Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation
  5. It can be largely used as a drop in replacement for fuzzywuzzy. However there are a couple API differences described here

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.
Note that from RapidFuzz 3.0.0, strings are not preprocessed(removing all non alphanumeric characters, trimming whitespaces, converting all characters to lower case) by default. Which means that when comparing two strings that have the same characters but different cases("this is a word", "THIS IS A WORD") their similarity score value might be different, so when comparing such strings you might see a difference in score value compared to previous versions. Some examples of string matching with preprocessing can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and distance.

Simple Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("this is a test", "this is a test!")
96.55172413793103

Partial Ratio

> from rapidfuzz import fuzz
> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.9090909090909
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> from rapidfuzz import fuzz
> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
84.21052631578947
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Weighted Ratio

> from rapidfuzz import fuzz
> fuzz.WRatio("this is a test", "this is a new test!!!")
85.5

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.WRatio("this is a test", "this is a new test!!!", processor=utils.default_process) # here "this is a new test!!!" is converted to "this is a new test"
95.0
> fuzz.WRatio("this is a test", "this is a new test")
95.0

> # Converting string to lower case
> fuzz.WRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.WRatio("this is a word", "THIS IS A WORD", processor=utils.default_process) # here "THIS IS A WORD" is converted to "this is a word"
100.0

Quick Ratio

> from rapidfuzz import fuzz
> fuzz.QRatio("this is a test", "this is a new test!!!")
80.0

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.QRatio("this is a test", "this is a new test!!!", processor=utils.default_process)
87.5
> fuzz.QRatio("this is a test", "this is a new test")
87.5

> # Converting string to lower case
> fuzz.QRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.QRatio("this is a word", "THIS IS A WORD", processor=utils.default_process)
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 76.92307692307692, 1), ('New York Giants', 64.28571428571428, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
('Dallas Cowboys', 83.07692307692308, 3)

> # With preprocessing
> from rapidfuzz import process, fuzz, utils
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2, processor=utils.default_process)
[('New York Jets', 100.0, 1), ('New York Giants', 78.57142857142857, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio, processor=utils.default_process)
('Dallas Cowboys', 90.0, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

This version

3.4.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-3.4.0.tar.gz (1.5 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-3.4.0-pp39-pypy39_pp73-win_amd64.whl (1.8 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.4.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.4.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.4.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.4.0-pp38-pypy38_pp73-win_amd64.whl (1.8 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.4.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.4.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.4.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.4.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.4.0-pp37-pypy37_pp73-win_amd64.whl (1.8 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.4.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.4.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.4.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.4.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.4.0-cp312-cp312-win_arm64.whl (848.5 kB view details)

Uploaded CPython 3.12 Windows ARM64

rapidfuzz-3.4.0-cp312-cp312-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.12 Windows x86-64

rapidfuzz-3.4.0-cp312-cp312-win32.whl (2.1 MB view details)

Uploaded CPython 3.12 Windows x86

rapidfuzz-3.4.0-cp312-cp312-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

rapidfuzz-3.4.0-cp312-cp312-musllinux_1_1_s390x.whl (2.0 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ s390x

rapidfuzz-3.4.0-cp312-cp312-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.4.0-cp312-cp312-musllinux_1_1_i686.whl (5.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

rapidfuzz-3.4.0-cp312-cp312-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

rapidfuzz-3.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.4.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

rapidfuzz-3.4.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.4.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

rapidfuzz-3.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.4.0-cp312-cp312-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

rapidfuzz-3.4.0-cp312-cp312-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

rapidfuzz-3.4.0-cp312-cp312-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.4.0-cp311-cp311-win_arm64.whl (852.9 kB view details)

Uploaded CPython 3.11 Windows ARM64

rapidfuzz-3.4.0-cp311-cp311-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-3.4.0-cp311-cp311-win32.whl (2.1 MB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-3.4.0-cp311-cp311-musllinux_1_1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-3.4.0-cp311-cp311-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-3.4.0-cp311-cp311-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.4.0-cp311-cp311-musllinux_1_1_i686.whl (5.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-3.4.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-3.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.4.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-3.4.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.4.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-3.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.4.0-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-3.4.0-cp311-cp311-macosx_10_9_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-3.4.0-cp311-cp311-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.4.0-cp310-cp310-win_arm64.whl (852.0 kB view details)

Uploaded CPython 3.10 Windows ARM64

rapidfuzz-3.4.0-cp310-cp310-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-3.4.0-cp310-cp310-win32.whl (2.1 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-3.4.0-cp310-cp310-musllinux_1_1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-3.4.0-cp310-cp310-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-3.4.0-cp310-cp310-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.4.0-cp310-cp310-musllinux_1_1_i686.whl (5.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-3.4.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-3.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.4.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-3.4.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.4.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-3.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.4.0-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-3.4.0-cp310-cp310-macosx_10_9_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-3.4.0-cp310-cp310-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.4.0-cp39-cp39-win_arm64.whl (853.9 kB view details)

Uploaded CPython 3.9 Windows ARM64

rapidfuzz-3.4.0-cp39-cp39-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-3.4.0-cp39-cp39-win32.whl (2.1 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-3.4.0-cp39-cp39-musllinux_1_1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-3.4.0-cp39-cp39-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-3.4.0-cp39-cp39-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.4.0-cp39-cp39-musllinux_1_1_i686.whl (5.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-3.4.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-3.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.4.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-3.4.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.4.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (5.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-3.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.4.0-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-3.4.0-cp39-cp39-macosx_10_9_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-3.4.0-cp39-cp39-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.4.0-cp38-cp38-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-3.4.0-cp38-cp38-win32.whl (2.1 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-3.4.0-cp38-cp38-musllinux_1_1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-3.4.0-cp38-cp38-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-3.4.0-cp38-cp38-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.4.0-cp38-cp38-musllinux_1_1_i686.whl (5.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-3.4.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-3.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.4.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-3.4.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.4.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-3.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.4.0-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-3.4.0-cp38-cp38-macosx_10_9_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-3.4.0-cp38-cp38-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.4.0-cp37-cp37m-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-3.4.0-cp37-cp37m-win32.whl (2.1 MB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-3.4.0-cp37-cp37m-musllinux_1_1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

rapidfuzz-3.4.0-cp37-cp37m-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ s390x

rapidfuzz-3.4.0-cp37-cp37m-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ppc64le

rapidfuzz-3.4.0-cp37-cp37m-musllinux_1_1_i686.whl (5.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

rapidfuzz-3.4.0-cp37-cp37m-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

rapidfuzz-3.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

rapidfuzz-3.4.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

rapidfuzz-3.4.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.4.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

rapidfuzz-3.4.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

rapidfuzz-3.4.0-cp37-cp37m-macosx_10_9_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-3.4.0.tar.gz.

File metadata

  • Download URL: rapidfuzz-3.4.0.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.6

File hashes

Hashes for rapidfuzz-3.4.0.tar.gz
Algorithm Hash digest
SHA256 a74112e2126b428c77db5e96f7ce34e91e750552147305b2d361122cbede2955
MD5 8a1b75b32365e6bb0fec7befabcbd706
BLAKE2b-256 273622741bb354505ca284c2149a4c7fdee396a6cdeae3f4c0614acf6b0ee27e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 28d03cd33817f6e0bea9b618b460f85ff9c9c3fedc6c19cfa0992f719a0d1801
MD5 aafe997b6d402218241f16f0851c8592
BLAKE2b-256 b55ed1526a644bcec154440d4ed4bbc888181b4b9a5012a3f3acdcdc690b64d4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e77873126eb07e7461f0b675263e6c5d42c8a952e88e4a44eeff96f237b2b024
MD5 36e3f88a906cc3449081264d235386dd
BLAKE2b-256 1aef52a25a36ab7135e6bcd592607c264a722133a7dc1d8ef8da75eaf9e99c68

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 698488002eb7be2f737e48679ed0cd310b76291f26d8ec792db8345d13eb6573
MD5 9e5b2f3f3f67168de6aac63b670e99db
BLAKE2b-256 2ae87fbd624a8a7baa7fd815d9693492e48f36ec72afa763b8a0dbe0390f53af

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a7215f7c5de912b364d5cf7c4c66915ccf4acf71aafbb8da62ad346569196e15
MD5 9b34b46ad85ed51e33f6c7059dd48698
BLAKE2b-256 3ceade1c44e520dca3ef63d8119152c866a99479162655082b6d69bb214588d4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 437508ec1ea6e71a77126715ac6208cb9c3e74272536ebfa79be9dd008cfb85f
MD5 aa2155c372645beba5522c607af827da
BLAKE2b-256 b7c48eb220694eb875beae29a47a879f1f5ceff07d6a69628d92265aaef7fcd1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 4fd94acab871afbc845400814134a83512a711e824dc2c9a9776d6123464a221
MD5 55ae59088c63f58e61eeef77554cd46a
BLAKE2b-256 22658396b759f3f2f81f72f235a0a6db8ad416f5aadbf7145069ff109a87d701

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c67f5ced39aff6277dd772b239ef8aa8fc810200a3b42f69ddbb085ea0e18232
MD5 94ce92b695b40a02bbd4f3c531d7a1b6
BLAKE2b-256 6f9bcbdaed45d609e98aa7fa4e11d57fd3ad03ab6746f5d5cfd66375a8c71d3e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6f5c8b901b6d3be63591c68e2612f76ad85af27193d0a88d4d87bb047aeafcb3
MD5 2b1309ad65e4adaae6fb43698b22baf8
BLAKE2b-256 e6b04ab1789a40358b9b97b7d15223c651c52323076197cfefc908870cc66b44

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fc4b1b69a64d337c40fa07a721dae1b1550d90f17973fb348055f6440d597e26
MD5 6c61f760f3481bf96325aa98c5044d58
BLAKE2b-256 1e9a9992a1607cd1c1e0cbc748309c7d2cb8e9cf729b421fd7bc1db3c0450419

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f5921780e7995e9ac3cea41fa57b623159d7295788618d3f2946d61328c25c25
MD5 c62445948ce1d0c0016bc642fb3e3a2e
BLAKE2b-256 c188f634fd1b124db080daaf6f8554cd26361cef3a932d199ab3b4542281a6d6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 dd54dd0355225dc3c1d55e233d510adcccee9bb25d656b4cf1136114b92e7bf3
MD5 b791b039f748fb2992090b2dcc60fe1e
BLAKE2b-256 c5f19ffc8640d6b98a6583897a355dfb059bc690660bd48b725f858095b8a6d5

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 950d1dfd2927cd45c9bb2927933926718f0a17792841e651d42f4d1cb04a5c1d
MD5 519cbb8d225c5a534038c01130deaf6d
BLAKE2b-256 109bc99eb769f1abe694902e917ad4d3408932e90fe6008f6684b68bb9ee4b21

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6b8258846e56b03230fa733d29bb4f9fb1f4790ac97d1ebe9faa3ff9d2850999
MD5 a4204d28c50773bb0e54b23144511e9b
BLAKE2b-256 cddb2af1738313e127bcf0601a36d5add0914b92d336b5ac0d1e169432d9ceab

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9e1142c8d35fa6f3af8150d02ff8edcbea3723c851d889e8b2172e0d1b99f3f7
MD5 4875b83e6531e1202b6a7f38fdf45417
BLAKE2b-256 1ce2f4e1b54c30d4b212e8e68ef5bdab001bd7ab2203347dbff48bf023d779b6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e182ea5c809e7ed36ebfbcef4bb1808e213d27b33c036007a33bcbb7ba498356
MD5 d93f373e0b0b76d84625475eeb6c815b
BLAKE2b-256 a756a6d3a067362e0db89f13706fee9170d8818b81886771e54f874afa7569da

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp312-cp312-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 f3effbe9c677658b3149da0d2778a740a6b7d8190c1407fd0c0770a4e223cfe0
MD5 4099dad7c7046250c1131fa4854c34bc
BLAKE2b-256 221af65e5fa3d1955c950942c1502c6223a311c19ae0834e513243b984850baf

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 bf58ba21df06fc8aeef3056fd137eca0a593c2f5c82923a4524d251dc5f3df5d
MD5 68c3013c9939c7aacce4241a23f48308
BLAKE2b-256 f379c0cb5dd3cc2504533c47ea6e566ea7df283e431a35388b6eb0921b1a6727

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.4.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.6

File hashes

Hashes for rapidfuzz-3.4.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 c56073ba1d1b25585359ad9769163cb2f3183e7a03c03b914a0667fcbd95dc5c
MD5 73da2e4b04f1ef2a34c9dafcd41bcb51
BLAKE2b-256 1cae697a0753697a85d0802aa2910a4893030a65135202a605539a53119c5515

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 929e6b71e5b36caee2ee11c209e75a0fcbd716a1b76ae6162b89ee9b591b63b1
MD5 44d27bce319b1f84eca7953fc548d2b1
BLAKE2b-256 8cc46ca934cb7a6d8e41d5a0b7a66478bac582fb69260976b1f521780987f289

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp312-cp312-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp312-cp312-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 1a733c10b1fcc47f837c23ab4a255cc4021a88939ff81baa64d6738231cba33d
MD5 7c5108723435f6f2fc8f644bb9ae1fa7
BLAKE2b-256 2d786b867bffe7214e9e671fdd59a17049e26b1ebc0db5ea3f7c66af06236844

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp312-cp312-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp312-cp312-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 bfe14711b9a7b744e242a482c6cabb696517a1a9946fc1e88d353cd3eb384788
MD5 dac3a1cd9594a744dc5fb1d9dcf7bb90
BLAKE2b-256 63685ad97c6b3c003880bf32fa0456e0da9ad586f5105fc880f4e73c0b04de4b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 37d5f0fbad6c092c89840eea2c4c845564d40849785de74c5e6ff48b47b0ecf6
MD5 2f867851cfd2260bfdeeeaab210627ab
BLAKE2b-256 602df1073e5fa3856fe53f592e6c7abe4afed3e5f313b8692711261c02b48cb3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 734046d557550589edb83d5ad1468a1341d1092f1c64f26fd0b1fc50f9efdce1
MD5 483122457f49ad74a4ecd2043a315521
BLAKE2b-256 8122e2a6ab38bb63306e69562db2f7a7e38cc2438a7fc7fece4112ddf97777d3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3456f4df5b8800315fd161045c996479016c112228e4da370d09ed80c24853e5
MD5 607f30b055fc7b838623772afaf265f3
BLAKE2b-256 e5bcf1ab83d328ca23710c6aef680e39dea87b22573c472e9772eaa4411cf16d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 0b9197656a6d71483959bf7d216e7fb7a6b80ca507433bcb3015fb92abc266f8
MD5 6873ccd934cdce0773225f547545df46
BLAKE2b-256 c7520f6297d4e17e939356319721467919c4dec4a163307c22227a0fe052e2fb

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 1276c7f50cd90a48b00084feb25256135c9ace6c599295dd5932949ec30c0e70
MD5 8c3eb318b647c9e7f5b40cb73b862594
BLAKE2b-256 f5d7f010057358f0a655775c39e734e0cc75ef4a5337d7e6e919b44879acd069

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 805dc2aa3ac295dcbf2df8c1e420e8a73b1f632d6820a5a1c8506d22c11e0f27
MD5 31852d48df2198fb7d57b70d368eeb4b
BLAKE2b-256 f311bf0051085272a559c1ea0577e502104393d308ddb6c074b668aa981b6ef8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b81b8bc29114ca861fed23da548a837832b85495b0c1b2600e6060e3cf4d50aa
MD5 6304b8ef7b3485d9e98128cc7136d129
BLAKE2b-256 5847d0f82f3a907de4757a8c0f7c30db828a6b3e350afc38dba0419e1b47f511

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b6fe2aff0d9b35191701714e05afe08f79eaea376a3a6ca802b72d9e5b48b545
MD5 2ed0f476ce0b6a612c942d0f8ec68d56
BLAKE2b-256 f981e84e8dcc2aba375d5f5de75f87099ae8b279cce56855c10347891b46fcf3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a7d6a9f04ea1277add8943d4e144e59215009f54f2668124ff26dee18a875343
MD5 ee5c9f680a4f5d132ac685c96baf0501
BLAKE2b-256 544f82e2838a578a4bce4d8e1ac12bcf06f69f56fa64a9805523fec3c31460dc

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7f497f850d46c5e08f3340343842a28ede5d3997e5d1cadbd265793cf47417e5
MD5 41cbc6749fcc71f8f9d034ae87e85db7
BLAKE2b-256 b4179243ff45e78b4d7fa08fa877f3b766b16b752e4255d811cd48dedacd0efc

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp311-cp311-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 bd10d68baabb63a3bb36b683f98fc481fcc62230e493e4b31e316bd5b299ef68
MD5 95499307690c46a317f95c32428f388a
BLAKE2b-256 1400eca3645381e6a0c3c0cbe60ae36fa2f505fd36aebcfcf82dec2bab3bb2bd

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 bd50bc90167601963e2a90b820fb862d239ecb096a991bf3ce33ffaa1d6eedee
MD5 610d0771ef285c284b78f6f9243ef93d
BLAKE2b-256 76dc158b4f30a50ef7c283c7834419928da6400ed299ccf69dfc653d5c4f20fa

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.4.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.6

File hashes

Hashes for rapidfuzz-3.4.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 c0150d521199277b5ad8bd3b060a5f3c1dbdf11df0533b4d79f458ef11d07e8c
MD5 58744cdd5bddb5efcd2419dcb6772a2d
BLAKE2b-256 3a8252459e2f05d73f4dcfc9cd511ca01a1e63361acefa811b31ad28407ecca8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0d8c6cb80b5d2edf88bf6a88ac6827a353c974405c2d7e3025ed9527a5dbe1a6
MD5 5ff9724f4b9c8da368c860cfa0d2a91c
BLAKE2b-256 bb44999bf1275685b4f8c8edc504f721a00cf8d40dafd95302ee3729885570f6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 a80f9aa4245a49e0677896d1b51b2b3bc36472aff7cec31c4a96f789135f03fe
MD5 5b558059936d1b76d970c6e30c96084b
BLAKE2b-256 0c757c6fda3e29dbe8826924e3c194b6c5f30a96f2b2ad0b2e81722c7cef6a5e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 ab981f9091ae8bd32bca9289fa1019b4ec656543489e7e13e64882d57d989282
MD5 de8371ec067dfe2b8fde6a5b18c9d461
BLAKE2b-256 70e99626e0adcea63f4f992c85bfd7a3a908888d604b5206a46517e11b66fdec

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ef30b5f2720f0acbcfba0e0661a4cc118621c47cf69b5fe92531dfed1e369e1c
MD5 25b3b5a506d47e972ad7d8ffeb327d05
BLAKE2b-256 60633844e5799de46ffb9c7aadecd5089ac2842009a7842d4426287516fa0962

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 c2a564f748497b6a5e08a1dc0ac06655f65377cf072c4f0e2c73818acc655d36
MD5 49e704fb37b5133e7b5b0f52e1b22a1b
BLAKE2b-256 16c0003fb9c188224117b0f07e7eaf5020bb0d16fc1b6313741f13bb63868993

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 23b07685c21c93cdf6d68b49eccacfe975651b8d99ea8a02687400c60315e5bc
MD5 e1910ca68df3058f1fdec30b9017d9d6
BLAKE2b-256 27244aeecf7f516cb41187e83e5fd80839b6dffc165f72b89259e6bb9a63d032

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 5b9a7ab061c1b75b274fc2ebd1d29cfa2e510c36e2f4cd9518a6d56d589003c8
MD5 d67aa41882bc3a4b1bed5fd3600eef7f
BLAKE2b-256 5ccd15dc66dd42eba764d2b943ae24a97866abdfc28c09bc1814b98f9f4ecb3b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f7f5ea97886d2ec7b2b9a8172812a76e1d243f2ce705c2f24baf46f9ef5d3951
MD5 2041451e69da4445f3c7e5bd5cc6436b
BLAKE2b-256 f8469ed560dcc21aaa6ea290e8c1379da5c434dd77473b2d04f1768ceb74330d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b38c7021f6114cfacba5717192fb3e1e50053261d49a774e645021a2f77e20a3
MD5 34a6e36cabd20cbe27bb14ae862926fd
BLAKE2b-256 ac446ef9c371cc1f36aac9f73021b935aa511cddf165ba814299a5e6c2878c15

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ed3da08830c08c8bcd49414cc06b704a760d3067804775facc0df725b52085a4
MD5 4b2fcbc8a12c485a98bbd621366fd152
BLAKE2b-256 64e0175fe0a50b4c6936f8821319a6f8c5f451d0b55e05e1340faf4a77a35aa6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8eb33895353bfcc33ccf4b4bae837c0afb4eaf20a0361aa6f0800cef12505e91
MD5 9af02728afb357f235f64f79f6321cd7
BLAKE2b-256 759dad0dd14113da87f55f879eb6f8bdf77c7e8b9b593a3389c9fe84046dbe3e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 da2764604a31fd1e3f1cacf226b43a871cc9f28844a3196c2a6b1ba52ae12922
MD5 0a9d5ee3a1d44782c0ddf712199dc56f
BLAKE2b-256 56b31e315a4e4f1520852e7e0593e03e46af2d4147b1e9f7617e5c8bf910b21e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 66ff93b81b382269dc7c2d46c839ce72e2d2331ad46a06321770bc94016fe236
MD5 3e7c21718d05beeb9357aa92e07ea63b
BLAKE2b-256 210d81e232b5c41fb9bd2ab21adb853e91ef9471c9980ed62e038035273534bb

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp310-cp310-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 3af0384132e79fe6f6370d49347649382e04f689277525903bef84d30f3992fd
MD5 52a3559145f1d36a1f6d8cfa3609efa7
BLAKE2b-256 6771ef95130326ff25145a2230957fd8c25126991786c04413f438dcf9d0cfe9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 124578029d926b2be32d60b748be95ee0de6cb2753eb49d6d1d6146269b428b9
MD5 963333430a1ef188559146ff67bc5888
BLAKE2b-256 db1d8180e5b1c571b7821bcb113cf8d560b0c0f7003aa367f232543402f8aa33

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.4.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.6

File hashes

Hashes for rapidfuzz-3.4.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 c7f4f6dac25c120de8845a65a97090658c8a976827ac22b6b86e2a16a60bb820
MD5 2189ff53a0163f0cc44470db68e62fe3
BLAKE2b-256 86603c69c3a2d60016fe81386ea66c17ce7b0e63f1decb380c998a7f342c5133

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f1e91460baa42f5408f3c062913456a24b2fc1a181959b58a9c06b5eef700ca6
MD5 eb83db9435d84b5b29d96adf99fd148c
BLAKE2b-256 f5f8626e1095a12f992fe23c0c97c2291f60bc9e084d7590fb979064d66816df

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 d15c364c5aa8f032dadf5b82fa02b7a4bd9688a961a27961cd5b985203f58037
MD5 97d5a889fae980d58a73ac0c721af13b
BLAKE2b-256 0e022bc0e30186728b991125ebd22d6bd9421cc197e6d42616b9b37c7d82adfd

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 46efc5e4675e2bd5118427513f86eaf3689e1482ebd309ad4532bcefae78179d
MD5 47f4887423b14c65e092f18aa3122d17
BLAKE2b-256 54f7e7d11907d99493630d4884840a364db4814000eb35098bf5379a08fa9350

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 3db79070888d0dcd4f6a20fd30b8184dd975d6b0f7818acff5d7e07eba19b71f
MD5 71ab895207bad7b9c89f7afc1d0d0d85
BLAKE2b-256 fadeaf8e7e1c2882aadb385f77b08746f8628fc030da3e8b2658fcde12eb5780

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 51d47d52c890cbdb2d8b2085d747e557f15efd9c990cb6ae624c8f6948c4aa3a
MD5 14468b8a68873286c17d0ba5c715e3f8
BLAKE2b-256 50ae6b3e5173cfc082f728b44b3adc23332db08fec96dc65d0c3a7c9817e8e5c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 55efb3231bb954f3597313ebdf104289b8d139d5429ad517051855f84e12b94e
MD5 4c99ad50a1cc49bbc99d18c120867fac
BLAKE2b-256 f3d21a45332198da8ddb904ef584a79a5258dda6e59f9be0ee16540cbb0a16c1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 83387fb81c4c0234b199110655779762dd5982cdf9de4f7c321110713193133e
MD5 f9dc146061503989322037295c3a1b0f
BLAKE2b-256 2979d5cb133bf34b347692a071ee77fe27d6669dc7a5d2d163b96c7dc20fcdc2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a716efcfc92659d8695291f07da4fa60f42a131dc4ceab583931452dd5662e92
MD5 988fcb079a03329e08577c2602ad5429
BLAKE2b-256 eebedea137782da21a26c16d98ae46367d85fca9aa5c57286532b33a1f461385

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d1d81d380ceabc8297880525c9d8b9e93fead38d3d2254e558c36c18aaf2553f
MD5 1e2e62904a8d36aa8d44fbca65bde196
BLAKE2b-256 afe3f360869ee60f122fdea3ef3de12b579889e33b3f1949776387f62272234b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 87409e12f9a82aa33a5b845c49dd8d5d4264f2f171f0a69ddc638e100fcc50de
MD5 fc695c008982da74d4985d2101ecb921
BLAKE2b-256 ad038ebc8b378476c7b2f7e82bf2c65d6ee88da6ee9be4b3c25d52472e0aacf5

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6286510910fcd649471a7f5b77fcc971e673729e7c84216dbf321bead580d5a1
MD5 a922355661d74af0e111f4c821b038d4
BLAKE2b-256 eb50656112120753994ff55f0e1cc5d15ed7a43c5a056fb75224a274daeda001

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 59f851c7a54a9652b9598553547e0940244bfce7c9b672bac728efa0b9028d03
MD5 fde42bd9231e31b17714591821a70ad4
BLAKE2b-256 984632a8f50ccebc25839e6f10f379354fefe503a937b1fe8ff0e87c365163aa

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 1438e68fe8869fe6819a313140e98641b34bfc89234b82486d8fd02044a067e8
MD5 fd242fff7b5ddd0bb1820f71f6494b10
BLAKE2b-256 394dd50db2c7a4fb3b95a8676f14b706e9d72ea1ba04ddca567e0ceeeb089ec6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: rapidfuzz-3.4.0-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 853.9 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.6

File hashes

Hashes for rapidfuzz-3.4.0-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 63933792146f3d333680d415cecc237e6275b42ad948d0a798f9a81325517666
MD5 3fba4a936e7a9b8e9311ae49a83a1dce
BLAKE2b-256 3c9936639efc05c0691552a7d0ee2a94ec724d3c43cb7f89e1f7781a22196927

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.4.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.6

File hashes

Hashes for rapidfuzz-3.4.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 233bf022938c38060a93863ec548e624d69a56d7384634d8bea435b915b88e52
MD5 04286567b3d7ab208ff00e97af82de56
BLAKE2b-256 2aefdbc5a182e2259134d84e61ef31dd3f4e7e11686eaabfa9c9e5c5ae1675d2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.4.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.6

File hashes

Hashes for rapidfuzz-3.4.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 53bbef345644eac1c2d7cc21ade4fe9554fa289f60eb2c576f7fdc454dbc0641
MD5 89d08bc44ce34f8b1e6dcaeb123f2513
BLAKE2b-256 5cac682acf51eff9bc0ce1a419b5aa41bd258bcb2e5692e74cfde75c1eb98cd4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d904ac97f2e370f91e8170802669c8ad68641bf84d742968416b53c5960410c6
MD5 0411b6bd20e33118946a790456476352
BLAKE2b-256 66e6aefc2ccb01650ce634c8f97cc8ec8b5311705a96ce3ffd6d70bfbd4ab005

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 8b38d7677b2f20b137bb7aaf0dcd3d8ac2a2cde65f09f5621bf3f57d9a1e5d6e
MD5 0d90b5239cde1dc582e94a1ac9579902
BLAKE2b-256 42b97c62e2d370e807e115c430b891b4f0104865fd4cc92ffec7453b8df6e443

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 2e49151572b842d290dcee2cc6f9ce7a7b40b77cc20d0f6d6b54e7afb7bafa5c
MD5 fa949bdadd86bdb936c96a641473fb75
BLAKE2b-256 e643ae78ddcc9926e3080992724e4c32462fa73f5a45ce44aecc44b87de848af

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a0750278693525b5ce58d3b313e432dfa5d90f00d06ae54fa8cde87f2a397eb0
MD5 9898f1d9bf0d4c8304dc497ee2c7cbc1
BLAKE2b-256 de8828370a5807d113d8b597242ed9d52fb799b1f09fcd0a1a4210734ddf17dc

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 75d1365387ec8ef2128fd7e2f7436aa1a04a1953bc6d7068835bb769cd07c146
MD5 4ab8a5613fc8fda8a13f9f1090d92d66
BLAKE2b-256 24faf2904b70970de9874872df58f7924017577ee42c4ce433190370a03358e6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cc3efc06db79e818f4a6783a4e001b3c8b2c61bd05c0d5c4d333adaf64ed1b34
MD5 8b659f121e7640a5bf74f4825838c226
BLAKE2b-256 c5ad514f784761ae3603708f0490d9db928a724ff1a428e474d70d4469b7aeca

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 50ad7bac98a0f00492687eddda73d2c0bdf71c78b52fddaa5901634ae323d3ce
MD5 ee9f14dce2fc71fbb9cb06c888006faf
BLAKE2b-256 7e9493c62ea9d0b27d79ffba9e0520a1e632d48eb2940b674cec191738ebb416

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 d3198f70b97127e52a4f96bb2f7de447f89baa338ff398eb126930c8e3137ad1
MD5 836190c0d40da7220230c97e72271249
BLAKE2b-256 2585a9bdbc6d9d0ecbcda7c9f6e21b0bfd4c9085cc568fa8007dc6cd0764c963

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 01d64710060bc3241c08ac1f1a9012c7184f3f4c3d6e2eebb16c6093a03f6a67
MD5 58d14843ec9477d59e6dc8792e0886a8
BLAKE2b-256 87fa8b46b5ef1f699b7fb328759c633ef1ddc52fc5314e15d82eb442a5e95220

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 02afbe7ed12e9191082ed7bda43398baced1d9d805302b7b010d397de3ae973f
MD5 0caab4d1c5ea10e04499b4c7e9c9b255
BLAKE2b-256 86568bf83fbbcfd420739b67c6896e03f0b70f540b540b82ce63443b7de74051

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c006aa481d1b91c2600920ce16e42d208a4b6f318d393aef4dd2172d568f2641
MD5 2d2480c8ac48a6eb3182c4cf5de0edd1
BLAKE2b-256 87cf0b89f2be75f68c6581befd2e729f2a2025dc2d34418c84c875de25c29101

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d188e8fb5a9709931c6a48cc62c4ac9b9d163969333711e426d9dbd134c1489b
MD5 c47dcb432ae0c263ba48e31dddf8c21d
BLAKE2b-256 088a9f55c31114327e5f790c0b3a46b8e5425cc49ca39c365ea71475a48fc275

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 61f16bb0f3026853500e7968261831a2e1a35d56947752bb6cf6953afd70b9de
MD5 9c9c85136356cc4aa9500b640fbcc7ac
BLAKE2b-256 f9643f3bb787b0dfdaada905067730d2aea43c93345873a51e79aa7c4ea422ff

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.4.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.6

File hashes

Hashes for rapidfuzz-3.4.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5fe3ef7daecd79f852936528e37528fd88818bc000991e0fea23b9ac5b79e875
MD5 250959df964f66ebe05699a73c403f4a
BLAKE2b-256 9e5e2ab2e046630c9dd18bdb78d3884126b2bf235024425a19ab982d838ea7b2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.4.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.6

File hashes

Hashes for rapidfuzz-3.4.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 74b9a1c1fc139d325fb0b89ccc85527d27096a76f6ed690ee3378143cc38e91d
MD5 91e0702edf2d98df444cbe42c177aaf9
BLAKE2b-256 9a145535b9dd31eeb0835be03432a539db1e7a7f5c14d64975724f58a166bddc

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b05c7d4b4ddb617e977d648689013e50e5688140ee03538d3760a3a11d4fa8a2
MD5 f67aaeaae2376c982c6ff831a0229cae
BLAKE2b-256 d8a0abb9162124d6f5542b8c4bacd994361e0b6a7b72051bec11cf7666d87072

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 0df66e07e42e2831fae84dea481f7803bec7cfa53c31d770e86ac47bb18dcd57
MD5 bc15b13b51f22a2b13329685765a6ab1
BLAKE2b-256 5e8404a15b8afe6d4ae6111f2d0974ccfe8153a55950490e3cc8e76673760456

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 f813fb663d90038c1171d30ea1b6b275e09fced32f1d12b972c6045d9d4233f2
MD5 05a964cadb3df43e479383895bad94cb
BLAKE2b-256 afc1e287a7762469d7470a219684a3cd915a9ec2a2f74afc6789039f8d29bf9c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e14799297f194a4480f373e45142ef16d5dc68a42084c0e2018e0bdba56a8fef
MD5 7885d2a66d028e0d4f51cd7f29c3ba8d
BLAKE2b-256 7158f621aabb39fa8e307106b665a868be6f567d9248e369bfe8ce99833082e2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 8756461e7ee79723b8f762fc6db226e65eb453bf9fa64b14fc0274d4aaaf9e21
MD5 83cffc7a6afed9a2cd6ad252ea4cf983
BLAKE2b-256 160b3cf15856df169c884f29f33d49e5c3ebf1d3bd17131e13beeda5b613c8e3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6d38596c804a9f2bd49360c15e1f4afbf016f181fe37fc4f1a4ddd247d3e91e5
MD5 aa5187619ff487752040e0286d422b80
BLAKE2b-256 12163d61acedcea0ca08c8ae3de0123bbaf141502a5b055305ca4ee4cf996b10

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 52c6b7a178f0e800488fa1aede17b00f6397cab0b79d48531504b0d89e45315f
MD5 9f8db14d3e59be4aa7db88da5c323b01
BLAKE2b-256 c9f9d97d5e19124e75d2a1116b9a3298cea7b9dd17e789742c265ff0d9c49aba

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f71454249ddd29d8ba5415ed7307e7b7493fc7e9018f1ff496127b8b9a8df94b
MD5 0e68c97d6b23b2fc4417d832515a8eaa
BLAKE2b-256 7cc320cbeab50c5aeca079288e7f7dc6007c89784437fd5dcf2a392c94fe9e87

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1ebee7313719dfe652debb74bdd4024e8cf381a59adc6d065520ff927f3445f4
MD5 396e89aa21ed04ded4b51fb715ce45f6
BLAKE2b-256 63591023503b2471a65c9b7832bf0ccd655f366e26a02313131c7fae6be5b195

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9f295842c282fe7fe93bfe7a20e78f33f43418f47fb601f2f0a05df8a8282b43
MD5 d57d029d0d30e35910e1e89f3bd0d9da
BLAKE2b-256 8f227fb27f5c22ef7442ee2027b454ea45b8ca2813b692f5b90a3419047a9cb7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f0075ff8990437923da42202b60cf04b5c122ee2856f0cf2344fb890cadecf57
MD5 407c59ee62d6121e9d2feba283737f72
BLAKE2b-256 89df05f3f9a76d020bdf1695f4019ac9d6acc78146b2e882c77b530e1b20f2af

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bbb05b1203f683b341f44ebe8fe38afed6e56f606094f9840d6406e4a7bf0eab
MD5 1bcefd64e70f51d9f85424114f68a822
BLAKE2b-256 a311eb9be59b08d40447082e103c2d7bf7d377c3e543e761945d3068a7d7f63f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d0bda173b0ec1fa546f123088c0d42c9096304771b4c0555d4e08a66a246b3f6
MD5 5866b6338503eef7fd1f4fc6acad4740
BLAKE2b-256 0f6174c5a627178c061d6dfbc143f43cc86a8429f324ac8cd8cfcf2c089742af

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c92d847c997c384670e3b4cf6727cb73a4d7a7ba6457310e2083cf06d56013c4
MD5 f60d604970332de86d28ba9eff2588fb
BLAKE2b-256 a36b50a8e1cc04eb525a17b9e229ef68d536c875d754e784917981dc25afe2a1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.4.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.6

File hashes

Hashes for rapidfuzz-3.4.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 8f5d2adc48c181486125d42230e80479a1e0568942e883d1ebdeb76cd3f83470
MD5 73f825deb20e8db36c8714995e5c6398
BLAKE2b-256 6bafe0e7ee62b15b21b226aa7c512e272d81867394162cdf14c5629b595a3dd8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 01013ee67fb15608c8c5961af3bc2b1f242cff94c19f53237c9b3f0edb8e0a2d
MD5 dbd72e79af62597192e41a3f3c0f4288
BLAKE2b-256 c1d2801307016cf0fff0a48e79ae6614546f5d2a248cb890ef5ff5e0c5968803

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp37-cp37m-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp37-cp37m-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 9814905414696080d8448d6e6df788a0148954ab34d7cd8d75bcb85ba30e0b25
MD5 7bb53026dcdaccd46bc24bbd182df4d2
BLAKE2b-256 9917d4be5f5e42030ef16e978ea998e046336952297952a0990dca0ccf7e5a33

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp37-cp37m-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp37-cp37m-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 712dd91d429afaddbf7e86662155f2ad9bc8135fca5803a01035a3c1d76c5977
MD5 e7b328966f407d5af5aeca8dac56d2a0
BLAKE2b-256 bce090177b7009048a890a1a392ffef9bb02fed5f0f67107083aa31a68a0ce8e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 273c7c7f5b405f2f54d41e805883572d57e1f0a56861f93ca5a6733672088acb
MD5 ed87d5dde5a343753f9b8212bfd55d06
BLAKE2b-256 ad60b3819e228953236531cfe729fa483d46d2483bbae71da227b749066eef4e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 cfdc74afd93ac71270b5be5c25cb864b733b9ae32b07495705a6ac294ac4c390
MD5 becc943c1ca2d9dd4839e9e8071c4321
BLAKE2b-256 df7fbbd6e9d526f1ff0b2abb65867568af115097ed5672dc0b2955a03a35ab16

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f723197f2dbce508a7030dcf6d3fc940117aa54fc876021bf6f6feeaf3825ba1
MD5 fa407550697fe6bfcd369304d0c55dbf
BLAKE2b-256 df68e3e734e8d96d5a091ecfd793c4bf70f5e2bb0c4ce18b6213e090b3dae0c8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 76f4162ce5fe08609455d318936ed4aa709f40784be61fb4e200a378137b0230
MD5 096b762eb1053ac061e9ffaf0a88abd9
BLAKE2b-256 457e2c427ab2c7d151f74d15d3ae0d193c516bbb224f8fb980562f627de32b1b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 93ceb62ade1a0e62696487274002157a58bb751fc82cd25016fc5523ba558ca5
MD5 20a86be5665a20f3805bdad512c51808
BLAKE2b-256 f445ac0b521a108782fe45b7ee2e6b8e548c294e27ab9612b80fea36df3f49b8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2543fd8d0fb3b1ac065bf94ee54c0ea33343c62481d8e54b6117a88c92c9b721
MD5 82eb1e220a6ab216fb643f2229e7083b
BLAKE2b-256 b9bef3c56894e761560722d1b48bcff1a6d60610337ed2e0b4200dc83b529453

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1bafbd3e2e9e0b5f740f66155cc7e1e23eee1e1f2c44eff12daf14f90af0e8ab
MD5 d653be0dcbbf92186607cefc1862b68e
BLAKE2b-256 241c89c7fd128040cc3ecd8b36d500ed43cd0c90a1886ec4afdc2248cca4c858

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.4.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.4.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ed0d5761b44d9dd87278d5c32903bb55632346e4d84ea67ba2e4a84afc3b7d45
MD5 61bfeaa7fba6497d80b105ab80dd489c
BLAKE2b-256 56bcf68c089d9f18546213be9f34b38ded41266ee1b86fb77f7a5b8539a11e5d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page