Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation Code Coverage GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation
  5. It can be largely used as a drop in replacement for fuzzywuzzy. However there are a couple API differences described here

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.
Note that from RapidFuzz 3.0.0, strings are not preprocessed(removing all non alphanumeric characters, trimming whitespaces, converting all characters to lower case) by default. Which means that when comparing two strings that have the same characters but different cases("this is a word", "THIS IS A WORD") their similarity score value might be different, so when comparing such strings you might see a difference in score value compared to previous versions. Some examples of string matching with preprocessing can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and distance.

Simple Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("this is a test", "this is a test!")
96.55172413793103

Partial Ratio

> from rapidfuzz import fuzz
> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.9090909090909
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> from rapidfuzz import fuzz
> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
84.21052631578947
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Weighted Ratio

> from rapidfuzz import fuzz
> fuzz.WRatio("this is a test", "this is a new test!!!")
85.5

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.WRatio("this is a test", "this is a new test!!!", processor=utils.default_process) # here "this is a new test!!!" is converted to "this is a new test"
95.0
> fuzz.WRatio("this is a test", "this is a new test")
95.0

> # Converting string to lower case
> fuzz.WRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.WRatio("this is a word", "THIS IS A WORD", processor=utils.default_process) # here "THIS IS A WORD" is converted to "this is a word"
100.0

Quick Ratio

> from rapidfuzz import fuzz
> fuzz.QRatio("this is a test", "this is a new test!!!")
80.0

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.QRatio("this is a test", "this is a new test!!!", processor=utils.default_process)
87.5
> fuzz.QRatio("this is a test", "this is a new test")
87.5

> # Converting string to lower case
> fuzz.QRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.QRatio("this is a word", "THIS IS A WORD", processor=utils.default_process)
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 76.92307692307692, 1), ('New York Giants', 64.28571428571428, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
('Dallas Cowboys', 83.07692307692308, 3)

> # With preprocessing
> from rapidfuzz import process, fuzz, utils
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2, processor=utils.default_process)
[('New York Jets', 100.0, 1), ('New York Giants', 78.57142857142857, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio, processor=utils.default_process)
('Dallas Cowboys', 90.0, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

This version

3.5.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-3.5.1.tar.gz (1.5 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-3.5.1-pp39-pypy39_pp73-win_amd64.whl (1.6 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.5.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.5.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.5.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.5.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.5.1-pp38-pypy38_pp73-win_amd64.whl (1.6 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.5.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.5.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.5.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.5.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (2.5 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.5.1-cp312-cp312-win_arm64.whl (855.9 kB view details)

Uploaded CPython 3.12 Windows ARM64

rapidfuzz-3.5.1-cp312-cp312-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.12 Windows x86-64

rapidfuzz-3.5.1-cp312-cp312-win32.whl (2.1 MB view details)

Uploaded CPython 3.12 Windows x86

rapidfuzz-3.5.1-cp312-cp312-musllinux_1_1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

rapidfuzz-3.5.1-cp312-cp312-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ s390x

rapidfuzz-3.5.1-cp312-cp312-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.5.1-cp312-cp312-musllinux_1_1_i686.whl (5.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

rapidfuzz-3.5.1-cp312-cp312-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

rapidfuzz-3.5.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.5.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

rapidfuzz-3.5.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.5.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

rapidfuzz-3.5.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.5.1-cp312-cp312-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

rapidfuzz-3.5.1-cp312-cp312-macosx_10_9_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

rapidfuzz-3.5.1-cp312-cp312-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.5.1-cp311-cp311-win_arm64.whl (860.6 kB view details)

Uploaded CPython 3.11 Windows ARM64

rapidfuzz-3.5.1-cp311-cp311-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-3.5.1-cp311-cp311-win32.whl (2.1 MB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-3.5.1-cp311-cp311-musllinux_1_1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-3.5.1-cp311-cp311-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-3.5.1-cp311-cp311-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.5.1-cp311-cp311-musllinux_1_1_i686.whl (5.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-3.5.1-cp311-cp311-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-3.5.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.5.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-3.5.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.5.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-3.5.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.5.1-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-3.5.1-cp311-cp311-macosx_10_9_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-3.5.1-cp311-cp311-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.5.1-cp310-cp310-win_arm64.whl (859.7 kB view details)

Uploaded CPython 3.10 Windows ARM64

rapidfuzz-3.5.1-cp310-cp310-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-3.5.1-cp310-cp310-win32.whl (2.1 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-3.5.1-cp310-cp310-musllinux_1_1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-3.5.1-cp310-cp310-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-3.5.1-cp310-cp310-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.5.1-cp310-cp310-musllinux_1_1_i686.whl (5.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-3.5.1-cp310-cp310-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-3.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.5.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-3.5.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.5.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-3.5.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.5.1-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-3.5.1-cp310-cp310-macosx_10_9_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-3.5.1-cp310-cp310-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.5.1-cp39-cp39-win_arm64.whl (861.8 kB view details)

Uploaded CPython 3.9 Windows ARM64

rapidfuzz-3.5.1-cp39-cp39-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-3.5.1-cp39-cp39-win32.whl (2.1 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-3.5.1-cp39-cp39-musllinux_1_1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-3.5.1-cp39-cp39-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-3.5.1-cp39-cp39-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.5.1-cp39-cp39-musllinux_1_1_i686.whl (5.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-3.5.1-cp39-cp39-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-3.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.5.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-3.5.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.5.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (5.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-3.5.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.5.1-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-3.5.1-cp39-cp39-macosx_10_9_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-3.5.1-cp39-cp39-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.5.1-cp38-cp38-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-3.5.1-cp38-cp38-win32.whl (2.1 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-3.5.1-cp38-cp38-musllinux_1_1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-3.5.1-cp38-cp38-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-3.5.1-cp38-cp38-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.5.1-cp38-cp38-musllinux_1_1_i686.whl (5.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-3.5.1-cp38-cp38-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-3.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.5.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-3.5.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.5.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (5.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-3.5.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.5.1-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-3.5.1-cp38-cp38-macosx_10_9_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-3.5.1-cp38-cp38-macosx_10_9_universal2.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file rapidfuzz-3.5.1.tar.gz.

File metadata

  • Download URL: rapidfuzz-3.5.1.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.6

File hashes

Hashes for rapidfuzz-3.5.1.tar.gz
Algorithm Hash digest
SHA256 24d7b6ba410f0fdcc1465d8d396929b724e361a0ce4a01e0180c90443020a38c
MD5 6e8cbf86c9e0025827e77070bc943d41
BLAKE2b-256 fae6ad5adae7965c95d5f3c7882d5106f2ac175308d247152b03f4d6ff48db7e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 3574ccdd4dde2d5a028777508baa16a5e57ec7789757ecc4b5081db5eeb43086
MD5 89e890669d6e5e9bf9a3d44696495744
BLAKE2b-256 c629500ae4e87c3ca1cca5a8221ec870d1925c4537937318636c04695ddf3a44

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f01459fef117a7bf1d19de3c983fb53ff30dcdddbe7025d2fcd34e74b0c4f63f
MD5 145cd1bdb5eff178a0ed8a4ab231abb8
BLAKE2b-256 c3dea9ecf313505e79a0295dcc556b23b9d3ac50de46f7565a563eac02e71ae0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e7ea0e0b990c666026bb65c0a496734689e6719329682fae494412566c55a850
MD5 746721733527b65102e4bc884fa0c1bb
BLAKE2b-256 87439499a6ed6cf18868d354f067c8a36c78214fa69bcbbcc1a6246e2b5b40b0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d4958141f6cf1fccd72d02c8ae41a697dffdc9bee7069615a34635e02bf68188
MD5 cb7d710f67d8b1fb4b3b0757c0d370f7
BLAKE2b-256 49f45e969d71c67e02ce3ac3609e7c5a6c90c24e439d7a3be520c525e36bdec0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f4690b2ba16db2a602a0daeb3651baab6fa3faa1b03061ad068df24c9265a2d2
MD5 93122b4dacdc45a111d080125649ee20
BLAKE2b-256 d6488c9b96404d33994e22a4fa2d470bfca81b2d539d5389199d6948281e74db

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 e42e06feba6c1bb46f34d3dc8f4970e05af3612f611eb8c3113bcc83a8720217
MD5 01f277ca08d358ca4b7d745f123da21c
BLAKE2b-256 bcd2a5f1b10a32ef7baba80183fe489fdb4ee03d10cd17745787fba03f8a88a8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 82819a339bb793eb0a80e479fd4a3fe39da2221b973b82770734e3bce930a381
MD5 0c339a61a2215a2e320cca7be0148e85
BLAKE2b-256 a5afb2957be25910cfd5332233ea9db862a01c6cf6c6e38257b949628a94258b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 76412119afea17ab14e6ae9c2552e430456c546994391d81a8e3fdc562e9b053
MD5 dbddd162b3ef58be19e273670b42c61c
BLAKE2b-256 077763e798cb8248ffc526067989810a20ec29e4456cde93a22dfa86be9697bb

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 42de559f120565887b77b2220cebbafb77392b109eeff4376621aa6259f805a5
MD5 cb9e45f1d8d0403c011c7bcc4383853d
BLAKE2b-256 a2bf998a05f6e60a4c93c6903f11ea4b4b7a7d42431f8e64a8c40fc3e3d7496b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0ea16955c1420f27b41037d628d15d31f7613ca05e8db408089978a7bb2938e4
MD5 d1a065c522e3790db681448c1323ddcb
BLAKE2b-256 6fef0a8e0e364701dc927865753efcefcc0c91f093a300eb0f05fe5ea376186c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp312-cp312-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 c995c297f2088bc8d08864f9519aeee067a33d1974e5dd594d5190cd109fca94
MD5 da4375addb576c237a9b0c467e77e3b6
BLAKE2b-256 930acd9feb1c5e9f450c3162f3fdf815ec0211716047b88ba75fd065e81403b5

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 3acf478b9178e8ec1a61d54103a9803e483fe8b684886437969167a98ebab6b4
MD5 773d19a6584e29876dbc77e6a0728ae6
BLAKE2b-256 1a579d213063dff7fae90c59a7f683f4757ffff3de66d3dcf3ea31015b431179

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp312-cp312-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.5.1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.6

File hashes

Hashes for rapidfuzz-3.5.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 f2f782ff110c8a91de0f78ed5c40bed2376a74686d2eca888ca55399ff218829
MD5 63beb5c2e25cff814d6b6509b4b22870
BLAKE2b-256 1365f9e8906c6735823292b465b506ad66909bb22633da7fbbf807066725035d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 457f1dccbbbededaf2873e12bbfdccfa4191bdba7175fd0b7d91e74ae130e4c0
MD5 4b112c1db0c76d8a7a755be6e2373d0f
BLAKE2b-256 72cc42a7f8985a4a9adb4874d3c2e87b5262e10c1efdd2d96570d18f52b30c9f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp312-cp312-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp312-cp312-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 e8d3a67a45668310f3337ad6c29e2449dfe06e63eb401219f5605360d20ff352
MD5 4689d8c5849d321e6283ce9ca64cb92e
BLAKE2b-256 2c75cebbba8231e459250fd38a7e5d8cd967351ca6decbcb3cd9dfa98517e0c5

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp312-cp312-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp312-cp312-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 8b8d9dcf676c17ea81c7aad1ed567450fb7c78e611552c1e783e0fb42e1140d7
MD5 2cca7cc9acf7bb0574093d2575cdd200
BLAKE2b-256 92332222ce299c180c45db0fe62fb838f3fd54c5716bb85e20a02be23a31646b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4e27dbfe90a8ab1cc808fd93c00daff636311c4b0d2649698bacf95513a46896
MD5 e0b6788b3b2d5770f2e16ce37cb8fc4c
BLAKE2b-256 c926d4ac423080a42350af9587fad008362d47cb5063f12b6d1f82f78fbbff35

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 0a0c1567931b6d16c3756a926fda3244a70ef1eac19d61da9e9236db58d2ce59
MD5 102135c5ddcd9a7f4c3b01c567301e06
BLAKE2b-256 92976982e68d2ac29967226bc094783afdc83a2744cb6898192a7ccc1543b46a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 43bdf2c2ba2738731560945bc20e581d15e60dcf556cb44632fb203dc51e0f3e
MD5 c0b00ece3da5672bde328845abab8b80
BLAKE2b-256 881e351e3eb09afc5b382595e1e4d3f5b336fa9a3be0f56c35a3ed1eb77d8f06

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 7a8277d95cacce96a51756bb9397f16e1bd459b40ecbec5517db87cdb4ca4c0d
MD5 e8beae56ce42466ed65f77694153dc8c
BLAKE2b-256 84b3eb7d4f16c9363c9545e2b56506ab99366550d862bcdf981ed1349c8d6e74

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 dc01392f2ee6dfa4d18458297fc49876246f4856fa53df0d4d6c13e6e69d7d6f
MD5 2fb5737fe824a3c8ca41225f27937334
BLAKE2b-256 f4e6c4dfee54bb1175feb1fcd04493d894e904578a123788143a696be5fab570

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4a445a0a1ecee7640746450cbcd62af2c732224c3be6415663efe8e9381a6228
MD5 ff7aeb841a93b9e4b8c757e35530a1d9
BLAKE2b-256 bae9867680460ad25ac377f7bcf35791d3a84b00c6a9a2c8787cf9263b834bcb

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0c64ae19381678dac5227575eb878f058f87c585a10e81a696d03c990ec8e193
MD5 56839d35ea7e967bf9acc3b663cfa710
BLAKE2b-256 be68fe3f1f92b7e4e5edef89372f12a425999f512d358c740c0648dd301ecd8b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cbed1baceca8c63e39c5431486f6f846f20f2b47537ea3910f03a0080e233589
MD5 b3bdbd8cb9e7f596d21b0d6574d2fbdd
BLAKE2b-256 a292b52e7710d17546c7489b581c479eecc98cc5c294172a324e9f52901aeb78

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 16d17aff3ed9d62896ebfe13e9002becd7007cd7302a0feba592b4b40fe8e71c
MD5 a5253e542f3fd78e85a592118bfba9ec
BLAKE2b-256 5fd56d565ba26ad202ee253f612727e5a2518a184dd6b525b699054e33d77b25

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7f0f6756b68516c42cb7e6c06ba0a07a9afc70ec3079ad17a2294158ac8cb938
MD5 7b179f8c24a41a7684ac7143b9743796
BLAKE2b-256 799ea43a2a9cd4e7380ee1acab90cacb3e580b7d4559d2d560f086d41476eb87

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp311-cp311-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 e7c877587cde019b13ebda6bcbec931ae54fa01281decd37c215917740483e07
MD5 74fdeab2ba8ca1166f9c319a20deed11
BLAKE2b-256 5e5aaac69ac1e0996345389345cf960fd4ce548496e7b691f25ce177daa3a10e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 47729839e64ed2c1ae10c0a46c15260d9f5d7e852762ddc8d7da5a5b638b25a9
MD5 5509a62488dff37e52f1114248b672f6
BLAKE2b-256 397ad659dec3c4b4c28cc06f741ce387b9a07d0d9c169a974bd94e57de1cdb5e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.5.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.6

File hashes

Hashes for rapidfuzz-3.5.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 0655b53dc395be4b76f750a5d0b66ac022d835aa2b16eb9f2c3bf27cb99ba317
MD5 0993d2d7c4acbf275fab6455f39eee28
BLAKE2b-256 be3ebb6344e789ad69a273cbaadc99c94280aa9f460916dd57ef1ca5b175bba0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cfbd351d70dc71c1419c198f4d6681d784100815cc736df17e28256e7ef91434
MD5 3a3c6a58fa4c29f0691566945a25a149
BLAKE2b-256 672ba530ee2c7f8df476257abf3c4abe6310d847a5f8e01cc59d4e432febc120

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 786f700143aede224cdb1faa68a387fb6357cdbee20adc7933c4859771e25889
MD5 021216599423328d6ef453f9cc577815
BLAKE2b-256 1812c7af1b75a8f91342e03600fc27b517d8fe573b8f54b8ea6c9d358d77fcb3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 8750dd5dcbcabbd4bd40abca1b7b0da1edddc205bf2d10e793641499485d6779
MD5 33d96a7174ea0c378ec6a141fd6bc4dd
BLAKE2b-256 cde0618db8c03d548eaa180cc4c9b63dcf19b90543bf648bd83535317876bab5

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 7990448f91d5999c5967d773ea0559643830f52b4a1ce6f628b586167aeb0b6d
MD5 5f1c67da1e62a78d758b4925f05b8005
BLAKE2b-256 09d3d6342fb364c921d698a7378b7cf382a282f09dde53013b6481c28110420b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 0ab743fdf89e1aacc0fc1eb0c4aefa3e22875cfc85865ac1a1ab1eb3a85caa0f
MD5 f49402017541a7c905a3f8d2e7a0b107
BLAKE2b-256 b6e4e35b3803bbfc6ef5f334098e873cb30369cde16eb7393afe37abfd7497df

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 406c9f5b71f260a128eab39af2a072db56f959f04cec8cd0f90c37a10f27420f
MD5 de7990ec7e1cab0013002af8c32ce839
BLAKE2b-256 ad7aa93bcc7b92fb424afd3fd4e9865e5670d15f2c66576e6e413c9a13045b8b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 d960a394c5f762e8bd70e67a3e75fa672aab52316afe223d6a96365a33c52b3d
MD5 bfe06c037d790554e2abbae925f27597
BLAKE2b-256 fe65f8ebde67cbaaf88d3ab276af31ea75beebefbfc18814e3c233b121404987

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 0cf01bb9fa437527db848d5bb612d0363be1cb64c8791d9486395ae56a0d69b1
MD5 bd640689f572938e640e2c4ba05cd88e
BLAKE2b-256 29987af36336a7b50db4934d33cd97dc5ee602ba0197d628613d5361451ccac7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 33fc0388777636bb2d0686e8e59dbdfe45ba0b41a02472c82f3592559033dd5f
MD5 858d20e48bb6236992f66be09be9cba0
BLAKE2b-256 117bbf91bc1f081fc6970f643bae78cc777cd00fd36e03439b17e57b5c890e53

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1870124c1cbefa2624464e76eeafa45acb15fe97c60db3ba06c1b0d20d580a4b
MD5 8b106f6a14b719f933b99ac2aa65924a
BLAKE2b-256 b1477f883f623ca80f4c70202d95277b53044b0881b130183cd4b13bd4321c6a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 71dabc9718d3763495d30669569991972bf95d5afa9d46b0d22461534832b182
MD5 64fb5243ee7daa3c1e4b88105fbcad94
BLAKE2b-256 8c7230531b34d8a0350c651914de9037a1a2ac9d8ace232ffcdfedf7469a7d5b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6e08ca42bba83fe81932c816b8924a9052626179bbd1cc25973d181e1a227bde
MD5 d121426e0c0bc68c19f646a7c24a0ccd
BLAKE2b-256 e3c10c606520febb52ccc87eca81fd3bdcb442385beb2f75516563147f4bdc1b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 19ca1aa5b9e7b568c5157664732c4f7b35df58f9b75a17196e1d82e0df2ad183
MD5 8e7e60388a787af210e900760657fc36
BLAKE2b-256 e9ea86a460d7e0b11807855f3d932552142e604ec75581e5b7951367a2c96b16

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp310-cp310-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 0aefc67835304b64875006ab17ac887379be7c5ca008e7523f20f4b687b9b6df
MD5 745a02f93af1ec2572708519e319f8b3
BLAKE2b-256 f1e5cd776544a5a7052a4320e94946a3eeabcee6d1fb5f9d599a11d911e76363

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6b6d017a49e5b887cf62e695e72ada44560e120aa21cac2ec9339cbf1fb56f05
MD5 0c518556ad7c0c0d0db7b40bd518cc39
BLAKE2b-256 97d41c1a1c73d305c672172be14e05325381bc0767d5e8693422535000a2a780

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.5.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.6

File hashes

Hashes for rapidfuzz-3.5.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 856c360b6783627623d4e31c2805e2e760811b1b106bfd949a125d49c2cfdfea
MD5 aa94e4cfd8eff9ef3bf94f169bd8a7e0
BLAKE2b-256 f098b24c23ba48d4e3beff88dfc7883b401bf6e3e1b33a171735098b61ab4af9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 868c550ea1dab158fdd08608021e63ba4c3c29d766b131544225c6c5f1ee67dd
MD5 0fa2bc1b70641692deeaee26bf0a06fc
BLAKE2b-256 54d7b9fae9a7d322d0e2e1c7904af0ddf290ce641aa79c32c8b179fa06f3df7a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 f058765e66cb5d6fbe493816a2c622f8ebb8080709b00da1068dbe1260a57123
MD5 5fae85f0be7823b7323e52cd0fa5e33e
BLAKE2b-256 e63c639b509393b9d19b9095398948e2fd0c44ddbc1345bb23ad4fdb29ba311d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 b3b8d3cd2c858bfbd63026857d26d788f1c84d337bfce68d6764631d1e353a23
MD5 53cd2523e89235c0aa626575a08e1f0a
BLAKE2b-256 475bea027daa028da5c0cfee4a0163b410a5ba696d69fb5e858fb146766e47d7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d06e24366fb1b3267080ef15772b9650ee5a20124e451c9c3cf5086e61dad98f
MD5 18a26ed0e0564660176b0f040e3bb05e
BLAKE2b-256 f326b643d7d5903c3e9d9a75627365e9308ccb71dc8b41fd9b4616161bf67830

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 929f5593816b3c49a64986925bec16fa5d53a44cb1666a04e4d4c02ed3147e73
MD5 eaf880652dd21b8a8cb652c74894bcce
BLAKE2b-256 df7280ca6ef07f5457aeb12aee8c320e759e9d469905af3208da8ad4cdb9c722

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2f8cafa2dc98203a437b4970780f1994daad47ffc2c239397fb0da522c84f953
MD5 bab332a673119b802cdb20d9399cb1fd
BLAKE2b-256 831ca3c2946380158565ef282cec2728f5fafff997e6fbff97762cbe3a780694

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 48af43f1b00b2532c8f46eda777eb3cc9eb1651a62f2843876fc55a68510ae3f
MD5 8be469a6cfe8ed1c75a9d4362138a77a
BLAKE2b-256 284a117edea58e3aa69722b7fd6f1e9d8ca2dce5e5bbd33bbb8e0332df1b68e6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 cba08dce5fda1963822e07e946c2ed092b59f44d61b5181bf8785c4d37f6f0e2
MD5 8490b79844081785f4d69bd76e4a5f58
BLAKE2b-256 1b8b6feedf59e6dcdca35f4f8767600257a9fe13fea9d3ee67a8a3ab63ba8d5f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fe84680b79c412a68757ebb8062d1ddf9a8b12c23c7b254d57993429f9646d31
MD5 418770cc108b0b77d3ba60328bcc3dc8
BLAKE2b-256 04f4b3ef129975fba5dd79dca91f8cd3b9611955271ac5433eacda372c236c66

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 119ec044599685d268b1ad79015f12edcd83d232215269d95c44527c05fcc0a5
MD5 361a67bb0e9bab968f9b8917632157e8
BLAKE2b-256 bae07fed7c9d5e1063a7a1af8a1bf62f2ffc2551e91b96bea795ca60925394ac

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9104e7fbbedfafd90e47185326dcdc60045ba70ec432c9f547ea7a2c9bf3105e
MD5 6dd1084d7a5ffa85ff6a45a4bead48f1
BLAKE2b-256 89af1d01a2948151c1d188f05495a34d667a7da16713f6ef9c498e8cd96d0c8f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4609f61c41bcda7611cdc811f017e50fd5de03c0adbae94437697db060694490
MD5 a635b0845504727781a1efdc90025541
BLAKE2b-256 6634c0b2496b7b494f7f0d0478639410a337db75e0315dbaff281ca964cade52

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 eb10afc0721faf14fdcf2a679dbc8f4004b8c1694a201095021c2a6e443877fd
MD5 34f3f69df5430e141f3557f15ffa107f
BLAKE2b-256 034a2d60a68f3847fe823f7b7a9a648757daede29fd54d135a95bb85722fc941

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: rapidfuzz-3.5.1-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 861.8 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.6

File hashes

Hashes for rapidfuzz-3.5.1-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 0693b020ea2f74492e7af8d69c3caaff80c2c890ea8023bc8177dc14abbcf6ec
MD5 e7437041e8ea61d6f9936027f2a94d2e
BLAKE2b-256 ff65faf7a42af202c7c2c7b8203f289a1546ab3afd1299917e9a0e979e92dce1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.5.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.6

File hashes

Hashes for rapidfuzz-3.5.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 90187729071249832c8695f918fa61ea0631533531d91892674f5372b9f51028
MD5 e9448f0cfc899569459fb2a05875b6c1
BLAKE2b-256 5121e387451d974bca35e935042246345ad176edcbe192846792eaf2faec79c2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.5.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.6

File hashes

Hashes for rapidfuzz-3.5.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 107e95f521149fde351ef6d12c26cbb54298e8d080eb6e4d0832f1700fc84840
MD5 6f7b455e5705454d7bf6bcecee231f13
BLAKE2b-256 626e40bc1ad331a8e517cfafcf7355060959168b3ff2518a06a953509edcce7f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a5d2d86308b6670032839e8eaca2abc3c29a8b613d9933af7ef3919e20db6553
MD5 9be0753ec7197021c6b0474df07fad54
BLAKE2b-256 732a1a173577a226f4ee7e5a7cb82231b74af197a42270896c13e04e7589090a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 2f57df4c10f95e6abe69e680b7779bcdc2cfd8800f31002315656906765ba6ed
MD5 c627e5dcf3a1f2b72e68d89fdce91e03
BLAKE2b-256 f0bef26e04dd88ee44b809fc5bcb9a9f232c1afc653e6b9296637b902c063ba4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 93d55d666273c53be850300145a70d20218c39b38c471c4be2b06c22d3c1ed1e
MD5 374e45f9744f348c53d11991b68251ac
BLAKE2b-256 76e6fcea7a2f03850c7d093732bedbcb67d4db747a74892e4f112b5c51f76acb

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 43678cf1e718a728936d7b3ffb240fd0d30792a822d45cc8c7bfed7636da2871
MD5 5f67a0e3099703cd11305d8948c16356
BLAKE2b-256 057b8b80807d4933f5461385c9d9b8f6313bfa6efa1af21f02e5e34851765f4a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f8a3731cba3ae070560605c382171b08edb1c90ca57282223d4992a62bfce9f7
MD5 e0e0c01c4c6f9597bb2fd715e2e909fa
BLAKE2b-256 da3b3d4af56acca6bcda5d6debdba2ffd6490d5bbbeddd77abe29cdbc32c0852

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3072be5d444eb5f9aec9fccb46db5d56c4747be8d244fbc26c6ed731ce8e9366
MD5 45fe4d3df70ca5c5fd3305e485b241b3
BLAKE2b-256 5f9fd29036a454b356c6ef55990dfd628c5e9f1fd9d6264c5d2e926825987da5

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 0a8d610f897cae9daa179589a5f3a774062ccbbe9892bc829106169ef4d0870b
MD5 acbb4c0328e7c6ada348ffa794da874d
BLAKE2b-256 b89d844fb1c4713e4e2daa0253b421d1ce8577f4294b66c9fb2bf948a8ae142b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f56c83c5241ef2e75bff897f1224f2f18efbe9bd1869cf770a0c8be29e944ec8
MD5 4c837e92ee72fc661642f8020510e8ea
BLAKE2b-256 6531d3b423e40dac5c421482fa1000259b4c3ee4a0316e887b20bbfedea7f62d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0a0e6a35c56ef2928b6cb086afd72f4f3b892253395fe83e3ff251bf0098db8b
MD5 0a0d309d28edb6b8de6d75aa9729d78f
BLAKE2b-256 77a03c2a058ffa948c132d91775bab8ab821f8e5fdf195771a077986110e2e44

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8c7f8c128d29ddadb22e612e359cf6438d2c038ce14d213906fc03e6708f07d1
MD5 a4e76ed73ed2088369b3c4d9c61026c2
BLAKE2b-256 1c84f815114d6d7024e3d770a126da91c7fa8bbe96968bbeb713f9919a6dd2ae

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 442b028de2d57a22559c1996a1263564fa6567870118489ffd9166e93ad37d27
MD5 2aff550feb8c181586ee3c9ed863c4a9
BLAKE2b-256 774511c622af3d698d1162a886d8ccbbd677e1cdaacc8079baed83f251bb9686

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b035ecc29c35f23535a35681ae1207dcc59b17c18f5972a9a2bc7b37c6b96025
MD5 225ffb9846fd9fc8821b3a530ea25efe
BLAKE2b-256 a0587e96fd127304715875ad05e5a1235bb2dc5e7eada475409873480aa7ec44

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ed217c35638b4d4cf5c318fa802bd4c42adbb64113fa8039be7cb866db69ca23
MD5 18e1985ee762395de75c79756a417fb7
BLAKE2b-256 5d2a70deae5a0375a2c66ac22a85aed724e50740990b72c10dda48c4d3d053e4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.5.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.6

File hashes

Hashes for rapidfuzz-3.5.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2cf7532e3506be4e3d75452c3a34ee84e0a4af1d06799a26c220eeabe171df73
MD5 84640ebfeb4351375f391ce0431e46b8
BLAKE2b-256 fc35fb0e039c761f81250851e865943c777b8a949ba5812dbb7a7b95c2d898ff

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.5.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.6

File hashes

Hashes for rapidfuzz-3.5.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 9c9a00f5ca49da0dcb9d2de73a8e97f292b2216b835a2692a3411a77ce895666
MD5 6ce03d120684fa1b077f0bcd1851ce81
BLAKE2b-256 8111527118e0a69a96092f39735cdda1b8eae5ad451ed4e015114b638eb57cc1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c9a778df356a458ebb2dbc640e0ed8c97b9051e56827abc4aef51500943199ca
MD5 4d81174c00835bca3ff4a92b75a9617c
BLAKE2b-256 bd8eeda56e9b30068ad908aead0a57336086bc9eeb4ac7b3524f7f5b46329f98

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 8d529a24c140c243f9df7003626cf5efa38fb42d2ba11b9fe01c502f5f450a83
MD5 9cecdedde70705ff3c179e9927bacf0e
BLAKE2b-256 1d081fbf8abdf3c51861c7a46842aefb1f47c7e59486fa7bc0b2c28c590000a9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 23f7762ba9f66d99d387a07e26ad80664ec0ff44694a933f493b549d53a6fc64
MD5 9ea661bf423d5ce345b4bcc59e8ca064
BLAKE2b-256 8ccd34d50ad41dbaed12c4ede6a1988778598e6704d0befa97c3c4f2158aa74b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 41081a95cca0e90c513bfa692bedadabfa10d6e83de621922ccd6730969886f3
MD5 06b19589410c4a122803268a65732001
BLAKE2b-256 d8ddd0f17cd8ebde653e65bda7c73b1ec0070b7828173a9ab254a20e0d14f358

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 2f574494519bc29afea7b45b9d5c7d19d29b52d67970c330f276441e2f12caff
MD5 7b3358fc28c8d8c41600883c0be51bdb
BLAKE2b-256 3e2ae5d3ea6a7dfcbbab9ca381ae71d9e7ee6d5f698e49e45cd469d78efeec67

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d84579eb0fd9b65345c54f4fe7c175be3f8219e9374ad6ff29ec855ab5772c95
MD5 d032d76cea185412b9a00a3594507cd6
BLAKE2b-256 1dda0839be0d1421d5a0eb37a9775fc8b3ae03eec15444f8b9dd6cfcd38e8f1c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 1effede7d2179ac432ee1bff11cb9400decde3ac2a302870e4221e55d2ba80eb
MD5 2b963790f1ad84c0a59c9c53501f40cf
BLAKE2b-256 9d149c6daa2fe89412c223eb13ca8e55bf950a6ff651108eb454fb3da284042f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a68c68483d14d36256970227cb66e5bb17e62018a729b240f9f48ac7ef470b99
MD5 41c5628d5b256c5c57fd0c960560fbb7
BLAKE2b-256 3d396d350d017664da6b1070388233406f8d07b506c2fa752c7aa15c20cd222e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a3f7b6ca056cc422c5a101bfa3a5a3d95c39de21f3910a9b349238caae981d92
MD5 874a87beb3199694b588abef65ceb409
BLAKE2b-256 1f6e28db40089ea2daca3f2d9c662e45d0a6613d1b98f24ed99fde07ae6b5904

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c8556a41ff00a7e53346eecb0a802d98e537b18ef2151197556d4d980ffbacec
MD5 25c425dc3b33933474363902eb54138f
BLAKE2b-256 aaf6c1d4685d7b302ba255cfc033398698808c726114221bc550a23e781ddffd

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1c9413146836cd969ef2a42c5ea8afcbcc416bb2227c5542b6ef096b09a06ac4
MD5 905989a389b59c8a819db0475eaa26bf
BLAKE2b-256 4ec9d3afecf37fe67abb8015060dfcaca61710cf241e31062145e3c2efd23328

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2251e7e8d2203482b95a0b4e1c27f72543ccf322ee463c84e9a90fb4c9670669
MD5 967a0f3d0e793aff76d6bb0b15ea24e2
BLAKE2b-256 464f1196a8843037ed503bec61123dcaeda65f2b9d16835606a211c5ed36c5ef

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.5.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.5.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 0a15d1da628fc1a5306af76fd75e40e5894968c1c09a897864cc2d81a31883c2
MD5 037a6f9f36adeeae68492acdd44fae63
BLAKE2b-256 e432ca48d5a24d1c9bd77bc3fc42e5a58e9062f1cefdc850653f41017ee78a06

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page