Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation
  5. It can be largely used as a drop in replacement for fuzzywuzzy. However there are a couple API differences described here

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.
Note that from RapidFuzz 3.0.0, strings are not preprocessed(removing all non alphanumeric characters, trimming whitespaces, converting all characters to lower case) by default. Which means that when comparing two strings that have the same characters but different cases("this is a word", "THIS IS A WORD") their similarity score value might be different, so when comparing such strings you might see a difference in score value compared to previous versions. Some examples of string matching with preprocessing can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and distance.

Simple Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("this is a test", "this is a test!")
96.55172413793103

Partial Ratio

> from rapidfuzz import fuzz
> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.9090909090909
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> from rapidfuzz import fuzz
> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
84.21052631578947
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Weighted Ratio

> from rapidfuzz import fuzz
> fuzz.WRatio("this is a test", "this is a new test!!!")
85.5

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.WRatio("this is a test", "this is a new test!!!", processor=utils.default_process) # here "this is a new test!!!" is converted to "this is a new test"
95.0
> fuzz.WRatio("this is a test", "this is a new test")
95.0

> # Converting string to lower case
> fuzz.WRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.WRatio("this is a word", "THIS IS A WORD", processor=utils.default_process) # here "THIS IS A WORD" is converted to "this is a word"
100.0

Quick Ratio

> from rapidfuzz import fuzz
> fuzz.QRatio("this is a test", "this is a new test!!!")
80.0

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.QRatio("this is a test", "this is a new test!!!", processor=utils.default_process)
87.5
> fuzz.QRatio("this is a test", "this is a new test")
87.5

> # Converting string to lower case
> fuzz.QRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.QRatio("this is a word", "THIS IS A WORD", processor=utils.default_process)
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 76.92307692307692, 1), ('New York Giants', 64.28571428571428, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
('Dallas Cowboys', 83.07692307692308, 3)

> # With preprocessing
> from rapidfuzz import process, fuzz, utils
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2, processor=utils.default_process)
[('New York Jets', 100.0, 1), ('New York Giants', 78.57142857142857, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio, processor=utils.default_process)
('Dallas Cowboys', 90.0, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-3.3.1.tar.gz (1.5 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-3.3.1-pp39-pypy39_pp73-win_amd64.whl (1.8 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.3.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.3.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.3.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.3.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.3.1-pp38-pypy38_pp73-win_amd64.whl (1.8 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.3.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.3.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.3.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.3.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.3.1-pp37-pypy37_pp73-win_amd64.whl (1.8 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.3.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.3.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.3.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.3.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (2.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.3.1-cp312-cp312-win_arm64.whl (862.0 kB view details)

Uploaded CPython 3.12 Windows ARM64

rapidfuzz-3.3.1-cp312-cp312-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.12 Windows x86-64

rapidfuzz-3.3.1-cp312-cp312-win32.whl (2.1 MB view details)

Uploaded CPython 3.12 Windows x86

rapidfuzz-3.3.1-cp312-cp312-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

rapidfuzz-3.3.1-cp312-cp312-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ s390x

rapidfuzz-3.3.1-cp312-cp312-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.3.1-cp312-cp312-musllinux_1_1_i686.whl (5.0 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

rapidfuzz-3.3.1-cp312-cp312-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

rapidfuzz-3.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.3.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

rapidfuzz-3.3.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.3.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

rapidfuzz-3.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.3.1-cp312-cp312-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

rapidfuzz-3.3.1-cp312-cp312-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

rapidfuzz-3.3.1-cp312-cp312-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.3.1-cp311-cp311-win_arm64.whl (866.5 kB view details)

Uploaded CPython 3.11 Windows ARM64

rapidfuzz-3.3.1-cp311-cp311-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-3.3.1-cp311-cp311-win32.whl (2.1 MB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-3.3.1-cp311-cp311-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-3.3.1-cp311-cp311-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-3.3.1-cp311-cp311-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.3.1-cp311-cp311-musllinux_1_1_i686.whl (5.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-3.3.1-cp311-cp311-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-3.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.3.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-3.3.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.3.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-3.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.3.1-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-3.3.1-cp311-cp311-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-3.3.1-cp311-cp311-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.3.1-cp310-cp310-win_arm64.whl (865.4 kB view details)

Uploaded CPython 3.10 Windows ARM64

rapidfuzz-3.3.1-cp310-cp310-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-3.3.1-cp310-cp310-win32.whl (2.1 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-3.3.1-cp310-cp310-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-3.3.1-cp310-cp310-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-3.3.1-cp310-cp310-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.3.1-cp310-cp310-musllinux_1_1_i686.whl (5.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-3.3.1-cp310-cp310-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-3.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.3.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-3.3.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.3.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-3.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.3.1-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-3.3.1-cp310-cp310-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-3.3.1-cp310-cp310-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.3.1-cp39-cp39-win_arm64.whl (867.1 kB view details)

Uploaded CPython 3.9 Windows ARM64

rapidfuzz-3.3.1-cp39-cp39-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-3.3.1-cp39-cp39-win32.whl (2.1 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-3.3.1-cp39-cp39-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-3.3.1-cp39-cp39-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-3.3.1-cp39-cp39-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.3.1-cp39-cp39-musllinux_1_1_i686.whl (5.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-3.3.1-cp39-cp39-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-3.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.3.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-3.3.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.3.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-3.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.3.1-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-3.3.1-cp39-cp39-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-3.3.1-cp39-cp39-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.3.1-cp38-cp38-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-3.3.1-cp38-cp38-win32.whl (2.1 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-3.3.1-cp38-cp38-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-3.3.1-cp38-cp38-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-3.3.1-cp38-cp38-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.3.1-cp38-cp38-musllinux_1_1_i686.whl (5.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-3.3.1-cp38-cp38-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-3.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.3.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-3.3.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.3.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-3.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.3.1-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-3.3.1-cp38-cp38-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-3.3.1-cp38-cp38-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.3.1-cp37-cp37m-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-3.3.1-cp37-cp37m-win32.whl (2.1 MB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-3.3.1-cp37-cp37m-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

rapidfuzz-3.3.1-cp37-cp37m-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

rapidfuzz-3.3.1-cp37-cp37m-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

rapidfuzz-3.3.1-cp37-cp37m-musllinux_1_1_i686.whl (5.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

rapidfuzz-3.3.1-cp37-cp37m-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

rapidfuzz-3.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-3.3.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-3.3.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.3.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-3.3.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-3.3.1-cp37-cp37m-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-3.3.1.tar.gz.

File metadata

  • Download URL: rapidfuzz-3.3.1.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.5

File hashes

Hashes for rapidfuzz-3.3.1.tar.gz
Algorithm Hash digest
SHA256 6783b3852f15ed7567688e2e358757a7b4f38683a915ba5edc6c64f1a3f0b450
MD5 3abe6199c04c651c512ab96d0c95864c
BLAKE2b-256 1abc1475cf5a75bcdfdf59b3947e9ffdfab3518629110a662c20d90b67ce037f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 6409621e49a8f0ec271a571ae363857a0c3600a656ebc5530f12937691ce73fb
MD5 230db5eb82cfb6f73576173390e0f57f
BLAKE2b-256 6dda46190d103b963d4227704a4fee943c7dc5915d0e268510d532143fff088d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ae0b21be06811cb546f24beada663b9d96dd81423cd353a8f6fa971e88ad210d
MD5 e1d1105dc923dd1581e4945a7bd93530
BLAKE2b-256 d9eca0ab263deb4a65116c7b9f81a9f405afd00b9c0322c08c62830eedac66f0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 87efcad5c292fd62ebd5734d1758b44d9f664a0cef0802a11f924ad7468a1d8d
MD5 9d95aac13592855f227fff115ceddb62
BLAKE2b-256 9bf330c556cb2cfc4898d907d69285b9d506be636ca2ddc4fa009791b462b208

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cad943889da89228bb93b0054252e48e49d6ce82c9851e78ad983902b7012c2d
MD5 161194d12df744a99f309f0249a00d52
BLAKE2b-256 e3ea4e7419fa66d3bfa11d379ef2e1ccf209b3d4986bf610b8830c07fb3e9301

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d63def4d0e494e9fc9127567dbb82419686fa43ce96fa4dd63f3688a86c17ab0
MD5 1b03faa81d6c18a18b2980f45321bb8a
BLAKE2b-256 ee38fccc4cbd06f2a161f3e6393a058db395e880b5623a6292698b265e25662d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d8639f6c800d1bafc004083d735a0977098ca142511150b5084b3b70dee199ab
MD5 db6135e87d5ed3456424ab67e43479fa
BLAKE2b-256 ab87ece0b26ffcabdbf23f3997bf294f07f1b0dbde8035619ff025b5469950d5

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 feb62d6db50455f5bde4468d85f92b4e06fab42adac29c53df3506cd41fed5ec
MD5 a1655deae41d1df427ab08d366dbf796
BLAKE2b-256 aefe34e9b4cdd4d01a0e36784800437fcf53657f701308cfde5d3c70a3dd5b76

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8f8f999d87cb71baa20b6bf7204bd5f82361de872447e892020be8effdae74df
MD5 743f039df2be36567bfffa2dc8e65832
BLAKE2b-256 140f5a38f7f38e6daf5a659a7f6aadf8c256288819cc88b67ea8a7e2c61cb7b4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5721ca93a3085db225a4edc7225b1e7ab06d9a0d1d7722c07e9b1a625d704f46
MD5 ea6df34333f466c1f35bb6d03e78f501
BLAKE2b-256 26731fe7410013078e9bf386cbee188b63e809aa03a2122ea5214b634fa3e6df

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 28272f5dc9ecb921ea0e25c054b59368ff919e739166e4d065e9a95a3ae0b81d
MD5 a1fec0f6de50781fa8c2b475d7a92a26
BLAKE2b-256 58fadbd95b419317560293a84c82df54ab63c4e5e32d69aafb172061b9812e2b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 eed25c4a9adf4ea7b16dd1836be180e259fd1172a9771faddb1aeeec9fb1e813
MD5 594adf3dab402f425e3a59acc3f9e264
BLAKE2b-256 d3b295b7ef80b139e1a382742c2f11f9ad50ad66b653653cb5e3654cd5b85c82

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 95ef1e72e0f071200cdcebccac7a9c0b008dfc01c30c280053e37bfef740bfa7
MD5 e0c35d9858a92b2dbeb3a069fe131dab
BLAKE2b-256 0b0716d06d2d66140569b10c4e345bb4a2b9c7a3c444379fb546362a5848f33c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fe0a5bc9046aae59cb0d2ea8dc281bf92b4c3a0137354753cc47629a840498ee
MD5 745bf698377c4654cc973727c3d99b92
BLAKE2b-256 7e99b86faa1863345cc221fe2d1a6c0f6429dd2af85a588e43b2eea19a36cf24

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0e50e8b9c95f14ca845a014839afda96e6be3d593fb01f41dbc00a460c443519
MD5 94d5024eef43047777ffee0068136ba4
BLAKE2b-256 632a6ace248ecbf351fd0b8db486b62f0d321c17bde5fa064656841229464091

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 78fc4d37b67ba808aa50cfcbb906eb75034b38a02beb63fafe8f25cf2344c5f8
MD5 6d5e9ff3a6dc5f3a4af93e48f09c7cc9
BLAKE2b-256 5ed12efd3dcfd38a7f810fe9acb4893caf32726f8cb9a97f1cbba522f21f346d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp312-cp312-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 84e3abc53ce2125337665f33d26bb1b3eeea391d57d826f4e3dae795b2c552a6
MD5 be0dd6290ea081ba30de0a88ad5771a0
BLAKE2b-256 d033e68e27320083baac0f071b8f97cde54abaffa1f10ab4d74387a4128f9aa5

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 7263beaf5a4f0eeaec521e417a783b9442dd4972d7b4536d48979b63285b5e03
MD5 29f2761617ec67764a2680217ccdb34e
BLAKE2b-256 8d83584b71d59cf6007f91b4cdf26beb7c425dc5cdc767897e09504653ca83c0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp312-cp312-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.3.1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.5

File hashes

Hashes for rapidfuzz-3.3.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 b9f5bb52c2d5be4775afb34dbc336afe99d82e62154ed1d4a6d9e09b6a11e60c
MD5 0e385fcb20b27b7e1648db93ca2ccfdc
BLAKE2b-256 6a8778fa3ebdd1a38d0a62ad51c8973a6489c20599a0ac0cf0f8f65b4542bdb0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 367281049ebb964af97cbe66a91ad759f44ac75855427f8e9f30194743b3d30b
MD5 8ff17f689cbedd38767f461b72c342bd
BLAKE2b-256 e80ddb9898864f09299d950e9964aa0d917e29f51811af1796b77a793b80ab70

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp312-cp312-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp312-cp312-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 4b3292f41c952eadcdccbd8b57cc87f6eefbaa39584c8846244ee9d65ae4e9c2
MD5 d619077f970dd02633d4e0203a990cc6
BLAKE2b-256 160f49f18a7035b2ce3989e32ee3b29e8158b7d9be6f96ba3ed26dbd48328666

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp312-cp312-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp312-cp312-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 138a99230963a3d6b982d332f0338ae61d9102dce5a362d2cfd7db7201b080fc
MD5 f137a6402dcd2eb90becaca0984aea60
BLAKE2b-256 80c5abcfa8bb7b012fc3ab3aeacbf89b869f5cb0a261f4f1a6407f656db5aeac

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 6461cba315db61c37f26a871c4d44d6e6cea752ec4caec335367a94635aefb3b
MD5 ad5f78a6712928a0cebdd8f3c109d938
BLAKE2b-256 3636e7fb34570661cb362884d2f7575c7674d0c4ea5cfa60873811742da14441

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e8f4593f4f6ffcac3946f22ad1d546cd0ca5048fecc771da0b6bd9424b8330d7
MD5 cb29bdcfeea4d355ae3e196089e81f72
BLAKE2b-256 a8079c61b476dab8f06f239f5fb5745d2a69c0c22d583a46263290fec4b6cf68

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 04644984e61b151d96a1dfb5a2b10a405b2cd021b8b6fb3b7ab7ae0117d31e3d
MD5 412c88937ef386b9aa1ce95730cb2c03
BLAKE2b-256 bb4d73b5612d18a63e1c862729b77096d1713087cfa3d51acaca172bd31b1205

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 cffbe592da86a8912174ebed79859ab03fc76348ec1e8450673bce206eb3a3a4
MD5 fd6b659d75c7ff056f9c578b6f2df00e
BLAKE2b-256 9571f3c95c387ffa92d0b8276c65eb4a04e8338f06d9dbf94f1d3812d0ecbabd

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 b5d55e35420c8105eff6b3fe1d7718713d7fac3474c8f3da2ccac371c15d0b33
MD5 42d4153b894c6199a75a73e7bc64a277
BLAKE2b-256 da44c01a045b9c141b00b4f8d168d048175038d7cc7b37760aa701444903ca54

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f1410d98d43743958c69391b38fc600f86315120b30cd73767e7faa19df3c533
MD5 939e05d89f183d2de4f9b4028bcde2e1
BLAKE2b-256 a4e6fcec5b3176be56f698e458ada533ceb46a6a7c38b3d09247b275e3443713

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 410b4b1b4552de1ef8c70dceac553c46d701b78d733854b60b0ec65eaf7b0917
MD5 852b3b1054283ed08153c3450d111512
BLAKE2b-256 194c3ceb05bb09fc3270248c0a8f7c60c443f46c395734c5c09d300d06e97b23

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5a26038d2c6eab28aa2da998e0bffa2054a26920e11349ba8c12b85b6031ab85
MD5 a050c7e01b66e6091b6ba471e9034f64
BLAKE2b-256 ddde6424ac0f5aafc0d9dff477dea3d18c1fe70a6e716516ea6a469d71e3e718

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3112ebe083ca561c78c354ffcea33719fb5801ffead0b39243d31e0ea5c61735
MD5 b38f33f56eb2ad697d64ef90f541ff08
BLAKE2b-256 8c47d80b55f6d1ee190a1dd63985276d28c6c4a8b08bdfbb72b5307432953ce0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3c273ac9c53d0f7718e183035c94b7c468fc38de92d12a0128d201a5d2700cfe
MD5 3bc068fbefcd3cfe8c32e430d9bc2884
BLAKE2b-256 0fd6e1d3381cdff58e8797c11560d89d9e3ee391a919e5d57e250d75985bef2f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp311-cp311-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 517cda15951860f33899b6c1f7df82710fd059a243e62b5a9dc8f8a305da5b27
MD5 ddc197368c68e903c12d9b944499b76f
BLAKE2b-256 9d14b22cc61c17ba22a1d799ac60b1f7d04c7b6a2b520e45f354654c68dd9d96

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b292eeced85c081cebe9fac389fd026a3818238a2f8676269e3dabecd25a4b9e
MD5 edc07be4b4554fd568e16e4d1f826487
BLAKE2b-256 ba74f7656506c813e95ea8cc8698f1ab17e2ddf0db6a73d0ee0cbaf608388853

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.3.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.5

File hashes

Hashes for rapidfuzz-3.3.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 d334369fa0201f5929ca4e9d4090ba2856ae6172db756e8fa7e326b6c09f9f13
MD5 b34d416e58ecc6be3f04141cf632be42
BLAKE2b-256 23b743fae01ddbbe0a286472ea5560b482f3c5b3f22cea884654c8e5e04cf631

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 16883ad18be670cdc824ef8f5f65979b68025d08e20e597a0edf98dfa6d2dcb6
MD5 79d6318965042fdd007a0708ab6a0e45
BLAKE2b-256 f63541f85a98fd791dda8927e62d51755d238b1d235994cd97c3057b46a81aec

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 332b6b734beadc710e81582e09b67684d170b351886d7ea76ccd306e94f95511
MD5 61ce8401e8a065d5f9dea71f4db32553
BLAKE2b-256 48a6e52f5bfbdf87cd2f800a6f2a7f047e6f1c04b1489e9338c9b12ca5d50262

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 e4e298f0577d06f8116d0304de2b9f5db8c12c6c05e605307f0f6d8a959491d8
MD5 92153898904b0d3edbae57d2d806e423
BLAKE2b-256 a2cfb01e0d4a711c6e96a9ced9eb06e7d7167f7d09d8094b0408e0ca6f3f1e96

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 48e9b3369d99ec2250dd622afbf5a332974f72289e8e13f2739b3edd2260370d
MD5 91650bcd92fbc26aeeec3a0105e0ab6e
BLAKE2b-256 80f6102074708e2d30cd75fb71e6bca83f62d2acc08b401a0f3aa5bc4f5ad38f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e4e99e7fe0ab51a32db3a1fa6d7c9950ad66c5f379560698acb6377ecb4092b2
MD5 0120d2e227b316a2f7853f08f387ca77
BLAKE2b-256 740a47f8e7a02cac7d52fd1c49ea9111d850ad21f55491a7e3bc72189b24fa2e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0bdf0b5f52019b3b025a1542eb672554dd88721d5bc8dcc9537ac80442b0171e
MD5 5db0bc1193be44f04e1800dc3b5d48c7
BLAKE2b-256 fc5dc42c05f1de4e604ff69d8c1ee06ee3dcd1b5bf00a396339ade378bb6d5e4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 ded1b412c2bde3f1a072735bf1f551b7dc4bc9d1ba98abac2561b4b4b88c3568
MD5 fe58c70de6f855449c61949c64152804
BLAKE2b-256 9298e8dbff744bd1d2eb9104d19e8d708c848ac8c68a37d7d2bd6c7845e253ce

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 cc1cabace9998f2877ee039ce165e3e622209fa347f00cb8a276576f6ffd4e90
MD5 24320da5826acf3c6ac718494aa29e80
BLAKE2b-256 14b6ca30e26b9bde3db8e37069d8448c0d9b2d46493fdcab5f0047f2fe3b5b2b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ad1dac1325eb2e3f9c6cd64df6eb65424ebf410fd115d16c48839dde69b7cd37
MD5 d7ad168d73a012a2d77f0c8b0a16c80e
BLAKE2b-256 2886fb34eaef6aa4147d7abd4bba06c1c2ab1e1c62ee8a1ca395bb892428a530

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ee68c3befc07917a71dd3a4c75ba11e5cb58ba0888240e7c393c1c2c51696d88
MD5 ac99b9a374715175408ab0f7914daa8f
BLAKE2b-256 38544362613adb5389a0d505f3465b3bca421f3d6ba1a60034d4bf8f1d467851

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f3d9d498c1ae218dbb7419b54bfb2a02aa1ed454701409cd2f4e690437358871
MD5 6a3b27165c0bfa143a62e857d09ef9f6
BLAKE2b-256 113fd4da7ebd4e4cd08eff852ab2da5b2e612bbe501211beb9a3d3510a4bd19e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fec991fa6b4e7da6e7ac9aecfb90b03c37e275ec0241fec654473889f2aaf3bd
MD5 cfc3d010bbd41b9ce2ecefce567f694a
BLAKE2b-256 0d803589c6d3ed8c494d37e9f3dc9e477a274c53a605618089a2d95399d31024

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 54517a6ccce1cf612435010a45411408cba7d7697eb5208ec3b6ac90ed4cba53
MD5 ef244ab2cec4ca5ea839b2f8174adfd5
BLAKE2b-256 571fead6720678c09f897b5e1eddc3d2239f61f8ff53727e1b3e2e71cc378c44

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp310-cp310-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 fb67eeb91942fbb19f020c2ea41bbdc69a242987e6a1abb8a161580c5b1ca5fa
MD5 85360dc297a13f481a145973c8bf753c
BLAKE2b-256 7b344e51b6046f31c79df3041a8f5d15a645a66d584173e38ef89164f2d8bb00

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a3a722491aeea07ab7cd4b320f9df7f0be90020ca9161315fc8c1eebdd3073d1
MD5 b30246dc616d433f97e0ff09cd324a29
BLAKE2b-256 813fe08d377a5368402d7fef9931e43af4776d493d881f44e5c750d21505f0d1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.3.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.5

File hashes

Hashes for rapidfuzz-3.3.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 911b86d0fb12b7d467fa977a2eab091a9671836368154c359a0955c3640d50bf
MD5 237b7e545b50dcd52438085eb6abf84c
BLAKE2b-256 644b2b6f4ee9b0d9bd02cda6d2b18a973eb2c9f4c76f63da870300e3cbb4ba5e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0763b5d4e53613fbbbc9dff610a3f4a0aa91e1426d629d5a25b6450a682c0e1d
MD5 1ad892bb338ac6d4a677aa757e36dda0
BLAKE2b-256 f8cd18c99ec781e28e1cb1186491eeba9186e561a8f8c23d38d53761207a3519

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 2b314e809c200042a4f61ab6b44c41b3bae335f8a21ebaccebc3500964672946
MD5 734a0be3f76a4562da8a0825e5ae20a2
BLAKE2b-256 95af5560eaadedea85d90640b85f54153b7c71622194de664ce09e48d236a7f3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 db13dbc14c05050ccb5e2ee2528135170b1a38d0b6bf8c41996fd4b2e9490f86
MD5 eea73d81e147316a71303471d90efece
BLAKE2b-256 95abc6a4e7ca9e7559598beefdc54a60f21e9714b7b3831a5259a210592e6074

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b43bd6aa31903770f5661b6c0ac21e90a1b76ac13034617e9dbd3b90442b1406
MD5 0ef0aa073d7bee874b08519664408432
BLAKE2b-256 429563b7f242733f90f25e5fa8b146df909ff6db40dad906a8eb0c5d08fd5b02

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 8f5b8fd82d240e482fc2f30eb6dd85d26e486ceddc8537fb1b7274d62e227784
MD5 7a7915732dc6252e54c2509e6012cc97
BLAKE2b-256 216b389bd36f5a26a1ce33ab21424ce9e81e812d66bd5d408c9ba348fddd55d4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6b25eb9b0cc5135a1e43e2bff9fa2acc20bb12c21904ed588bcb140c05a2d459
MD5 5d39679e18567c769422e6692f9dbf8c
BLAKE2b-256 8ef4e99caa0ea652e79bb209bf53ec1be5f34ecd3db5f874ccf41fb7d5285e6a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 2ccb8b22b71a500f9a2b800abb8237ee335b2fd44107b4483c945581eb4e8c4d
MD5 c7966fe1a6edcf142231d7a7aecd19bf
BLAKE2b-256 c79dd33faef4d949b53463b4fccf8256549dac98854d43cb4779ebfa266372a0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f2a0e684b54e6dbf62e77cc311b501aad6520f596c8313905848a7f876d7f27b
MD5 5eb52fe5626e0071d9bf0b0381425f66
BLAKE2b-256 48cc408fff43dfbef798b7bd678ba70280f822eb5956b155594e0853c36f0966

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 54a07f9545affb1b4c9bb419a17648a470e1436acc60a80cafa125886860a113
MD5 ec0cd4ae08eb6f36f25959013b00584d
BLAKE2b-256 6cc63ecc41968a3f4fe4d8e027590e9afb5399d090bda80050bb0cc552428cb4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5f154304cd26959361d773d2d9872f8439cb77fe6fad6da9710e39f97f17760b
MD5 a8c0e7cbc230b415d46aaf065e46d4c8
BLAKE2b-256 9330d2bfa3861cd2ca0c757a160678fbbadb446aae33422fe6f6955935775a6b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 38d6f7be45267698011aa0e50376bd1a039392edd6bc99ad2e9bdd1791e3ce97
MD5 ecd6d66f93a58f93d5db5afb9ca4bb29
BLAKE2b-256 f8357fffcd602b97d8f5d1d41f43d5478f9df616d4978f0d859dc732e4fa01b4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 55b6faf830bfcf8bdb92d33ae4b3d660c2aa7e510486173aecaf495b6229253d
MD5 3eb72b1a008264159e326f0d38deb41e
BLAKE2b-256 fe589322fc8720cfd5a364100c632d50eaa436fdc4831c9246146b69677c935b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 411b189af7451ba6bffbfc23fa7f971892cf5c7ff5b1fe2ec309bf7694bb290f
MD5 09dc7b69fa0fbe2d22f640833bf4b8db
BLAKE2b-256 ccc0219ee71315ca378d7b9f2c24f31c1ea54bb9a76d77bb24e07b209f6bb165

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: rapidfuzz-3.3.1-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 867.1 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.5

File hashes

Hashes for rapidfuzz-3.3.1-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 8ddb50b03a2ab4d48905e9857ff3d58c5e18ba6f5970292731b627dfe05edd57
MD5 bd9038f231c9b4c76a1e6d277de624c8
BLAKE2b-256 39bd2fd45ef89fc4e713e54bf25bfd0239ac02a1bdb8bf2f9b4d9da08bd85779

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.3.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.5

File hashes

Hashes for rapidfuzz-3.3.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 76632c85227306d3d9af2764942f30ed3599d13733d7b8aea6e37e97372d803c
MD5 19f2ae603b1d27d5a7e7508744daa945
BLAKE2b-256 d2227c455c9d2d95e83a7c10a5d220c325bc9ca00ded72251890df8756bfa3e3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.3.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.5

File hashes

Hashes for rapidfuzz-3.3.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 349f0db802b77f28bf167d7fa6f713d1daa023287a54f966db55cdfefaef4ff4
MD5 319822043261082c32d9385909f67d95
BLAKE2b-256 d0760af040ce87b45347dbbb9141a6f93e2a5402568e2281c064cf5d0f95ce2b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 430144a0f03b2c182be2014dd505cb55f5e8f62806520f14406a03e299ddb5a5
MD5 d9a5b7fc718ac8a3e2c5eab1dae39053
BLAKE2b-256 385fa93bea20136498770cd17894a97f6f68baa5302cbb5366572e007561d7e8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 5fa3c364c0dc04c10b5ac843527a977fb627023c4e4afc20af44ba3135c5da74
MD5 4de5dde51c16d158e34a24158d693713
BLAKE2b-256 4267b0da4aede197e9c20f035cf7c8ff81f00d5f015df4b00a967f45576b8406

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 052e107a7da8db68bc650181ae3dd787d582fffed1831c677c26dc09881dd76f
MD5 6c81ce27c15bdb9ae494685b44c3965c
BLAKE2b-256 7b2374b7f0c049e688745ae391604a1a7daeb72bdb9429c149c6c75921f3c54b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e3dab2098bc66add2ce5738b4a962a16673925158fe264298512cbc3063ca398
MD5 8e5b189f30167019d90cb31da33e67cd
BLAKE2b-256 3e79f6c178102f0642f5e75d0e184f6849ded6846d154d871c4b3350df55abdd

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 2bb0540a29e2616e2ee99ed2e3398344114cf28632e7d662281a2487612ed87f
MD5 ab23f9bf44a2f85f7e09f97256d12e7b
BLAKE2b-256 440791f37b07717b1948810056a355e17c0d7ad996a0e44682f5ef738413afaf

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dcbe35ef42ddca0602b4ebcb2ef9f23a4336595a3ed92a2ad70edb1ba17e2670
MD5 23381b61222720c60088e761c4bec618
BLAKE2b-256 4d14e4bda4927419354264dec27b373ea2ba442cc3187439f9bca62f37f69d49

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 2944ccfac731da1e7685289754cb43ba7b7dacfb43e5e229eb17eded9c457b1f
MD5 168ab06ab44f1bfe5448737610f0a292
BLAKE2b-256 f2402aa60f1b7e0c69b9dd2291071ec2a77af53fcfe86e92b75d9e1b68c8966c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f0a8476d74a8d585fa0dbc3ff88028051976438ff58cb11ca903ac5ee725c718
MD5 14db8fdcc40dfc8f2fd91a165f5b4dfe
BLAKE2b-256 32c59a3caa085e072c073119512a829d2eca5137cf9361d383dcafed88ee68e8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4ef2a2b95090d945d682506816bec0fdf5ad4f711618830c7f80e69260317929
MD5 a627fdaab48f9ac7957d923c45734a78
BLAKE2b-256 35d5d0e248045a805a9498653558a6fa6d08340a52002ec48abfc7837c328515

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a4ab55786e034a55d15110c65dd0b25894fc2098488b0ba2eab445afd134a7c3
MD5 ac72ec3352d38afbbf3b1772792eaddb
BLAKE2b-256 6bf984bfb611bb3bf2b86b1d7fac6a8616286f51a02ab6ff8f7981b139e5b898

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a7038fd90def8971cae57104cb4079ed8dae06dd8a9e640a8a0a1aa0f0aad103
MD5 ecde28ba1788a5e27ad6f1302b9aaa70
BLAKE2b-256 65028e6f2e6c4261de2b8fc22032134f6432072a124420627ed595d006bde4a6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9736b634b23abcfa23ba6d6f91c92706772a4b146d05eafd52afafa9afdc0600
MD5 df73ad85420abb534dcc46f4bc60999c
BLAKE2b-256 3be0e9a899fcf36a6afadb1b2a0e3ce1d49607bc9ccbbd3e20b034927f53c1b0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9a9d2511368973c7f7760baeff7b5c6a4bfdd90dd22fbee3775f32ff2440173d
MD5 fa085f08495430ddfda8b2f633a69c9a
BLAKE2b-256 457a6cb15fda630ac4b283d7f1bdc8114e925073fddc3182df58b2700ea98a81

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.3.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.5

File hashes

Hashes for rapidfuzz-3.3.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3dd193960ebf93c5a27022863c37fab66a8459636a1c3ea221fefba1e56d5f4d
MD5 863e15b4f5e0df88b6e2ce0c2a819112
BLAKE2b-256 7d8b1bc1f3bcece289c8818be9dd673c17b80fe292fef51f903095466bc48b66

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.3.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.5

File hashes

Hashes for rapidfuzz-3.3.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 5eec1540f15bbd9755210de05d363b4023cbd06ce7ee215b636c2061e823446e
MD5 9ef2922c4daa615c74fc206af37cb714
BLAKE2b-256 7c65b28db90ec3efee34cf83e4160aad5b0ac47a7c5ab34fd483efe2957d7204

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0f07fb259e9839b1708428a4a3ae0aa8e7919aa69b86bf670f105bb35cde042f
MD5 1725e5bfe938be9df2d4631c60381c50
BLAKE2b-256 8fbe032ae9d819bd1da1b55d86afbfe6c62cf944dfcef98b160743f33ca3845a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 cf97b47a42f0419504b0d099f39408c3ac693150f6abcbfd69c59816d2c5a35a
MD5 14daf6b70f06ec8114b34e5d35b6bf2d
BLAKE2b-256 f52240eb6097434008c0d1129f2aa82734677421251674e4e47dc068970aa739

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 0f36304dfc5226c985f6ee399cf840035945fd947c5e47b8418e98e58f913b84
MD5 c5ca290690c2ac83f07a6e5fc351e6d4
BLAKE2b-256 517f3f082ba506532d657b39882e6c49a26613c84eae3161c026d5122d69272f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4750f67e530c1ea793d3764bec14914ace2320c90564a89823e3c49f74dc2b98
MD5 b5607bdb6a57236e98b5246acf3cd3e8
BLAKE2b-256 9a2f44d0ad4913507965ce3f728f777bd90c634d25c9a20b941911e91926e350

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 a9a2bd94b7162054fbdf257ee847f0c98ef9b697ef7f9398f5c9a39e9bc537b5
MD5 7ee5cd29a72d9073f2480c5b738fdc7d
BLAKE2b-256 777b65f11841fd653e94798e57f865d7bcea02fdc9c991fc7fde75bffc2f8c45

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7cdba516d49798f3b3bc645ba72c740cb4bcfb5865f4f9de3ccf526c94f85044
MD5 31a7543744e55fe256eee3b40c609e4d
BLAKE2b-256 6f3ca1d4161b173b6b3dcbb55717743a41ff8cab491016001021731d7eeea9db

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 3163a01436708447330cbf59bfeb491137809db4528d32453ebf230f952e10ed
MD5 17fc30e9641ce6c41ed256da885c4e5c
BLAKE2b-256 40fbcaa5841ef4a5a007c1862461b1746ca4fb73e28bb7887b08beda65d470b2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e515b62a58f9846e6be9b8e543dc850de4bc6a5ab3cebf0183648e06e16e72e1
MD5 e86d6aac7ebc6d33ce472a14bbfbbf40
BLAKE2b-256 c54c64938a468d4075101a335e156d1fc92258f5022f718c88fd520b491bd159

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e3a952022b2f7529b6ca3c86146f75daa183acb656b851c394feaf1586fb64be
MD5 7fdf454c201891666e790caaf4cc4624
BLAKE2b-256 46b9bd5d8a662b801df35961557b06f6979cd59e86bc176245a57f93421da4d0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 75ecdfa7715ad139ae3a30c3d6c5fd8ed7d72b2cef6a27b8818c0256783cac75
MD5 f3453125f6c7f76bbc011e91ccb3e523
BLAKE2b-256 f52a9d7e6da2011c7c23d920f3ed05e03713957693bbc53b975b05192fbedb7a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 34bc0f1b212458780b1263772741906838bb78a229be34b6edd5fcb87525e55f
MD5 3f67ab2352eecad0eb31f1a253cbe6af
BLAKE2b-256 509c53f544520356dc0d690e15e8972a8e5ee45f3add2a80db8514f989f2299a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 376d599c592a2bcb75ed2c0cc2ec3f4d08e9df6bcc59456f5b5f73eda3387a11
MD5 82bcaa20e419c7dad3650400dd39e64c
BLAKE2b-256 28db9ea72899e688a9573ac31dfc9fceb5302b9130b67ffdefbe6d4ad3dd5f53

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 6fb7a1180e4067fc226d85d622711667dd7bf7ad54e7520eda0197fe01795ee6
MD5 5a3623503fb72c55b753bb14493db447
BLAKE2b-256 4f90df0bf63a25eca4a4a4d4e8415f02893ce7aca47cf534d3b26c3ea3390034

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b758f7a6b2eb03264fc45ed3bbbf7f47e871e8843ff2a49bbeeb8bdf4bd9b435
MD5 324db1627c02e763998081f8fc294edb
BLAKE2b-256 861196727316e74079727bce744a8eff0d8f662b33f57dd4cabf571538ba908f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.3.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.5

File hashes

Hashes for rapidfuzz-3.3.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 3fa0b231b5932f0e3f77d5a893e3cb49b3af1dd5de2a9412c8a975beeb319b9f
MD5 01e36d51d2bf9e8fdeecf621eedfb22a
BLAKE2b-256 1a32f486c26f8b7d8e1a78f70544232030e4116145ccd1a70f32a70a2d0e13e0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e3331534c475e152bb4508f8bdf810814666aa061a5835a7fdde1c722088ebd7
MD5 729d7455f3aa97a31945448ccb2ff7fe
BLAKE2b-256 b88ac8bdbda282f943ee0b91670690fb8a9dc14a0548e369e3720a0ff9365fc7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 658a206302ac38efec87e5989899a61948c8d41cdd4c4b5ed650744fe0627b84
MD5 4a31c2b130c1ad066bd59d7961edd8ed
BLAKE2b-256 7c9ed319d3f5d110b059286901a0f08445cb03c182c6c8251bc4313358552801

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 fa7787655432478a4d4e20b410fa38c2e56146c5a1a948aeb03e90282f999b2d
MD5 9e1f230e7e9fe5fe4697bea8f0f66e8e
BLAKE2b-256 f039dd651fe709047ea56d33b7def5ea68b49581b9f9cf74f1b2f7094c83f15b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8d0622807b9ebc0e71e4bc48cbd61d26aa73c0dbf18d8cd995de4e6e1bf1f25b
MD5 433590472ffc1f2f70659e92a2395a6a
BLAKE2b-256 1fa041fca6863935326d0ed79c59645e49cbdbed115446e830e120562c83bac1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 8e7edd355e159a077796107116356e528024a1fd7e7d822a51600930681d98b4
MD5 60a6d56d3ffb0e584904bd5a913db2dc
BLAKE2b-256 207715cbb01dfa50c27de668e82a45b4e0ee0c54e0d2ff749380d28c7089f56e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 83f3dd875162707548fcbf80c59137ea226a87ef421d119b483afc22cd590911
MD5 a680e54e01a480df53861808ab704a34
BLAKE2b-256 fb5df44d74604f2b850ee28ff9de747675602c951d60f8b9e9eea06711cf8cf8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 6e50c12d0620428d14c45598491b1f6fb62bfd8b064c087bb1c205b10d09b33b
MD5 4047e814b562c1933425ba3108397915
BLAKE2b-256 10ca5ff02a9a90f73d2798b34d41ae5f92d95000103affb6c0889d7e6802a95c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 5533038cf5082e13bb8137741d15625ad30e475ee4da811c0d83f7bcc6fb3d22
MD5 48e67d0944d9dbd6b3cbb872edea68da
BLAKE2b-256 693a111941f31d18aec7d2776a8e351b192f63e7a73ff7bd9fe7615f6a758378

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1fa10eebd70754614375c21a0e06e8a64e0d33b785d78a22dc9dfbaea8e53cd3
MD5 184c14e44498cad530dcd0f48ce1a357
BLAKE2b-256 f7222512de18f5e45db00aa61cd423909729463d0dfcde4b87959df026a75411

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1ecf81490bd01a376b09d0d0f4ddf0cea93047145ec8e016cdb7354d8cd66219
MD5 3eb24f4e5d38e9f1c3b0437aeae50a00
BLAKE2b-256 f3efda5f3ceaa9329a986e773b4bf97753c78ce87a3e5be96ec78b9ea597485d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.3.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.3.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 13db29a8ab077376bf096ef6e339dbbc3aaccae3b23cc034c0cc3149856b116d
MD5 d01d88bf92bca5296f1397b2118b25e4
BLAKE2b-256 ae8ff02ae241e7e61ca44021c2146e40c5e6a05e6fb0c95b869d0737e2abf6ab

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page