process) # here "this is a new test!!!" is converted to "this is a new test"
95.0
> fuzz.WRatio("this is a test", "this is a new test")
95.0

> # Converting string to lower case
> fuzz.WRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.WRatio("this is a word", "THIS IS A WORD", processor=utils.default_process) # here "THIS IS A WORD" is converted to "this is a word"
100.0

Quick Ratio

> from rapidfuzz import fuzz
> fuzz.QRatio("this is a test", "this is a new test!!!")
80.0

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.QRatio("this is a test", "this is a new test!!!", processor=utils.default_process)
87.5
> fuzz.QRatio("this is a test", "this is a new test")
87.5

> # Converting string to lower case
> fuzz.QRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.QRatio("this is a word", "THIS IS A WORD", processor=utils.default_process)
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 76.92307692307692, 1), ('New York Giants', 64.28571428571428, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
('Dallas Cowboys', 83.07692307692308, 3)

> # With preprocessing
> from rapidfuzz import process, fuzz, utils
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2, processor=utils.default_process)
[('New York Jets', 100.0, 1), ('New York Giants', 78.57142857142857, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio, processor=utils.default_process)
('Dallas Cowboys', 90.0, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

This version

3.2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-3.2.0.tar.gz (1.5 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-3.2.0-pp39-pypy39_pp73-win_amd64.whl (1.7 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.2.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.2.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.2.0-pp38-pypy38_pp73-win_amd64.whl (1.7 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.2.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.2.0-pp37-pypy37_pp73-win_amd64.whl (1.7 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.2.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.2.0-cp311-cp311-win_arm64.whl (867.0 kB view details)

Uploaded CPython 3.11 Windows ARM64

rapidfuzz-3.2.0-cp311-cp311-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-3.2.0-cp311-cp311-win32.whl (2.1 MB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-3.2.0-cp311-cp311-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-3.2.0-cp311-cp311-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-3.2.0-cp311-cp311-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.2.0-cp311-cp311-musllinux_1_1_i686.whl (5.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-3.2.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-3.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.2.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-3.2.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-3.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.2.0-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-3.2.0-cp311-cp311-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-3.2.0-cp311-cp311-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.2.0-cp310-cp310-win_arm64.whl (863.7 kB view details)

Uploaded CPython 3.10 Windows ARM64

rapidfuzz-3.2.0-cp310-cp310-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-3.2.0-cp310-cp310-win32.whl (2.1 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-3.2.0-cp310-cp310-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-3.2.0-cp310-cp310-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-3.2.0-cp310-cp310-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.2.0-cp310-cp310-musllinux_1_1_i686.whl (5.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-3.2.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-3.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.2.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-3.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-3.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.2.0-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-3.2.0-cp310-cp310-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-3.2.0-cp310-cp310-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.2.0-cp39-cp39-win_arm64.whl (865.8 kB view details)

Uploaded CPython 3.9 Windows ARM64

rapidfuzz-3.2.0-cp39-cp39-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-3.2.0-cp39-cp39-win32.whl (2.1 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-3.2.0-cp39-cp39-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-3.2.0-cp39-cp39-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-3.2.0-cp39-cp39-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.2.0-cp39-cp39-musllinux_1_1_i686.whl (5.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-3.2.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-3.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.2.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-3.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.2.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-3.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.2.0-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-3.2.0-cp39-cp39-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-3.2.0-cp39-cp39-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.2.0-cp38-cp38-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-3.2.0-cp38-cp38-win32.whl (2.1 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-3.2.0-cp38-cp38-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-3.2.0-cp38-cp38-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-3.2.0-cp38-cp38-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.2.0-cp38-cp38-musllinux_1_1_i686.whl (5.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-3.2.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-3.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.2.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-3.2.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.2.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-3.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.2.0-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-3.2.0-cp38-cp38-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-3.2.0-cp38-cp38-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.2.0-cp37-cp37m-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-3.2.0-cp37-cp37m-win32.whl (2.1 MB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-3.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

rapidfuzz-3.2.0-cp37-cp37m-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

rapidfuzz-3.2.0-cp37-cp37m-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

rapidfuzz-3.2.0-cp37-cp37m-musllinux_1_1_i686.whl (5.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

rapidfuzz-3.2.0-cp37-cp37m-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

rapidfuzz-3.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-3.2.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-3.2.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.2.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-3.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-3.2.0-cp37-cp37m-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-3.2.0.tar.gz.

File metadata

  • Download URL: rapidfuzz-3.2.0.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for rapidfuzz-3.2.0.tar.gz
Algorithm Hash digest
SHA256 448d031d9960fea7826d42bd4284156fc68d3b55a6946eb34ca5c6acf960577b
MD5 fe4e8d2ce3c0c8b6cab7e0874b25ea17
BLAKE2b-256 7776224d6eeab59c705bb7c1986b91b3e756dd65efbcf5bda148d39c3cbf402b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d19c2853a464c7b98cc408654412fd875b030f78023ccbefc4ba9eec754e07e7
MD5 ea3c97f77b7ab41d09f7ef1930237c65
BLAKE2b-256 36ea1b561f7775ac3d8ff25c84e8899d33f3e3ddcebf931b0c6b70e9303b060e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 24e4c4a031c50e4eeb4787263319a0ac5bed20f4a263d28eac060150e3ba0018
MD5 195498c5bf7d0588a1d229b4e0fd2b43
BLAKE2b-256 1a1a126667d24f0b56c29ef305bf765c7a6b2fa19a2da5f94a8dca7cfc54d4f8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 71b07afaca28398b93d727a2565491c455896898b66daee4664acde4af94e557
MD5 edc4ae016c39387bad25a1bf4e798a06
BLAKE2b-256 c999b321eaf4f0354ae461ca88572d6a2270862593732a8023a31d3d67ed1437

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 08a242c4b909abbcfa44504dc5041d5eeca4cd088ae51afd6a52b4dc61684fa2
MD5 58dc3dc40afc844c22053be0793a837a
BLAKE2b-256 cbb845fa8a4648ce866e745180870ce27ee4e0c8d646301bb01cc6efbf9270cf

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 af7914fc7683f921492f32314cfbe915a5376cc08a982e09084cbd9b866c9fd4
MD5 09196fd023e55c99cc1c274b7818f88e
BLAKE2b-256 9b703ca87619bab1bd64cc09b8bce0a62826fcb7b05adf13e7a5b6d929e7e439

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 f09fd9dc73180deb9ca1c4fbd9cc27378f0ab6ee74e97318c38c5080708702b6
MD5 06c63485ff84b5ef1216354ffdb3c880
BLAKE2b-256 81eeefed6802845416e6667a9bb0870266978554579b3a7af8fe43bb8ab5bd5c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5c7f20e68cad26fc140c6f2ac9e8f2632a0cd66e407ba3ea4ace63c669fd4719
MD5 623452e6ae579488630fcedd009c1c89
BLAKE2b-256 943476e206e83cf99991d731e266a64dc61c01de1d2f900b5fcf2b3efc54bd9a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 25d2bd257034e910df0951cdeff337dbd086d7d90af3ed9f6721e7bba9fc388a
MD5 39ebe7106c5466e03c7b9f4d89ae90fe
BLAKE2b-256 5600d8d11ce529fb266bcfd804daa9671e6356450ea30b5e2fde6c5ced755d2a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 68c678f7f3ca3d83d1e1dd7fb7db3232037d9eef12a47f1d5fe248a76ca47571
MD5 2df91ff12454f2b7dba262e20879757d
BLAKE2b-256 5efa1f959b378777d64b32636986624925f3ca20e9c09f3708fe89c53d42788f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3af2b75635f33ffab84e295773c84a176d4cba75311d836ad79b6795e9da11ac
MD5 257745141373c9fc8b56e9e31fb45545
BLAKE2b-256 1610985da5b978aee1617d032bd407b2269e1c5d0e3f86540beeb939bd83f325

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d39128415f0b52be08c15eeee5f79288189933a4d6fa5dc5fff11e20614b7989
MD5 93ca34289c8b318ec0cbb98b7a1201df
BLAKE2b-256 9e7ca131486e4f5f8af15e4d91c02393a26c05740ac17a7b611687b9660a4347

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 108861623838cd574b0faa3309ce8525c2086159de7f9e23ac263a987c070ebd
MD5 3425e44d9c9ee909f63945edc670dd5e
BLAKE2b-256 600d58d1487e29bfe4401d2809c0601e1d2f6361f55713de43185fcbc83d34f1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 54842a578a2a8e5258812a9032ffb55e6f1185490fd160cae64e57b4dc342297
MD5 e0780ccdb095a6564b2647b11a750a4a
BLAKE2b-256 1d46bd7287ddebf955f4f9bf55e027a43c8df710aec90ba308f1dbe254a06083

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 aa50de7e0f95e1400b2bf38cfeb6e40cf87c862537871c2f7b2050b5db0a9dfc
MD5 783ccac261efed3d44ffb96d54029d4b
BLAKE2b-256 a1e1a2ea356726492c75518b4e1e59bd26bb32dfdca279051e4ca11961a4c5da

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3002c3660180747243cccb40c95ade1960e6665b340f211a114f5994b345ab53
MD5 63e874193e717d530b496ffe8b8c689a
BLAKE2b-256 8e0e8ca5653cec646f55b71638584db6788a8b75886c7645452fbaf4659e6c44

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp311-cp311-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 dc53747e73f34e8f3a3c1b0bc5b437b90a2c69d873e97781aa7c06543201409a
MD5 da70a854052ebe89043393c88ceaba44
BLAKE2b-256 83bacfcc7ba66274e9b5e581fd1f1dfe5d5ae41114435caec5eb72ac2ad43da3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b9e79e27344af95a71a3bb6cd3562581da5d0780ff847a13ad69ee622d940d3c
MD5 8022e4bb59a943ea36f083b735ec55ef
BLAKE2b-256 8c67d0247d36454ae5b9f39eac7a61b704ebbc3dadfd6c1ce8bfb1ede155293b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.2.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for rapidfuzz-3.2.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 d04ad155dbecc0c143912f691d38d4790e290c2ce5411b146c0e00d4f4afd26f
MD5 773d37422b4505f0d3eafe793de243c6
BLAKE2b-256 ab624460e08643e3bc26124bc92f6553f4f4c433d0e0b55b30e63ad27bdf1a37

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8fa44afb731535a803c4c15ee846257fef050768af96d1d6c0eadb30285d0f7b
MD5 5ee2ea13f10966dbcea50d9def23c061
BLAKE2b-256 7ea9f44eaf2338c5b6068259338148fbdbf2bb7438abfcb3e53de43fc54d4d83

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 e336b0a81c5a8e689edf6928136d19e791733a66509026d9acbaa148238186e0
MD5 c32b726689b13581334cfc7876c00969
BLAKE2b-256 3e7aa4884264e52b2c094a6d88503ba3311260fa63515ce5d57a59c36e94dc51

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 5dd5c4b9f5cd8a8271a90d1bab643028e7172808c68ed5d8dde661a3e51098e3
MD5 da7a71006996b39040f7454c4d54742a
BLAKE2b-256 c594b4c4e1ccbddf40bc8911d5fb457fc4377d7445ca1f2bc3105334e3fc5a8c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 6e98f0a6fac14b7b9893147deceae12131f6ff169ae1c973635ef97617949c8f
MD5 b1617413d46844a7054669193ae73c55
BLAKE2b-256 1c06c594fdf7fdca2c4b9b76de3bf6bced123c208e546d32f42f2cfed8904e50

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 986a7aad18768b920bb710e15ed7629d1da0af31589348c0a51d152820efc05d
MD5 d8a17fbde350ea26b851f5563eccc62a
BLAKE2b-256 4086edea84fd85af134a88ba7fa10455a5e98d2a5013cbcdd199bbc8b68349b2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9f21ce33242e579ba255c8a8b438782164acaa55bf188d9410298c40cbaa07d5
MD5 92b880306b1a09852aa156dc18835901
BLAKE2b-256 481128bcde29d31c59f762fb16216dceeb83c23f0ba64243eeb17bc6be21496d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 4ff6e725eec9c769f9d22126c80a6ada90275c0d693eca2b35d5933178bda5a2
MD5 e5ff96ee8bf8fe0bc25691c11b6b4bc5
BLAKE2b-256 72067047ec218328037607f17ef4c046f2b83bb5044c57963bd2a817c2a0b248

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a1e04861dddbb477500449dc67fb037656a049b6f78c4c434c6000e64aa42bb4
MD5 1323b967a6696f418bee920988a0c360
BLAKE2b-256 21c23ae466a62e6a6736f20f89cfaca8827fdc697e7a0cb61721d02613bca99b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 76953516cb3b75fb1234c5a90e0b86be4525f055a9e276237adb1ffe40dca536
MD5 d527a3b5f5497e2984154017f95552ae
BLAKE2b-256 343858d1bdbb7a9cdcb283d62a3b7c8663c85b208d0b90f3e968cf50df3f7168

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0de6962b45f761355fa4b37de635e4df467d57530732a40d82e748a5bc911731
MD5 8dc7d232e7bee7667f1d1bb7ec0c5b87
BLAKE2b-256 e3e671b72cb5d0ebd74d57c852412eb050fd75501cfa6604df3ab12cd5a531a6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f223deb06895c9c136b40cd8fd7e96ee745c3bb9ed502d7367f6ad9ab6fdd40e
MD5 34cd49115db66eb1c598c38e17d08289
BLAKE2b-256 9ccfb4f5766b8932845abaa39b707a09eac10d0311becd294e54f08b118ded2d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a2a6babfe4d3ce2eadd0079ee7861cb5f1584845c5a3394edead85457e7d7464
MD5 957279b970fc9f14822b2cb1b5ed08a3
BLAKE2b-256 ed44aa6b0c87db23076e648c44bd4d1ac065fb1c17ef14a5a0cda7eb94fc4aca

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 2f2e618389427c5e8304357a78f83df22558e61f11bc21aeb95dd544c274d330
MD5 ff0e12d00f094d97c1398afd2ac9ad42
BLAKE2b-256 eb133172bbc5f126b06c7f5bcb7e479c1330bb39d9b82b2b2cf701db625fd9ab

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp310-cp310-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 8e39c4e2e85828aa6c39cc7f30e2917d991b40190a2a3af1fa02396a3362a54e
MD5 d4dff7d98bcd0ad1f00f61f58924be5e
BLAKE2b-256 fa895576d25c7247faf62bc337cf6ee8088989c72a896bf8c435e0842334c949

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 88e99229c4df99a7e5810d4d361033b44e29d8eb4faaddcfb8e4bdcb604cf40a
MD5 a77e9c60a30de47d16cd7f1cee0fc714
BLAKE2b-256 fd9521d78d42fe5fff020e50c4ba67b1288312379b285669c76ca7afa3bfe31a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.2.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for rapidfuzz-3.2.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 dbebd639579ab113644699fe0c536ae00aba15b224e40a79987684333d1104a5
MD5 9cdd7bfa02e37fe02e54d2ba2409a1c1
BLAKE2b-256 355dc19d612b621e19e34010836d86b274014feabe783a72c563c480ab4e7d0b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b56ce39ba0a77501d491bc20a2266989ae0264452758b004950ee5f4c10c641f
MD5 020d0c7ce7a00ef2e0558036aa637156
BLAKE2b-256 ceecd5960b3ddca73994d3c16e54ae69b3319afab3b7b3aef5b2033703a679e2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 239ffc04328e14f5e4097102bd934352a43d5912acf34fb7d3e3fe306de92787
MD5 c48567380d2ba9d358298734baba7936
BLAKE2b-256 c546bbc03e631caa9341ba78ccfc6b63a7e2ccabf02f42febc9e584f791b5a63

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 5f3e36cfadaf29f081ad4ca476e320b639d610e930e0557f395780c9b2bdb135
MD5 1907ab53ae29dd4c38af1f60253e773e
BLAKE2b-256 9a46221b1e62d766c66cf21f37aec4c96b5a7869bf71a5be9b64d205c1b1be61

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a9658c545de62ac948027092ba7f4e8507ebc5c9aef964eca654409c58f207f0
MD5 1000f89bbca0e17ccd4740b93f5a4d30
BLAKE2b-256 0248a380a8a05e26865a82856e50c51c04a7f80004dc269f02bd4a349259773d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ab2863732eafd1cc58f249f145c20ad13d4c902d3ef3a369b00438c05e5bfb55
MD5 59bc680ce22b63e12cbd866b55fc4acb
BLAKE2b-256 c480e02827057c177761b290f98f63ce30b62a74dcdb2b49d23ff6a0a4362d73

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1bd4fdee46f6ba7d254dba8e7e8f33012c964fc891a06b036b0fd20cab0db301
MD5 623c3bb411e1d4dbfa37b99b3034883c
BLAKE2b-256 35049ca97b17da457ed294519477da2aad0799c9ba8eebf37761a5ca94c35534

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 49fc2cbbf05bfa1af3fe4c0e0c8e5c8ac118d6b6ddfb0081cff48ad53734f7ac
MD5 58ae1a260227821a3aa2cf95bda9cb60
BLAKE2b-256 3a59e3d8f30de50b18a50f790a11d9258ee161e660b2484d5451881cd788c4e9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ca0d6aee42effaf2e8883d2181196dd0957b1af5731b0763f10f994c32c823db
MD5 724af787520bcbc2dd501df3317663f6
BLAKE2b-256 3cbe397d45057480d819afdc6aeef958505aac4462d987af8b581551cabcc7af

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 37bb6bd6a79d5524f121ff2a7d7df4491519b3f43565dccd4596bd75aa73ab7c
MD5 3928452016f1456683fa59b1b7ec61d3
BLAKE2b-256 556c6f8162e50bffba317183baa8c5e49cd17820de3af7908f79d0e5e6346346

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4e18059188bfe3cdbc3462aeec2fa3302b08717e04ca34e2cc6e02fb3c0280d8
MD5 d01cbf777dc320b0b2c6c7e2497f1267
BLAKE2b-256 08dcf23c1bffba0521ec071f6552b99ad4b7d1ad15676b87aa2b8141f66d5857

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c130e73e0079f403b7c3dbf6f85816a3773971c3e639f7289f8b4337b8fd70fe
MD5 1bfaa58243890239c4bc45313ebaa99e
BLAKE2b-256 febc8642c2be7d85c50c75f86da9f87a255c8a6ee8ab7a4e57f9475863938496

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e8d91137b0b5a6ef06c3979b6302265129dee1741486b6baa241ac63a632bea7
MD5 bad0214f4dd8df78e211ecb56820040b
BLAKE2b-256 c2db2bec92d38c5d36ef6b5387e5ca17ebdd837993b335f964481a4f144674dc

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f5787f1cc456207dee1902804209e1a90df67e88517213aeeb1b248822413b4c
MD5 0091f40dfef1fb6d879a4f4b529ac359
BLAKE2b-256 9c11327b1e89cd1c36a7201d230989aa73d7a9d1cbd202498c63bb92ac04c439

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: rapidfuzz-3.2.0-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 865.8 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for rapidfuzz-3.2.0-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 893833a903875a50acdbcb7ed33b5426ba47412bd18b3eb80d56d982b641dc59
MD5 3af61d64d682bedf8831abdcf3ceae34
BLAKE2b-256 6466540a625cf94a4f611ffd83235f540bf3f67dd26c81b7974b3dbb2bedcb33

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.2.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for rapidfuzz-3.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 75df3d9b895910ee810b2c96c8626cc2b5b63bb237762db36ff79fb466eccc43
MD5 47a7098b78f5bedf586e30d42c78e90c
BLAKE2b-256 17146d5f0dc7389b711c50eccd980af2ce7235ca7aab82429066fc224b1e3b06

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.2.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for rapidfuzz-3.2.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 a359436754ed5dd10d88706f076caa7f8e5c1469bf5ebba1897dc87aa9ff953e
MD5 52f81a00a0d6758a2fa0cf857001ccd7
BLAKE2b-256 4a182ac7f4ba15584f38356255b9f6214f9dc5b7110fbd549641afb0386c93da

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fd80288b9538c87209893f0934563c20b6a43acf30693794bcc111b294447ee9
MD5 96bf8ca54e542110092ac996406f2ab3
BLAKE2b-256 33af971b6e3b174eca35ed3a6ef7a152fc5988039594fe3fd818d4b85b30c293

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 045e5cccb0e792005d5465de0ea4621b9b67778580e558f266984704e68b0087
MD5 76f70355f2826662eb1b64acb422b03c
BLAKE2b-256 366eeecf321f597f8ade0b54a13b5d8705c4d0899956dd532d20b3248c3adad1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 f946dec03cc2c77bc091d186c007d1e957d1f16a4d68a181f5fa75aea40bdf87
MD5 8c66de03ab933b927cc0126d74077583
BLAKE2b-256 0be75fa1ccf0de4a6ac40252722174182a04a7e2063777021f2ca6d7cde5d87b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 366ade5d0067dc6281e2a6c9e5c91bbfe023b09cef86894de8fe480b4696e3bf
MD5 d4e36c673e8bfbf9369f1d7e3abb18e2
BLAKE2b-256 8a5d01742a4db539c94a172ae3c17acdadfab6f88dd6fd389e88d5546185120b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 53b3575fa398a5021192c1592dce98965560ad00690be3ade056eab99288562c
MD5 3f623a8feec37dd370ed33831aa0fbb7
BLAKE2b-256 c4c64b2d0aa445e063b1398d53476764699daecac2a16a35de339d0bdd5b1520

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c546c83d6bc9006b86f56921b92c3e16d8ddeb4e1663653e755a5d8a3ac258da
MD5 148182eddeb69eeb420cf5931a30afaf
BLAKE2b-256 b2fd36eb50a3a2e0d6df1ae1cdcd3a5c4a3e3cb68f3220499798e28be2bb0cfe

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 a284386652efb3b7d41ed5dd101ab4ce5936f585c52a47fa9838fc0342235700
MD5 7c5e9c8cc4dc272a28cc8d5d740204da
BLAKE2b-256 a41820414a1359f16ed20cbc9acee877bc2ed4cd506a873265a12f1f453e0f8d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 adfffb79288437006be412d74e28cddd7c5e6cc9f84a34aa9c356b13dc1ad2c9
MD5 71acf6f0b707d5f67fbe757b7995728f
BLAKE2b-256 fd4c602eed9fb765ff0db1cc47e7fa3ff4ef73750ac700c1b670ca509200eade

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ca0983b30c7b289f540b11cdb550e301b3f2e8f0ef9df866aa24a16f6cd96041
MD5 6e66c771d3037222f895b4b35cef5e57
BLAKE2b-256 470f5b6e0af40b9778092121695878d3d74c8334319af3805dc3761d3fea0f6e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 de44a378751fdfb19ddf6af412b3395db4b21ab61f40139f815c82f1a1611b50
MD5 8530ed51d4294b396ded490942f34e16
BLAKE2b-256 b7d8b149d83eb0bd42185059f92a17eba1bab6a28a78b22872ee3b9ad810ebbc

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fc0e1142350566349c41173685988d942ebc89578f25ee27750d261e7d79e1ce
MD5 18fdf537105f887f5268dfb65ddad128
BLAKE2b-256 e7c4c5914e774eea3a277da175b42b8c86b6706110707390a41aafc463fe9ee3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 87c3d4077e61c66d5dd11198a317f83db8e8cf034239baa16e4384037b611652
MD5 f8d8cf998a9e6ff30697b7c24085a2b1
BLAKE2b-256 fa9110a4f6fcf99caeb74ed08ee0c2774eea0a8b1f5fd32404ace33f2d827811

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 6d44218823533e0d47770feef86c73c90a6f7e8d4923eafabf56a1fa3444eda0
MD5 c9d6ec9c40acdf8b037a7ae12f2dfc19
BLAKE2b-256 e5f8c33e48504c24e17c735e12d72ce818875832338a5ce19cf6e175e0ce6d83

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.2.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for rapidfuzz-3.2.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 54906095444ea8b0a4013f3799b3f2c380205d7f60b9c55774e7d2264fa8d9c6
MD5 e713a000d315bd214ad97d7f393cc625
BLAKE2b-256 667d2517e0424a9b9aa22b402e43c62c18f83c1ef6fad121a2c9b6c922f684b6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.2.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for rapidfuzz-3.2.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 cf5ea3f1d65a0bee707245a0096c3a6f769b3ad6f1b9afc7176dfb73eb0ac98f
MD5 632773e9ec9f7600f10fb4e7e85d218c
BLAKE2b-256 4f9f7bde3984de6306cba9ca41bf5fc137d8add547a776e34cf5be4ff86cba76

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2bf85a3bf34f27383691e8af0fd148b2a3a89f1444d4640d04ef58030f596ee0
MD5 579c321dfc96fbd74aedf800f47ef9d1
BLAKE2b-256 58ae53a6beaf6a2f0f3fc6e64d77a8685d0f53e75b213ae452d03ba8a6899733

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 d2d0fc98d9d7bba44f929d201c2c2c35eb69ea2ffef43d939b297dafef934625
MD5 8ed8fd0c1e9b3c62a187a23fdc5e5739
BLAKE2b-256 c9e2d7e44d877c0c6c997c9f4726b7f555dad5bb5e03befbcf54bfd26c588b2f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 6bc5e3da74644cf75663f5b438e0ae79b67d1f96d082cda771b0ecfed0528f40
MD5 a70f7ad0336403e1a196da4e493a17ec
BLAKE2b-256 492ebbee48df53fed853be50bf55bd39812238a9ee73c7eda5bd60bb430cc4db

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 3557736672115d082979a8a12f884ed5b24268f4471fee85cfb2ec7212b68607
MD5 81b18309b16a750021eeaee019aed99f
BLAKE2b-256 6b0f2d87efaaba9d0dc20e97a83ae47a41e49bdd916387757f349822af084e0c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 538027685a1a8f1699e329f6443951267f169bfa149298734ea679db8f0e7171
MD5 801dff57067de2219ce2d683839347e0
BLAKE2b-256 91adcdef4fb3eb51998c177016b60128ce4f1b83b96efb5f4cb399fe0d807481

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c13107e0fdca5ccae70659f45646d57453338a9dfc6b152fb7372e4bf73466a0
MD5 a0632b89472fa040e6615843f60d7693
BLAKE2b-256 d4b93ad1bb76e876d13f35ed8ffce8867a33f3de3082673166011976b4bfa572

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 84ce2e010677835fa5ba591419e4404f11a1446f33eec3724a2bff557ae5144a
MD5 37b119b2c4a6371acb361bcb7d3c9cc5
BLAKE2b-256 8c354240e4e4661130e9e09225344522afeb380999ff1c5fee76a5eb344f6c87

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 fb9bb1af5680741cf974f510fb3894907a1b308e819aff3d9ea10b5326e8a5f6
MD5 6f3c1937655be0e8127720710a00ad45
BLAKE2b-256 6c73cf64077e9aa00aea4ffb97817c0b0deb4595527fc31367fcd62e12881002

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 871052405c465a45b53a3dc854a8be62079f42cdbb052651ff0b65e2452131e6
MD5 3c6f881cec7505bac4a492aeb6009da1
BLAKE2b-256 a5ca278979ad6c382fc3c8352defd9cf4308572289134d0c135f631daa8fe6c2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9bdb1f92c4666c7e1d3c21268b931cf3f06f32af98dfdeb37641159b15fa31dd
MD5 c444c5f6234a57cfedca9860738cff63
BLAKE2b-256 f7b5118094279fc73de32a0a808b3dae148838047ee86fe78a9736dbd31830fc

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fd3fca0224b84350f73eab1fb5728c58fd25ee4f20e512607c7d83f9bc836d3f
MD5 9b6db5a21bee67b1efbb366d69c0bd13
BLAKE2b-256 1101ec20328bc9d703dbf0df31ec51b3942cce485b9bd2c0684f9de24577b770

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ac7ddcd372ed202d1b59b117506da695b291f135435cfbf3e71490aa8e687173
MD5 17e9bf8792e7cccfeb2441cd523f56c6
BLAKE2b-256 fd4984b1f9e51bbce898023d9ef9c7977d2a1b92ab3fcd600c6ebe557d712a30

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 04d22f6058ce5d620ec4ecd771e44cfa77d571137d6c6547df57bdfc44ee2a98
MD5 c229fa09966796f3445353b237577609
BLAKE2b-256 69857d326821394d4031748dacfd3535079d67ca0339b3b89fc88fdbd34fac89

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 af3ac648232c109e36c8b941106d726969972644aa3ef55218c5988aa1daea03
MD5 e17eaa7391507566c33742450da29a81
BLAKE2b-256 c7c9fd8e5398d26978dd57fb5ac5e1f3fce96c3436c4bff8ba5d0c59a9737aac

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.2.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for rapidfuzz-3.2.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 2504205552bf568ac478f17dd612d0e31c4a82c645c66209a442df7e572b5adc
MD5 45f74afb1b75bb70c5231e2984149605
BLAKE2b-256 71dcda675b627d6df6ccc58dd1cd4eb1a48a902c077f908777f3527667f2bfa2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 da00990adf1fbc0904f22409b3451473fa465a0ef49f3075703c206080aa31b2
MD5 6808280ff153b397195077725edcafb7
BLAKE2b-256 36ee4e6a074ea4acc989711dae5d850e8a4bef8a6e5692e79285adfafadf0d9b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 8f8590c39a3f745b314f2697b140c8f8600fe7ecfb2101e9e4ec6e7716c66827
MD5 76e87f4bb1eb197d1276be15daaf8744
BLAKE2b-256 757dc48350b0693cf642397b9e576762a048e64b2c2b770d3e42103e7aa8da71

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 5863b176da42b1bb450a28375ef1502f81fbecd210a5aae295d7f2221284ad41
MD5 76646d749e570620d715a53da2b6fc15
BLAKE2b-256 9cb3ea7e3338d073cf4430cd6539b6fd6e618d88f5baa55c6d69b160b943bbd0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 56a392b655597ecf40535b56bfb7c0856c10c0abc0cbc369fd25a1665420710b
MD5 82dcb8d16d902ff14490a97cc95be1e1
BLAKE2b-256 4b6f89ee67a5de5af4f4f16eb450bd48d288732f6b7a3f12a3600a08d38ed2a8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 8a165f64c528edc0bbbd09c76d64efd4dbe4240fd1961710b69586ef40486e79
MD5 048c9e67a32fa43d47ba6956669cfca1
BLAKE2b-256 0017fdbafaaadae7c8f45f98240340b8ce99bc929f2ed8e9b5c52c4f38efe388

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fc859f654b350def5df2ebc6d09f822b04399823e3dad1c3f2e8776c825fcde7
MD5 a36c231dd95fd9e6b11f21597c153c5c
BLAKE2b-256 7c36c64a6668516ebd4d23030efc8308b3b17b2d8e89992b186c14e08cdb5729

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 2eac585803c4e8132ed5f4a150621db05c418304982c88cf706abdded65e1632
MD5 583096974f6bb2e6139de08542964733
BLAKE2b-256 5513eaf855688911075df60056cd055dda691cf945190e91801338620675790d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 7a7d53a2f1ccfb169be26fa3824b1b185420592c75853f16c6b7115315ea6784
MD5 a132ec9c4b85831b4f858d40d78a35c8
BLAKE2b-256 9c234fc85fd813a4a99265a61cb85917692315115e1e37b79b31d995162e7088

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bcfd184e0b5c58497cc3d961f49ac07ae1656d161c6c4d06230d267ae4e11f00
MD5 c342cbf2e37c8bfd6f7bc62704bb46e9
BLAKE2b-256 c20eec8d2941fb619ccc7e0d38868cf3b32ac1c2378396e5eb0d553b04bdbcf3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f0907f87beca70e44f78e318eede2416ddba19ec43d28af9248617e8a1741ef3
MD5 4e6eaaec3d621e4a84264f0233102a61
BLAKE2b-256 8159a3f809333eb2ed85f251b216fb1bfcabe9848ff9730c9355f67f13d0f28d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.2.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.2.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 613c1043332eeba0c0910de71af221ac10d820b4fa9615b0083c733b90a757f9
MD5 c884c4c19a43ee38246a94080092b447
BLAKE2b-256 c43522c9510a64790bee24d1d1b3016578406fae1a4e438190e9b8f8d271d079

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page