Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation
  5. It can be largely used as a drop in replacement for fuzzywuzzy. However there are a couple API differences described here

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.
Note that from RapidFuzz 3.0.0, strings are not preprocessed(removing all non alphanumeric characters, trimming whitespaces, converting all characters to lower case) by default. Which means that when comparing two strings that have the same characters but different cases("this is a word", "THIS IS A WORD") their similarity score value might be different, so when comparing such strings you might see a difference in score value compared to previous versions. Some examples of string matching with preprocessing can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and distance.

Simple Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("this is a test", "this is a test!")
96.55172413793103

Partial Ratio

> from rapidfuzz import fuzz
> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.9090909090909
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> from rapidfuzz import fuzz
> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
84.21052631578947
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Weighted Ratio

> from rapidfuzz import fuzz
> fuzz.WRatio("this is a test", "this is a new test!!!")
85.5

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.WRatio("this is a test", "this is a new test!!!", processor=utils.default_process) # here "this is a new test!!!" is converted to "this is a new test"
95.0
> fuzz.WRatio("this is a test", "this is a new test")
95.0

> # Converting string to lower case
> fuzz.WRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.WRatio("this is a word", "THIS IS A WORD", processor=utils.default_process) # here "THIS IS A WORD" is converted to "this is a word"
100.0

Quick Ratio

> from rapidfuzz import fuzz
> fuzz.QRatio("this is a test", "this is a new test!!!")
80.0

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.QRatio("this is a test", "this is a new test!!!", processor=utils.default_process)
87.5
> fuzz.QRatio("this is a test", "this is a new test")
87.5

> # Converting string to lower case
> fuzz.QRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.QRatio("this is a word", "THIS IS A WORD", processor=utils.default_process)
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 76.92307692307692, 1), ('New York Giants', 64.28571428571428, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
('Dallas Cowboys', 83.07692307692308, 3)

> # With preprocessing
> from rapidfuzz import process, fuzz, utils
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2, processor=utils.default_process)
[('New York Jets', 100.0, 1), ('New York Giants', 78.57142857142857, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio, processor=utils.default_process)
('Dallas Cowboys', 90.0, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-3.3.0.tar.gz (1.5 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-3.3.0-pp39-pypy39_pp73-win_amd64.whl (1.8 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.3.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.3.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.3.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.3.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.3.0-pp38-pypy38_pp73-win_amd64.whl (1.8 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.3.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.3.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.3.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.3.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.3.0-pp37-pypy37_pp73-win_amd64.whl (1.8 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.3.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.3.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.3.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.3.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.3.0-cp312-cp312-win_arm64.whl (862.0 kB view details)

Uploaded CPython 3.12 Windows ARM64

rapidfuzz-3.3.0-cp312-cp312-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.12 Windows x86-64

rapidfuzz-3.3.0-cp312-cp312-win32.whl (2.1 MB view details)

Uploaded CPython 3.12 Windows x86

rapidfuzz-3.3.0-cp312-cp312-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

rapidfuzz-3.3.0-cp312-cp312-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ s390x

rapidfuzz-3.3.0-cp312-cp312-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.3.0-cp312-cp312-musllinux_1_1_i686.whl (5.0 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

rapidfuzz-3.3.0-cp312-cp312-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

rapidfuzz-3.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.3.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

rapidfuzz-3.3.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.3.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

rapidfuzz-3.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.3.0-cp312-cp312-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

rapidfuzz-3.3.0-cp312-cp312-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

rapidfuzz-3.3.0-cp312-cp312-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.3.0-cp311-cp311-win_arm64.whl (866.5 kB view details)

Uploaded CPython 3.11 Windows ARM64

rapidfuzz-3.3.0-cp311-cp311-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-3.3.0-cp311-cp311-win32.whl (2.1 MB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-3.3.0-cp311-cp311-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-3.3.0-cp311-cp311-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-3.3.0-cp311-cp311-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.3.0-cp311-cp311-musllinux_1_1_i686.whl (5.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-3.3.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-3.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.3.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-3.3.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.3.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-3.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.3.0-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-3.3.0-cp311-cp311-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-3.3.0-cp311-cp311-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.3.0-cp310-cp310-win_arm64.whl (865.4 kB view details)

Uploaded CPython 3.10 Windows ARM64

rapidfuzz-3.3.0-cp310-cp310-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-3.3.0-cp310-cp310-win32.whl (2.1 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-3.3.0-cp310-cp310-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-3.3.0-cp310-cp310-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-3.3.0-cp310-cp310-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.3.0-cp310-cp310-musllinux_1_1_i686.whl (5.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-3.3.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-3.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.3.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-3.3.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.3.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-3.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.3.0-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-3.3.0-cp310-cp310-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-3.3.0-cp310-cp310-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.3.0-cp39-cp39-win_arm64.whl (867.1 kB view details)

Uploaded CPython 3.9 Windows ARM64

rapidfuzz-3.3.0-cp39-cp39-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-3.3.0-cp39-cp39-win32.whl (2.1 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-3.3.0-cp39-cp39-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-3.3.0-cp39-cp39-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-3.3.0-cp39-cp39-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.3.0-cp39-cp39-musllinux_1_1_i686.whl (5.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-3.3.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-3.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.3.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-3.3.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.3.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-3.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.3.0-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-3.3.0-cp39-cp39-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-3.3.0-cp39-cp39-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.3.0-cp38-cp38-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-3.3.0-cp38-cp38-win32.whl (2.1 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-3.3.0-cp38-cp38-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-3.3.0-cp38-cp38-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-3.3.0-cp38-cp38-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.3.0-cp38-cp38-musllinux_1_1_i686.whl (5.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-3.3.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-3.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.3.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-3.3.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.3.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-3.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.3.0-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-3.3.0-cp38-cp38-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-3.3.0-cp38-cp38-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.3.0-cp37-cp37m-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-3.3.0-cp37-cp37m-win32.whl (2.1 MB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-3.3.0-cp37-cp37m-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

rapidfuzz-3.3.0-cp37-cp37m-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

rapidfuzz-3.3.0-cp37-cp37m-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

rapidfuzz-3.3.0-cp37-cp37m-musllinux_1_1_i686.whl (5.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

rapidfuzz-3.3.0-cp37-cp37m-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

rapidfuzz-3.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-3.3.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-3.3.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.3.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-3.3.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-3.3.0-cp37-cp37m-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-3.3.0.tar.gz.

File metadata

  • Download URL: rapidfuzz-3.3.0.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.5

File hashes

Hashes for rapidfuzz-3.3.0.tar.gz
Algorithm Hash digest
SHA256 5e71bc5829f41e78b2d009431aedeb308ee3699d2bbbc68b7739db9b40bd1465
MD5 17c7dc05c8e071fcccd9aabed89ea6cb
BLAKE2b-256 20abf7f65cfeb2d9dda1fcf4190ccd3bfe8e4bfd4bce00375d90e20926fe7a28

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 cd254dc3436347a12e683c9d1984230228270009ff0985a38cbf5cbd25e8bc8c
MD5 93fc460c61e98711ec3ba67234efc546
BLAKE2b-256 b571beab06b75494fc98ef314e395d2de6be18f21e57ce4ee1d1409ad0465dd7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2f9a40cc64ef814ae60d567c3c9ad01ce92243a9ed6746b31bcddebc1ecc2284
MD5 37bec7195c0b28be19a3619082739af0
BLAKE2b-256 57c51446bda983f1121b8497b1c601e9dc32813a5770a9e6d426327894dfed3e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d0f0b3587ee7dd0f8d96078c33ba88e583dab8834dd658b18df29cfced360cc6
MD5 9e3c30ae3f65456868d98dbe0979ad23
BLAKE2b-256 6a6eaba7f22c56ab447d5c9117c0f42ffa176e16d7e5e67673728ee8c4592ef4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 18b51a2858e7adc950407bdb21382256d499472ba5c5d870eada0fa880d854eb
MD5 d31279d09a9b31689b55ea4b686a9b1c
BLAKE2b-256 00db42a12c65b9b0516997ce381d47e36b11b1947ccfd7ea01868de738256ec0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 062a5ed305a6d45798cf5548c780d4a434d1f188cc10b971c5c389d11fa356e7
MD5 6016df09199a0e36eeec9813d6e961e6
BLAKE2b-256 1156161ee13e155d3b5428ae6b0b495b634b674b3106e4d18a1e701c6cffc155

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 50b2b2b96b9c7841f6e2ab001153cd0bfcf707c427f20fed2f1f3849a99bd3fc
MD5 a0f5706cea93224516de5148c0e80ff0
BLAKE2b-256 810f6f880f6abf9d4fc536ae1b4eebca0262ae4aefcff76eb4a9137ef8d94593

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ada0258e3d23518b74af2363bb4062cfe492ec0c7c4c752aff6cd084d6917830
MD5 357ce5d6e67910c8691dd4bddf1642d3
BLAKE2b-256 3b700eaac1f5032d09f26335a12559c36663f304d376451f79032f37d96616ce

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7fa079737a22e5b098545476be428a90635bf7c89bf3ea5587fa2d07645b1569
MD5 801a33dd3b86e6c0ea3616ecdce9446c
BLAKE2b-256 80966a9a01ecf0a0286718e39f8789b5d6217d8224d05a2648fe33de6772ad10

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f0861477cb2d21ed3e3a96a98adba6b24ecaaf50021991fdd72794f963a8f8e9
MD5 3e870a4f2285ce3eb055ba6a4499ee0b
BLAKE2b-256 582dd1da69029c0525cbbc705a0aa558a6002e92e96bad1f4fefc0b6cd2c7c78

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a2cc8ea602e030dd5a220e537cc6bbb241ecfe293614415076d8045dd198acd8
MD5 0f308552eb7bb9ac898c87379f35462e
BLAKE2b-256 e0649498e1f9d721d3f3644e92069d740e77fc2544968b3155fea251f12697f0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 e809367f75b1d65ea5524a6acfcc4dcced79f4f2d19dbad8f17175ad4864515b
MD5 0587ddd2ee5160f955f361eea8bef952
BLAKE2b-256 f830026d79f495bc091fc329528d954e63682a60b8c6227c5d67a536446d3541

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 557a736c8c6e01e2d844211eb4f6f7913f54a912f6578fdf8d72312ae906929c
MD5 8fdcb7feec2614df90d58a81607aaab7
BLAKE2b-256 4974167d5f2c5f89e34518d81acc6859d9475158bac6d557a654fe2fd41ed103

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 68800fe792718b5b2a5ff7febbb6e4cc551ef767704873ec04062f642c9f5901
MD5 67153737b8f474970fe4e658548a6085
BLAKE2b-256 71fd3dcd9516610801b680fe05ae23a824e994ee24a81db0ec1f50325c1b03ae

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9e737bd4f30917643c50694df1486ce1a5f869bbf523f38b867076a775ca1a00
MD5 eda0dba481bf1c06ea21a9a4fab87c23
BLAKE2b-256 e111622f1331fc79cec715aad5fde762cf412e5b20e064457f6f6064a13a4943

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c089bf351657a16a31b911ddab3e2f19b04062f7c8244cea1ec5a40f490e0829
MD5 547088ee2a9f7ffaba9106225267c811
BLAKE2b-256 9aeefbf9b7148f927ef0e2d580ea9a6670621d60abe3905b94f1a9858bbfa0cc

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp312-cp312-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 cfa1345d5007efc1bdad6f40d2bbdc42fc83bb6b9fcb8cd3cc830180ccf360b9
MD5 765d865b4cfd1b6cfa02375b49b70dbb
BLAKE2b-256 85a2cf144740fede4698e9fa30584926ce06c8f8cbb5cab59c7c5330ec25f899

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 3ef0cf46d84bc307100f48212966e58f7a55c6045cb4ce9fb3e386313e0fc3a1
MD5 3a1567f13d1e55d9370a3f54d986ae3e
BLAKE2b-256 931fdb1ec83d219396700e81f573384943bd1ddb7fbee137ef9570fdf86fbd1d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.3.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.5

File hashes

Hashes for rapidfuzz-3.3.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 bd6ec3ad3fa5a490dfce534bb87429c122faf6239c97d6c2763353ef61ddab08
MD5 381eed21be459aca3553874ae554964e
BLAKE2b-256 bc53f3e1f98f5c4c47bb619804c1cfe0c3660d4a9ef907d25210a82d3a3911e0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7437bfcef4b2b1417731293b97343cb45f1ca46ced381d511cd601ea41b8ab49
MD5 6afaa65ab8214a85e319a5c7a32bc503
BLAKE2b-256 3bedd0ac50c05a2532b0d2ad434b51b2531b2fe8fa416c76176acf70d1089d21

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp312-cp312-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp312-cp312-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 f3b40aa31c7a970696967ff43d6d5bf3be4f6c008c9ad661cf8721af9c7c81fc
MD5 7897d08a31e74e395812b7d7a4841237
BLAKE2b-256 1a0de96152c7684ec1713d7ade98e58b85d002c812c84dd6040c7d02f1f7e390

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp312-cp312-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp312-cp312-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 2a58279ee1595838dfc2b80562e0a89f6cb98b427c738b57ea146318604dba11
MD5 cb5bc6070889357cd8833494530ea154
BLAKE2b-256 279c3562bb60b1d3b5a2b7455665eb4536f43b9dfb2584a1bbd03aa281cb8bda

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 bc354de84a2a56890a68a526b0d689dd010df1003794d24f222ee5ba6405d39d
MD5 3c59ac91638409156f9cc6b114b0bb87
BLAKE2b-256 b69bd9a4a6f0f8e8204c22f35811d97bea56263478466cde1f89b9420c8d8aa7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 47ddf5d075e09d0baccc3d499c5eba36e2605771da65a6d95fcc72e22c5e36b9
MD5 cdbcdca58f43a4a6a71d55bb5bd7e890
BLAKE2b-256 faa34d815d59db05a3de7ca97512ba4a17ddc8b3bf005b489512d54055ee7061

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 78e0d6d061835b16ad42df98fe826e4a0a3380621568f80c6ee2fa230d8d7020
MD5 4ea28c6b13ac491d3f80c6015c413b24
BLAKE2b-256 bfa5cb21b436ea5efb6484616ff1121fefbf1bf11e70f5a531e3ae2f70987ba9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 113fb1020be6f4727ecbd4fb29a510e14effe85910edf22cafb6c5d1eea75694
MD5 e7593e7c9317bdca73440c8747dbb423
BLAKE2b-256 889e014a8fd266d8298463ceaf93cad4f968fe560b82179f8ac4bdea77f20aaf

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 343f863df7000f212156ed030196ed20215f5231ca54749228a5d6a317b626e8
MD5 98a768ef4b433054031d1653382d3cd6
BLAKE2b-256 ea5283f99f02732179bcf8501b97aea9de196ca7eb15b35410da572b4647d026

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 da5d006f329518eb797c9ed12e05bb8332663c3afa5d2a508032f64f7232766c
MD5 17496111ee1ee7136d9c17b57ba4305b
BLAKE2b-256 9a0d431fd6bcbfc17a671c30d8cbab9ad5522e19058a8b6eaf84e36719717879

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e6467e0adfcb43b4d5bdd92a009cf7c8b952189b943c55050a9f1a8cd8180865
MD5 a7033135179909445ae5a1d6e565c27e
BLAKE2b-256 db359e7c8be8dee6402cc7732144116db10edc7e85d5813c9c9c11235f8e67ea

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5724ba0f4ac93ad43cc80407cbca2c598a36daf7f65c14279deaf3ad159f00ac
MD5 82350daef6fe3b4a10903d827f9cfaec
BLAKE2b-256 483aca84555130fc9e72df2aeb3aadaabcc7e5e5b0d94132f1f78d8648ddfb35

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0965b30b84687107658cb6dc0852d1e14e2a80a93036320264128c8940643db7
MD5 69f154e2a9b1418810ac1111a1c67344
BLAKE2b-256 da4dbfe1d663089405206a10331030cc3a58e5a1d6c28e52d666ab5f30a616be

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9558411d11dfcf85d4b080e0bc005114868e217c41f0a36cc13dc2c8ec91eacc
MD5 6bcfebdac63bc21305f8b27ec837d760
BLAKE2b-256 3f193d2f72f1ba1645db566d4eaa3561a5169a8ced97419ed3a8dc338bac89a1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp311-cp311-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 f4b8fd0acbbddaf0d96c1f01e949d645073ad54f8fee1a59af6aa914340ae331
MD5 3910e77330e416087ab6328181ade45b
BLAKE2b-256 146773e1e660ef80cc07e99fe57e6f51cca2495294734e319310e0a4519348ab

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 cae783ac3830a20fe32e80c53a406654d3a75b9b5d3351e81ac75ce470f24ad2
MD5 9f220dca9ad2678af1beea3fc12db472
BLAKE2b-256 7825125f6a5be8f76d6c43e1a8b21fc7a58af69d820fdd961f0e48e7d47f977b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.3.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.5

File hashes

Hashes for rapidfuzz-3.3.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 ab7b2c2cb65075d68a9c0f28513ce5154c6e7520fe13b76755971eb135138e74
MD5 49034f3a5b0fbe23550ee952d99ffc97
BLAKE2b-256 9a6e7c86969b80145c166c9e94c9f952eabb1b9eb4b50707bd262432ee46d17d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 bb60f7d2bbdabcd41059ccb68a8aea2353f96147a8402fac6581391e7edf809a
MD5 5cdb4b5a88911057e4f94b379b21bba3
BLAKE2b-256 2e1ea6d4a827fbc0e676abfa4df819e69821cf13a077ad676de4417769f6e679

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 906ddf3902ac4537bf21b2140c9b089c5cf4b203fdba72b447d89d6e8137132b
MD5 a4a7904cafb81145e45b25ae907cc96c
BLAKE2b-256 5f0adee12bc5c13cc690d14bd496ac2e64b0302ae4d6c0bcc9657aef1774cb5b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 1370bb6decb505b7fee362ffd2f111ca0c369e62a35eac35386b87a8c8f29a38
MD5 06d53d68ae39887bed64ed5573805f66
BLAKE2b-256 d98fc54a5482967a306eb76f963bf8dc27bdf463132c3534928bb9a29f8e59ea

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8f5793a577570211f5dc9b08a9c53d9b7e649372a6dcb8756f3eb823504778eb
MD5 b6e85b99a6197e353000031e44feecfa
BLAKE2b-256 f354185ee6b583b185a530b883da19686db9a8015510d780364a0bfa343cf451

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 b8fd22c2fc3218614991abff75989a55ca9d99c50f69376457246515ce95e27d
MD5 3b2afe351efd879995d5af8d1c3dbb7e
BLAKE2b-256 a11054d853d6e479f554632c91712c158d5e42990651c6a04e0c24d8a63e235f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 324bc1b508a32972bcf267d1fbf5fddf831da0bbb9c052ffaf733d0be30819f4
MD5 b928263643da063ce259af41bfed1be2
BLAKE2b-256 41bf77fa8df72e3659a80a3ce10d2cf1751b40b6ad94652ca54b19d74f5d8f06

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 2c72aafd9f4a83d504c898473e084548ddd3fb2b2eb56121513a13807544a8d6
MD5 48b07c53b6601272475575ce5dfccd26
BLAKE2b-256 c6647a1232c8970d9eadf952c884cd76db99a9d8b9e173a68f2b7f96cf1f4338

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 d91e0d03dce17d5e80fc3f12c0c1d1b304f1ad7c26e79e9378236772ab5de393
MD5 3f1b048d94a4e42445a06124aaca041e
BLAKE2b-256 d4337a5be92f6b8d47864586029f131f44dad5a28b036b849b2abb165008acce

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ed199d15bfac7a9692bba218f63d117b558f5e08d44c678e2bc9bb43931a701b
MD5 e49973b82ef8e3acf1ef7458756cd866
BLAKE2b-256 54b15e7a7c5eec4aa9f4aa776ed0fc60b052adf7af85648f43061d016d279a38

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b047aca009e7978a39b85f36a2ab3dbea2bec773d0cab739caa5c6c3e51fe051
MD5 9fe6804965e927395c064c2d1d4daf73
BLAKE2b-256 0296130e40a0328262a9bb81866fdbb4c162ca62ca998a623c0b2307e42ad937

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ba3421dd0f5048403acdad536b451d59bccda7b050144928c07d5830af1fb127
MD5 bfc5c82da16efc08be957127c4c20035
BLAKE2b-256 c06b44b79c3a47efc000471487e4542f40c78d24cc07ab6cafbb0e4df6ff6961

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5a661302b2a93afd3cbeed7a2c43d671d65de1f503c129e745255507c8a91a24
MD5 bd4e7492acd229db4e1dcc433e739bd8
BLAKE2b-256 b5f093b0a2d8348cb295d613c15ee505719828159d82ef0707e3cf82850a9ccc

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 12fd4e7c7d8a58fc43a9fbbe76b577c599403174740160937f852be4e78734e7
MD5 60ea0d6f0ca4ab6dda265eaa5e061635
BLAKE2b-256 2f7716b005359e910f6c8bc09e51c38c55a93f75392a50021f5ee3a4d2d5b926

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp310-cp310-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 783d082341785a832c65010a5dbba3f0c3d500f919edb25f076ddd5991fc8fba
MD5 f9e5bdc2ef9bfbad09e22594a14965f6
BLAKE2b-256 ddd985a995b963c833ee8af84d31945b125511442f4dd6977dbb166446ce87ab

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e45e5930d9f4f78f8d4b34baf4700f150b845cf8ed31bb2fb9149e29e07c6bb8
MD5 46443a9a0093f4b91ecbdf2a9c5a9329
BLAKE2b-256 baeb38b9a500c5e9764546608732f434da97cf10d21bf9ac18922ca07413c564

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.3.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.5

File hashes

Hashes for rapidfuzz-3.3.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 c7070a163017739bfaf4c8c31d66d347d7ab401c4bdb136b268508c24410aa58
MD5 153c162c800805eba66c56524c63c60d
BLAKE2b-256 b902a396c486e6b747d37ee6a079b756f4089afe04e1250d6cf7005ae09e5158

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 536238d37c9918b235899cc0e330a45304ab3c25be963912b7a969b61bbb309f
MD5 9fab9a83add837efbf25d1e38042301a
BLAKE2b-256 5b1aeeb1175ee7d98e601662f4cf3c47d33a46833207416a93c0e63c3cd2c99d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 7ea934a589a7b3d522cbc358e9f8bdf6fae38c65d35596b12616f78c1c3089ec
MD5 68fdfb4e96058f519b911a8ac477b477
BLAKE2b-256 b111f38d99ea0bfb8991f39088c5e684dd2ab23b1125bec0e528c515c268b295

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 4f77055d29ab2af3d3be16d50ecabb3ade6ea61bb1768b578f84cf558be5ef1a
MD5 e85b48eaae6e16f4d460860f29ba8244
BLAKE2b-256 9abbb328fdab1b1208fccf85a63374b1da1785403de26a34904420f119c52a59

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 dfccefebbda76796164f8ec6ec04999d635be2d86d83b09d703b8a1f312234c7
MD5 fb08ffed0856bb52c40ea6d9181a42e7
BLAKE2b-256 44b0d2e1aa39522d7e87db8bbb930dd8e201414f990403bd4299aa0d6bae4aa5

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 404b6bf53ac0b2b0b1f901f51953e04b758bf6905e1ee1cc29001b1cdfa55316
MD5 a350f819d202e8ec75961481a926d23a
BLAKE2b-256 81dc19d2af069401f843e4a3c666c53965d8127176398af47f912c687d885a26

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 307c6b9e1e47afe9dc274e2e5bccb81be0941f90f395a38f77405f1d7216bc0a
MD5 86ebf44eac983cfbbb145d654467ab5d
BLAKE2b-256 e85966b230732e47dbe287ff87fec6db55669544cdf1920cb66a878c5ec821d7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 c8b22e1973009e89ac0e1ad157ff978a15021c2acddfa15371456ef58156aa47
MD5 6e968784b3755ad2936adaa813f7d73a
BLAKE2b-256 499eebd724b70decc9917231e7413014575d340337eb8306ebdb3c5dc27ca76e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 efb8cc7da41926e4e68773afcdb2fa9bb6a32caefbc297c818526232a58ad5d7
MD5 7743e4e45ce452d6a85b02a0328593b3
BLAKE2b-256 896f7a9c19c96104b67c9a6afb47dbfd5bf13a1b1c048033a96f5ae4981f01b9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3cf3d37e38e7a205758269cd8c8a2ae506214732ef2a82bb1ef01c695963b3f5
MD5 448b3acdb1a9cf87e75a12f26d4fecf8
BLAKE2b-256 8030b4d2a5a1d0c5297788639bdb0956693a2e92c3399d883f9dedd7ff67369d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f5103c8f4aca404d1db4ba65c393d85d8a78f2547ce7d4a434921a4a1383aa67
MD5 f83390ad922fbac2c53bf4205b2c0389
BLAKE2b-256 827f9e092a5db0e8687759bb903fccd523258bb5d440824cb1ec404dc2c9964b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 66b92484cc5ea1b546d2adef50407aa011df8c92fcc22ec9b9803eff2d917dcc
MD5 78c73f6208918835d5864d984145564b
BLAKE2b-256 19120bd09590f08c1fe4340069fc51e4d8413295bcf39f2d48dbc5e7c9f10c6b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2e6c4580b0de835156671390959efad13741d0fb35cc355bc546d1dbf399db5e
MD5 dc31d490d9736fc8f29afd67f8ad70b2
BLAKE2b-256 6db9ffcdda1bee4b7a0643ece8af88699c10d8cc4b69121b6f8195e5b2ec8057

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 6bec4903d4127d1eaa20a62105a03b38184ddaef40e18393caa1d98ae3de6a0c
MD5 5cd0906dfee6f937a1718d6d65c619d6
BLAKE2b-256 fbfe0665073a3fe43c568d9749257b59a19cf912df55345c40df3f8378fe6297

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: rapidfuzz-3.3.0-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 867.1 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.5

File hashes

Hashes for rapidfuzz-3.3.0-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 3dfe9f4cdd9f9087f7bdd7c9f4e9304557ca8c44d4a1b1eca69230535e9ab2df
MD5 962fdee41981683dcabdfac3ea6e633e
BLAKE2b-256 ef69e2363e1749e566e1a984c974d1c03b3ab108ec08e211e89f836209d3f350

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.3.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.5

File hashes

Hashes for rapidfuzz-3.3.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 56dec09e716fb12c9fa10649b5980e4bad9563b2b7dc74776618b84603740f6c
MD5 4bd0e83e09c4c138a7e51d3fc7146d3a
BLAKE2b-256 d4be55433bef86f67f49268a766eaa2fcf2caa15c50106199354017d850e9be7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.3.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.5

File hashes

Hashes for rapidfuzz-3.3.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 78abf9f6e3e60d4004f66085bf4618cb5480ca6155d39d17277db7d29388e49d
MD5 e28c4a3193b5fee512c6c5fa842ce832
BLAKE2b-256 d4348090bd0d8fc8b2a33c140098e87d097bf3675019e56d085b1b0f63ff0575

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 68484409517617feccac3092ec879d5630253890e6895ffbe7880f063329d114
MD5 690f28c4ef95d646ab0a0bbe587cd0a1
BLAKE2b-256 eeae9d46149d1f775dd65873b12bded07d0e05de7a9be5e0cca4e9c18675e975

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 e59462ea2f94c809fdea2426a7cd2fe219f171cc7d0dfdbc5681176f86884da4
MD5 67a35435c6abac7f0fe7ea38ecbd8908
BLAKE2b-256 f04fa03a6938046d2aa2bddc3947205ce2fdaca1598b67dbaa2b8a1e84cbc66d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 ecc437ad773d40217e0a4704ee60002f7e699383dffbf576f41ed7ae6f4a8acc
MD5 00626edff4e7e705683e47cb0fe10b70
BLAKE2b-256 12dc9585b78bedae748b937b5e0eb4d1809b785b6efa5c7a4fdb7d51bd07aa54

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2a62d1435ef7d897ac37c5975d1f672f5e73857eb183bec821a174ed937f53fb
MD5 789ac6b72ca95f74a0128a928c96b744
BLAKE2b-256 d6bb2fa5134173d601a471751329bec24ec0dd1665c34b676a4b6ffd7d224188

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 888c096f29f1dbfa6614ffc2780d2c766033e6c2906413d4d6d1f04e5cda05d7
MD5 c3c61682194fcf3870d6eacfdf23a34f
BLAKE2b-256 247cda58227fec4cdf6db496fa0a7deac19a7f68bfc9daa9bc1511d85ac0f574

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 84ddf7a03740420bfae76ca5d86f934389729cc231285b669fd3d1c913b84005
MD5 a8d0c14add81851da32e07a2db8f7fb9
BLAKE2b-256 0b9c50327fec6c8ce7e4d476efb40f346c7759f575cd38221ffc5bd63abfbd6d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 e4aad090c40474f26578a968e4fbcc9418a4292201a3a0f96a2290465f5aaeec
MD5 22f16094c508a850fcf2afe933e61e67
BLAKE2b-256 73912b11a804467d0cb5d9cd191bbe28ca4e499c5c8c1dea2ee9ed74fcf6bad1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f25757cb21df937daed9727b628435390ce86af7734cbb3b5c055a1c57ffb434
MD5 b3cfd13dd18354810d11c418674f656e
BLAKE2b-256 6540207ad2e689ba2c863c87283d85512230c34de74ba121d8ee655b0e7ccefa

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5c4628e165910aeb96099dd42822ad32819511c2a4061dbf62169302d7299f6e
MD5 7bf9dda34428f26de9f610f68d6e5087
BLAKE2b-256 60081f0ffde1bcb67e6fd9fe0619964e3f67d15306604ced77dfc7ddb05ecc07

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 eb1dbf0b3dcb5b9615ea5b90619eb5d7756c2d377770d53c4101ce728de53a8e
MD5 c27c4a76f35beb2050470bf8da77d1a2
BLAKE2b-256 a68f52c41171724b2b49b83e27db84c1c7d54fd9e94787182091d0ca7ab19784

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3363beb1da090be877e8a22ac6daefe8e0a6f6aeec10cebc4ec39db3abece897
MD5 cb0e6ccaec2e67ddb00e917d61d0ea8b
BLAKE2b-256 6ff35461e3a9399019da8bdc6830e110300b6bcc7e64364fbb5462b8f6e46d34

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 376b87d6b7c83b6b2923f0916fea6fb7288ab66b1b1f3b0cc39e601bb09488cf
MD5 25131102de201ddabdb0a7da02d6981c
BLAKE2b-256 98cddb33c33b1eb5618ae621a3071d4bc66f4bd1deeecb3099aa340b6043be37

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5b8cdcf915c7058815321f2c0c30d20097722459bbb1fd2e1cae574bd03a39db
MD5 0cbcfaab237fe8c34e48a46d6a5eb7c9
BLAKE2b-256 1aee27eaf212abb41fbbcdadab0e3e983e01db67e8694b7067ae357439115b0a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.3.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.5

File hashes

Hashes for rapidfuzz-3.3.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 93bdb512798f8226cd4b785a73c70efa582f26a7287d55337b9216b384946494
MD5 f01a2ed278dc0144dfb48fb19e14260a
BLAKE2b-256 8d3f036b413348a0b8d5f7a46809386b86bb776a36066d19cbac42b510160d96

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.3.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.5

File hashes

Hashes for rapidfuzz-3.3.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 9acd9cd547089b8835ac36223888a43bdfd2492064a8c5ee00cdaf6ef010de4b
MD5 fa4bb224749aaa769b2d4a413b621ad0
BLAKE2b-256 11ee84aa3691241efb54fff150107bb3869c75fbd07612778516a87059020c22

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 78c73efada660cc548d166f08970aeff0ee4dd0a66fa4f27bd24ac6c31551503
MD5 41fa175c61fe0b01f47f5329da0179ce
BLAKE2b-256 907f42d2a3bbf93dd5c9f6830abf020fbdaae4b0cb02ec35b2a5ef1a1efc30d8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 e7f8056826ba8342f6d9c199750cddce70d1d90254320494115c26480fac44cc
MD5 2a725a6cff31f3563a40aadb15bd0868
BLAKE2b-256 66b1ee63aa749371bfcdc4f1c1639f25031e109e54eb8fd176ba9014b1d4d9ca

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 a441e90ec5ac09746d3960221df1268e7a7f0b47978c388e7dcae83e23ae3462
MD5 8799ce2b2e2fd50c2cd662b45ae4e2e2
BLAKE2b-256 2295ee16016e90951c236f0aaba8e8ea7ac44f9514fc2e61fedda961d8435a25

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e5051c47a2a00b10c62b51bf1c4aefd2adb34d837b56fe16cfe505db7b7cc2be
MD5 aae1fffaa33c86f006f3e538245953c9
BLAKE2b-256 6a22ca4aa96dd274a603674d40b1343045b0d7a713d262fb4809b37faeba8d97

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 25704f21afa6fc767902e9d0b840623c008d28f58022904c282e26e4f38b770d
MD5 86f3d91d3e5ad09b9fe813f9a0e78af0
BLAKE2b-256 f90f08cc858b5058cdb28975c0928acd5def6c243bbc533df908dfdeb2409b04

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 29acfc446d091e723caa65e2a7e1b2d7669ac927d02effc5cc636bcd2f41bba5
MD5 03252b11bead0f33d114a5ac41b25c8e
BLAKE2b-256 655c10d100455fc799161a33a77b9763cfe9a7096def360ecdceb79c4b7ff34d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 9837f4528071e5dc695fb30098d9b49341e62fab32ef5c15094be260df1a48e4
MD5 e8b0169a08f1eb28b7bf362685fd091f
BLAKE2b-256 930a66fcf7b196c7813e12687cca8a525bae21c2458501ec0bf0529a90764091

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 319e67f8c1d7b9b45386821ace33edd289ec0995d80361775f5d6d15d684c6a6
MD5 440f0584ca160ece07515bd44fb70763
BLAKE2b-256 f035481aad4737ca7a47cb47f0d21e3431647ca2c111ac96410d27b102dc7817

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1eb377265e4d2f9e6c21a0adc865dddd52b1cd90ecd2552e99b386bb1effe38a
MD5 8b4b9f1395541f58ee2e8c4e5b2c8e61
BLAKE2b-256 4037b5d18d2a060fb80128fa1f127ae1d5e112866961ef586546490276f46e6c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9a6f8edd755d29ac7a9804382780d4b383f494fed894514819932b9a484fa117
MD5 76fac887b9c774dc89bdc7ed278e2698
BLAKE2b-256 a9e284e46ae7ccee99ecdff71aad1090e2c41821fd5c0c91a6e29f2594bfb073

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8a1bba2aa6af58ff04e9fdde40747dfdb3f1bc836bbb86533e317f9a4b6a607d
MD5 a74fa7a86597a896c5ed2071d22fa011
BLAKE2b-256 55cae0ea24b10a03501f545a834a9278ab911990a1ad04668bf816cc8c443c81

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9bb2690f0d760ebfb4a943f51deb7b3d689b1fa7f87f8de1f005b19574f59259
MD5 4673dcce054f38f9c8bcee9423a0c4d5
BLAKE2b-256 e8739b3eebb23c146ac702cb272b42da74a5976d7e70407075224343d22090a9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4671cd2e0d7e861b7c7aea8ed529b93e7ebec9ec4f6858cd72c395a99074826b
MD5 1eee7d34d7ad3912969996413ff5eec1
BLAKE2b-256 ce5a7019edddb3c27ceec5bb0b1200091213b9bc05e2834cee1d9fea6cf576ec

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 483299d57306c29a2bb1eb5d978f4d25a5e8d67ffee18b4155847bf9fc422b82
MD5 b963b42fac96bf87d349b16983a3bd56
BLAKE2b-256 444ff01a79a7c1b48d25a94adab8076509bf5b52c23ff1d1a3e24089d8e1b48c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.3.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.5

File hashes

Hashes for rapidfuzz-3.3.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 ca3c582e57df2407c5e07db26edb4ef19c2a7882ce2bf0fc1c5a6394986f84e5
MD5 cf457eb1dc9bb1e1cb07ff48861098c3
BLAKE2b-256 4c2c49bba4166cd79d37b9b27b77caf3d5b86ef42285d11ec9cb19a6af11c518

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b13dc341f4deb2f599db3fe0ad52ab87f7bb1fc09911b4823ac618925fa400e0
MD5 b0e7d9f6dcd5c54b4e0ca2fbbfdf7e89
BLAKE2b-256 5b9d751884fbead8de200c905561bf9953c19ef14faf76aafd05827eabbab31e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 5df1d384283aa2491ecdc23d00d3b2c2f1ed745f9ca42813b3e51e39a180f9b2
MD5 10881ba5585a528b47e3ecdef15aabfd
BLAKE2b-256 a0bcdf41eb8e673f24ad8be149c3fee0958b10117066eafc67719c79524ad47b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 78641fecf74571d0f693cda9aaeb70db581c1df4f0ce6a9077b05558e7c5b6f5
MD5 fee7cfd7fe899950539ad1d7c07af4bf
BLAKE2b-256 b89eb20ad47bfb287f6598c65650482c12dfb7c8faaa767e0890137370d15eea

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4839f1760c7d5e1f1d01230065a111773f2f78277df5d66a55902bdef77f3f93
MD5 ff830b0f097d21401c7a63e7de9fcfaf
BLAKE2b-256 d630c26146e8f17c0d2bec522c18e28d207e1c0478e3086e528e98b2dc1eaaf0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 7f3da8741463e0345480e49d8bc89b83713d802c5c2851d590bd7ba1aaeace87
MD5 120a9af5f4b49078af4c4a96559f8b8b
BLAKE2b-256 078ed91880d1246afde48f1d7c794c1daefddaa157c48db97a76db32e7fb1cc9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6b632178ac063e8ad5b8d8bf051bd2436170c3822e865eab63e45a3289b80683
MD5 4d49fc0e7aedfe00d673715bd32a052f
BLAKE2b-256 ab4430c09da97bea009338da84a1d2117e4136b8a13bfb89dd114c1c33dbd3f8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 2de666fb4d3558847b229b4a06909557628a6a1fe5ccdc68e522eed90f442e6f
MD5 f849241a3bfacb7a37943f9cff834ce2
BLAKE2b-256 7cc984bf7c48bc9efc945b895224af1a868dc0df0678d9c2516976e318779285

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 1441d18aa459e72c5aeacf6ec140878c2ec6debdbbabfd68cd5968ac07ac9b2b
MD5 ba78dc04590f34e23d48bb6009be2b5d
BLAKE2b-256 9e610972f0af3f37835cdb5221168b327deb23507ce4c53057c7c9aaeefde1c6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1b2ca9583c9e0361144138f4884b59e7165daa56b5983f15bbc1441de3d548a9
MD5 78c5dc7aefde53ef744e7f3982d140c1
BLAKE2b-256 4975c132f854af53a64ae3655647f56e3fe3c4439b4863a1d05a88e35da2b6aa

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6e053d10f01f06d0e10a8a229f2d82845f6d5ec13d67b6a6c11910f49f6e46b2
MD5 7e8c31c3784a2e1f5b30aea2982e47a4
BLAKE2b-256 ff73c90177ca504567f9f1c2d342f50844930ea4e0f897580743e9ac13fdf63b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fbafe4e45086b9245e12d97d0c4232e866a52469221acef05192bdb2a9b96a21
MD5 783ee2e0fab8ec3cb120453bb04a0503
BLAKE2b-256 7b5f79aad9ea081b3a51a0acd8fce236e3655597e917b30b88c7c04790244f5b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page