Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation Code Coverage GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation
  5. It can be largely used as a drop in replacement for fuzzywuzzy. However there are a couple API differences described here

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.
Note that from RapidFuzz 3.0.0, strings are not preprocessed(removing all non alphanumeric characters, trimming whitespaces, converting all characters to lower case) by default. Which means that when comparing two strings that have the same characters but different cases("this is a word", "THIS IS A WORD") their similarity score value might be different, so when comparing such strings you might see a difference in score value compared to previous versions. Some examples of string matching with preprocessing can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and distance.

Simple Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("this is a test", "this is a test!")
96.55172413793103

Partial Ratio

> from rapidfuzz import fuzz
> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.9090909090909
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> from rapidfuzz import fuzz
> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
84.21052631578947
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Weighted Ratio

> from rapidfuzz import fuzz
> fuzz.WRatio("this is a test", "this is a new test!!!")
85.5

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.WRatio("this is a test", "this is a new test!!!", processor=utils.default_process) # here "this is a new test!!!" is converted to "this is a new test"
95.0
> fuzz.WRatio("this is a test", "this is a new test")
95.0

> # Converting string to lower case
> fuzz.WRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.WRatio("this is a word", "THIS IS A WORD", processor=utils.default_process) # here "THIS IS A WORD" is converted to "this is a word"
100.0

Quick Ratio

> from rapidfuzz import fuzz
> fuzz.QRatio("this is a test", "this is a new test!!!")
80.0

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.QRatio("this is a test", "this is a new test!!!", processor=utils.default_process)
87.5
> fuzz.QRatio("this is a test", "this is a new test")
87.5

> # Converting string to lower case
> fuzz.QRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.QRatio("this is a word", "THIS IS A WORD", processor=utils.default_process)
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 76.92307692307692, 1), ('New York Giants', 64.28571428571428, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
('Dallas Cowboys', 83.07692307692308, 3)

> # With preprocessing
> from rapidfuzz import process, fuzz, utils
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2, processor=utils.default_process)
[('New York Jets', 100.0, 1), ('New York Giants', 78.57142857142857, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio, processor=utils.default_process)
('Dallas Cowboys', 90.0, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-3.6.0.tar.gz (1.6 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-3.6.0-pp39-pypy39_pp73-win_amd64.whl (1.6 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.6.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.6.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.6.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.6.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (2.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.6.0-pp38-pypy38_pp73-win_amd64.whl (1.6 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.6.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.6.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.6.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.6.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (2.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.6.0-cp312-cp312-win_arm64.whl (837.2 kB view details)

Uploaded CPython 3.12 Windows ARM64

rapidfuzz-3.6.0-cp312-cp312-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

rapidfuzz-3.6.0-cp312-cp312-win32.whl (1.8 MB view details)

Uploaded CPython 3.12 Windows x86

rapidfuzz-3.6.0-cp312-cp312-musllinux_1_1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

rapidfuzz-3.6.0-cp312-cp312-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ s390x

rapidfuzz-3.6.0-cp312-cp312-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.6.0-cp312-cp312-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

rapidfuzz-3.6.0-cp312-cp312-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

rapidfuzz-3.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.6.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

rapidfuzz-3.6.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.6.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

rapidfuzz-3.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.6.0-cp312-cp312-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

rapidfuzz-3.6.0-cp312-cp312-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

rapidfuzz-3.6.0-cp312-cp312-macosx_10_9_universal2.whl (2.7 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.6.0-cp311-cp311-win_arm64.whl (842.4 kB view details)

Uploaded CPython 3.11 Windows ARM64

rapidfuzz-3.6.0-cp311-cp311-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-3.6.0-cp311-cp311-win32.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-3.6.0-cp311-cp311-musllinux_1_1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-3.6.0-cp311-cp311-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-3.6.0-cp311-cp311-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.6.0-cp311-cp311-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-3.6.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-3.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.6.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-3.6.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.6.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-3.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.6.0-cp311-cp311-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-3.6.0-cp311-cp311-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-3.6.0-cp311-cp311-macosx_10_9_universal2.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.6.0-cp310-cp310-win_arm64.whl (841.6 kB view details)

Uploaded CPython 3.10 Windows ARM64

rapidfuzz-3.6.0-cp310-cp310-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-3.6.0-cp310-cp310-win32.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-3.6.0-cp310-cp310-musllinux_1_1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-3.6.0-cp310-cp310-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-3.6.0-cp310-cp310-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.6.0-cp310-cp310-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-3.6.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-3.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.6.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-3.6.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.6.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-3.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.6.0-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-3.6.0-cp310-cp310-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-3.6.0-cp310-cp310-macosx_10_9_universal2.whl (2.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.6.0-cp39-cp39-win_arm64.whl (843.2 kB view details)

Uploaded CPython 3.9 Windows ARM64

rapidfuzz-3.6.0-cp39-cp39-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-3.6.0-cp39-cp39-win32.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-3.6.0-cp39-cp39-musllinux_1_1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-3.6.0-cp39-cp39-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-3.6.0-cp39-cp39-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.6.0-cp39-cp39-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-3.6.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-3.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.6.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-3.6.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.6.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-3.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.6.0-cp39-cp39-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-3.6.0-cp39-cp39-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-3.6.0-cp39-cp39-macosx_10_9_universal2.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.6.0-cp38-cp38-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-3.6.0-cp38-cp38-win32.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-3.6.0-cp38-cp38-musllinux_1_1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-3.6.0-cp38-cp38-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-3.6.0-cp38-cp38-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.6.0-cp38-cp38-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-3.6.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-3.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.6.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-3.6.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.6.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-3.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.6.0-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-3.6.0-cp38-cp38-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-3.6.0-cp38-cp38-macosx_10_9_universal2.whl (2.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file rapidfuzz-3.6.0.tar.gz.

File metadata

  • Download URL: rapidfuzz-3.6.0.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.7

File hashes

Hashes for rapidfuzz-3.6.0.tar.gz
Algorithm Hash digest
SHA256 4cdf564c3eeb2d95148bd7199e7869fa927f47cc3aea42f299aa836cfb2b6cfd
MD5 1ab6c8e02341520919963a26b4f97b42
BLAKE2b-256 e17942394ecd1b6176f2efa83ca7a32673aefbba51690e557a68cf6d49366d82

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 db23d692ba27f58e5b97c724005e6a478168cb41af5d793bbc5478cb52842306
MD5 8b3a621ecf451bd2c3bdf2759e09c4fb
BLAKE2b-256 839a63fbddb7bfbaf5dce44543f3759eca3c97ed2893c426dfcec2e3ef5b17a1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 306ca0358fc7d2e4660de3fce782bfea9c6bf443d60f9134ea8d4b8e8f1869e3
MD5 739e837dfd5084449068cecee99e9625
BLAKE2b-256 ca13eaa7d250de58cc3e0d0373224e299237f8743785167d530699a5960bd821

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 adbc4686e7252b97ef344fb9fb05080c8524ac2e77a20e835d166b8330024ac3
MD5 fb6467ad44bd02c1043f3ad3aa54dbd3
BLAKE2b-256 313d0380f734cc5506859696ea5e741a5edee493fbc5db2526b0db45f720c2ea

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 be2e2b96ea1fcefe0a2ed2560fd33a510dc8afe8e93062e111b40d1cb0e34b6a
MD5 16e03889cbc0bad77fc4f01d0a935506
BLAKE2b-256 4bc99c6694663ba33df329b5d4f31f14dbe91e59f82b48ecc7a0995965412d16

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c715df0f21116e830c666d35ea413d528501c50079079ecaa5904ec244661992
MD5 38e34a57defbcc93eb9d676f16f84ebf
BLAKE2b-256 7dfee1dde1bea57db79715551b6b702dc74c2c0bbed4cf207f15928263c7ceae

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 3fce2489072ae2362abeabdc7745a5b9eb0ff4291c7a69be2318025e1184f016
MD5 5ca72fa482665264d1e62f60ad676c3e
BLAKE2b-256 a17801cee88a63a1d85ef1c944aac7d9706ddfa436f466c73475fdc1d276ab24

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fad2c70768f83a1f202c191f0e4a3ef3d376659728a4602b22dc62bd7f118973
MD5 f04b3d701a6529bb573ce3d5d462e69a
BLAKE2b-256 5779e6c4183574bb8d53207b90e37138eb1d1ba0c48de7b429dc1549a87ba558

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 392effa32f235b2b30c9f00ece8002e21255fbbffa0ce0d4a1cbcbb88e02d019
MD5 39d2e9c34cea01d004c1f88ae97c38bb
BLAKE2b-256 3f5bfafc779ccfd063632bb8ebad7cd32806322af7e0758b32982fa52d00facf

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 454ecaf9bd547b8a7ff8f461f5b25bd60ec15800ff2fab562e663732f53f0829
MD5 0a9c522a8c95d2270ebeb811016eff18
BLAKE2b-256 854c7a0ada9d523c819cbd72fdbf0b719f2d7be6255d1726ed27373a767f36c8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a5a76e488060fde32bfd2dc789821da95ca172a718752d0e65a2b168c7742612
MD5 3c45292d939abde78ac8303051b4372d
BLAKE2b-256 19b4a635d2f38ec0fd3c26c60265dc94cd138dea4c4f9bf81853baf1161b501a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp312-cp312-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 9a09731ed953126ac3f89f5a8d4998f93eca8a81e41e57b173edc3e44f0afd20
MD5 ddfd33ee9731e8104da2a08a6cfebcec
BLAKE2b-256 4f7af09a1e9a6d5f2d38afec629470a871e74d2342ce2e16c190bfd94a845844

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 a0938400bb41f738809aae6cd9b4d9985ec2c8cfb34c4931c5a16dba76edf58c
MD5 af58a24b1befc246226c43f9152e10ef
BLAKE2b-256 83b8805ae1d18ec5a40650a7e2b8ea46e9cd5ea885e8478819e1bef1ab0ab378

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.6.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.7

File hashes

Hashes for rapidfuzz-3.6.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 a6ae64784f0e8a7f989e0d24a401fce68fbe37b9e0d61c24ec983828b1dee768
MD5 650eb4dd774859a5dc38ba82af37366a
BLAKE2b-256 b37a293d3218ca568a20f2add4df8833702ec7c48222242c2621ad88d8775ffd

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ac480cdef530a5a9c8e560e5f77783f3dccd65373e0a09dabe32446e212ea3c4
MD5 f6e4861e3b3f10df8655e22f5034e655
BLAKE2b-256 beab24caecdaa080b473e1fcdf4c0f51d6976fc0e20ad39a678eb91c804864c8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp312-cp312-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp312-cp312-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 6be8fd7b7a39cb2655a0d216da8fc424bc334cfe43f1dcf00fbc3e0426252a35
MD5 00a93fb290f65b3c7d6338d1e0c3d327
BLAKE2b-256 2a6bd9dc29b96b425116e3fdf4c5dcccca2498ff5bf7c3c52c2a8fed5937e513

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp312-cp312-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp312-cp312-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 17b23ef8fae6aa08fe0a02b9e171ef6443ad876bebfdab8d491e07942e36bca6
MD5 8b29e855ca66e05fe5110c8bb8eb9899
BLAKE2b-256 9dd31ab27f4cb454bd0e09113d3822927c7b246f0aa0881a719d094502ac8b2a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 346422d616bdc9d90c2d800f963cde370c4bdc3b99ea1d9bd7b16d43f88d4313
MD5 7ec16b6c139cbffb226584b450f7f062
BLAKE2b-256 17b947d60217a6a23e7264bba555c02d9df2d84f0a4643611ce367b3e79fe373

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 2dfba991ea3e9963a1d24946f7932893384a64369bf3c28c6d07eb8ee4c4fc86
MD5 38544836bb6c7404debc5a376d50dbfe
BLAKE2b-256 798eafac6b31d85ba138d2faa6c60c6841c77da2628e383283efbafb5d65172a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 708457ab87c6eb2aec6f278697b03e088744623c63f450bae2571ce8f29e37d2
MD5 067b3e6733f09e973b3fb98539b1b0c6
BLAKE2b-256 d278296ba722c6763b5b6541bb4d3a97ba85566c4b3217edb9f0884aaee4c742

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 4c9c495ebe81a2996cb737060181703822215360abdd60a619839397667f8e4e
MD5 7852988d8a55c4218575ce84bacf047c
BLAKE2b-256 70c443cd95bf532feffb3fae1c62c27557c2b1382bf4c27df45a509f84a8cc8f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 88813871a373dc600a8ac831b6900ff57c9ed72e61128e065190e30c502b2e7a
MD5 f57348f816e8c598db816db4dfe8e59d
BLAKE2b-256 c8f2e4c4aea370727ed6d793644ef50bc3c5337c8020a1e5d879aca3a096c8e0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a99dc8dc8c2d6da1f5b15c9364bcad262f23da098e7bbd54056bee087423d74d
MD5 3488c3bed1032de8c9a62e63827ca73e
BLAKE2b-256 c9a44692fd9feec0a9d4748077d9e0309b92b3fa0983155c23c97fba2162409e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4ea93d044eaf0d0204a088dbaab18ce2cda1bb0738062c8d2834a8b3832f496c
MD5 1cea82f8d14afe8029cbfe9300cb4594
BLAKE2b-256 1323bb88fc6cfb796aec9c08bfd88148c873de1b361877174920575dfca478e6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 62be08cdd370cc491b594b80493850cf83aafec938b3ca2c98fc4d45667baac8
MD5 3172ab3e8d9a95bd656a7fbd0ffc2fb3
BLAKE2b-256 617b2e724bae496e64973b09cc820dc5df71bc65190fc5cc14ab35414649c110

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 90fb0e1f931031a0fa967d77d8be21220d5b8e626546d3e774dc28c5a0aea10d
MD5 bba826e84ec0ff775a607e50294c5164
BLAKE2b-256 49212c3931819e1c5123553e5c9aac7c10b53adcbdaa5f3397eb02a9cf0f0bf2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 583f9cca4e53b5ff93f86a9cf5ca15a6fed3094a2b49acaa3851b4eb00ea04f9
MD5 6d818159deb13d59e9cb23e638787a89
BLAKE2b-256 ee31131526fe8ecb5fc45b3c585549ce09da630e935f3cbe4bc05a0eab2f60a5

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp311-cp311-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 4d67f9f180faf341bc04be4f633707b773844a9c07f21dd2eabc27ea54591c8e
MD5 6e327d74d24be269657cb724e7cbea7e
BLAKE2b-256 d8d038ad024d71577971e91b1209bb424a11da696924fecfc19e2094c6d7da96

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 a3aec96905badee77915f6cd791019aa06376b252ca4da3676339c4f8dd64e8f
MD5 477bea8be953762da28e5352b3f7c0e4
BLAKE2b-256 e57acf0db74bb2f3c1f78928fb5ed559e7c5cd24cb3143e649fa49bcb1a0276d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.6.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.7

File hashes

Hashes for rapidfuzz-3.6.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 fcf2ab337b7d331c6cbe7a5296b9f703666e7c1b00771a1dbac6e2d62e46b9a4
MD5 041b644d9807b0294b99df8de5e2a6b4
BLAKE2b-256 7df48d56fec55f57eff9c220882194fd2e8af836f476bada48ae62ed9bc08ce1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 48314743e61394e6418cec38a5389dd3ad6c1b33fc15d525898a303450f958e7
MD5 f819588fef3bcf4a379a575eb9d72f37
BLAKE2b-256 1945038a735831de3b7b474f290f2b5454354c9ea9423bc37774d724150278e8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 2a31a6f6442219bb494a4d5293abb106f95adfdbad3fef597377f7344883afa9
MD5 929ec04101c98e059d43d903a0497360
BLAKE2b-256 90297460b2f243de0c7efe61fa4324ce98693728f27e0570d2e63be14a33f2e1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 a0271e194a5c811db02c7350a119cabde6757587312c70247f6e50984ce36144
MD5 204d99f4094cdf376ef8612b11694b5c
BLAKE2b-256 137aebf29511e807d79e1dc3e52cb37f0a93ad3c3e3394506e50e8965f8d87f5

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5d7e82a29af3c8052f78c9b2d98a0586ebd6bf41f27298b92b80293c6506e1d7
MD5 a1559729ccb0c7f83988043d7258c261
BLAKE2b-256 dd4fdc7a953f12eaf4c63d0f7b2940a8406b46db99b5403d1b3183ee4a4bfe2e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 b54cd11ee89b606252c90c5eb711eb6735e2b63305cc8c2e70479166017733a3
MD5 d6566a8c384c0f002586f92ee6a26e93
BLAKE2b-256 a78ec012c270dd87fca4dce39827adff3d33d6f332177d536fe2e578ba23a571

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 25d98d242e7626c577ab702902040afb87e257ee93c9575884f82e6e7b4aaec0
MD5 2f4181117c4593be326478be57ec20f5
BLAKE2b-256 282b3c814d9c3e4e0cf26cf227140cd2945812a593876e6dd5d808d5b154b96d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 2e96db4dfd4bf853898438dbf821c5017229aa8064b4b9a12a4bc7ff3112aa1e
MD5 10682a480426cfa6676ef5bad9438a43
BLAKE2b-256 67e07d28fd017cd6adb788bfd5ffd702bf9a6c72712dd61152eee2536500ef37

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 187751b2b5c4e5b53ea4c30bcbdf6f545dbd985808c0750f990152e95357638f
MD5 a017226bacb85a6743782fbdc69fcb75
BLAKE2b-256 bb283c7b9d7bf5df27857b6bf442256d4c9442df5bb810b965b7b5e8143dc742

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1ed25d6d7b184725bd26ecfe64dfe6a17d261705435e7c38415499b1316120a9
MD5 f23b4dba8394426771c5e07d369b5db3
BLAKE2b-256 5ab8bf19cdfd5b1cefc07b9b1f74c037a2ff828748d5614a0dbc1c53597881b1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bc6604d6f1be13d9fb6b01442805ae2ec3bcccc54247ecabba8d3712aff9685a
MD5 f868624bf2e669d4ff64bab60275e99c
BLAKE2b-256 67368e07477074429b3b724a32c33e32ee03e9b4a5c386564f8a48026599c84c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 68dd5912a1b0cc145a674aa45513d595fd6691b263f860d00ac71388ebde09bc
MD5 fc67db17e04404962ec94fb8894cd41b
BLAKE2b-256 7dddf5b5a922d6f8770c8a18e82e9d7f90f789da74bf463c7a52cb572b14ac45

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7c1eccce1125676537322d7bc14ecb917b6464700ea222703e131ccb9d165658
MD5 978ab5d4628c148c7e20b29910253f81
BLAKE2b-256 8e10e2a153533741ddbe92e069caae374a21ab6b493ef5797104d175bf339857

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8b6205e8d730e0ad3e0472b4fde8f93c740c2165a198ab0ad457e35371b28e08
MD5 f8a63f7bf22b2b81b5cf7039e98240fe
BLAKE2b-256 a1355674373f25d08d0e6f7846f114157edea9f7ba3a8a23c9e081272cc3bc02

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp310-cp310-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 ac328c83d49811b36e2699d5132193c5a82139e1a3d0b340babc1bce7428754e
MD5 65d53b4b294571cd8689b991cd9f11e1
BLAKE2b-256 0fedf53a58caa123867bfba9a4dc95f724785367c6d99812eb7b8ff267679534

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4c1de6260975d5589374abca04a76c3e968907ccdc6daf5f9dd2b4cca1a7a64d
MD5 ee51239cf28c542a525305befa379724
BLAKE2b-256 66f7a6ccdd4d62bc2399382b8a2e41d07de4827439773ec1d9340cd2c6d5fcec

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.6.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.7

File hashes

Hashes for rapidfuzz-3.6.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 9557792003addc7e141e63fd60edc8d77bbd983c212f0f1683bf542cb0d396d9
MD5 e178bf552af01d22f1b0fa767d0e6c7f
BLAKE2b-256 da9037295895e7798ebfe8c49ee931068a44212e0b82ef579224cc5b1479955e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7927fff9dd2a34522704c665f9846e0f13e1824f014af8f14294858921bed731
MD5 a75d8102466f7a642a1b63c0976088c3
BLAKE2b-256 ef5c8f9307634971ae94ff7288451b131ccd2e0b49b0d767162f01df48891367

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 b9b7baab3245df24447c5dbd6d6ca4ce400e3bb088ffe6c994407c16852157b6
MD5 824df9a35c806f3a1f53129de7c59b00
BLAKE2b-256 f786ae92547c564b18ea7965a2502a456bc51915ab396e9db6b2cddeba87db2a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 12eaf1aed5b0ded8c4b638a892b4fda53bf6f9f2d8597d8507ba6d697a34170a
MD5 b8ee35a3a65f6fe58b8b1afc42c7c48c
BLAKE2b-256 b467df9d0aa3b03906f78151b2d7055f0fa0c08f3bfa0590bccebb3b915a071b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 96d46e9664c53b07f446ceb0f09973a46766e0fd4a26904e75f067ed78f07db2
MD5 809f788dd758836373845490a06c64e4
BLAKE2b-256 06c6a7e047373acf73255490952e58f5f5acf195e8eae3ec44fa44b7ac66b464

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 2a317f1a7c318957bd5ca54bf8258263936320c49857fac69c5ed0b10c81ef0d
MD5 59eae5f30d1a2ba9b28106078b225a28
BLAKE2b-256 0429a37e294d30b12687a8c13561c423c1a96c0669beded9ab095553deb54b72

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9a743db763cba0aad39e8c8c6a6d1210247cb468f514891632211adad3935a29
MD5 59d54adc76fef29c23c69dcf50e08d78
BLAKE2b-256 779bc3bba754af8a0e095da8aad260b319e6949a035a3020d26366c695d2d9c3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 195cc2a216223ff6118a1eb6cddb077cd264bc828ba7064ebb6e3bc61dd9d864
MD5 efebe80904b526902da13e8497319173
BLAKE2b-256 882f32f92f7a90a8577438f1693b4ae0dbc8b61162c80d196340014c1a642ec4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e4ba08ba184e530a770b0fc8897f4ce77ae0863039e139ef3180502b37586fec
MD5 e0f3e2b0f22a5d6a71745bbfce9da923
BLAKE2b-256 6292f72dd0e4a67488da71f2e2050390ef595758726e7b4b5ccff422a6b6013b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 514b15338b7f59b80bbe014d1ffc0093d17abf96f82eb20d8bb573ce24d84a12
MD5 95cddc4b3be962c6f4d72b10c3d812e0
BLAKE2b-256 a7d8284f52163e6a5bea7a2d4039451a064300e85fdadad6a9af4c1c48d0040d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a09cdfd9c1a11a91e207df138aa2e20a9267cf5f7cde6e9a53a4551454b06333
MD5 9706f2bc8cd6ff67dfe43c210a4d0e0c
BLAKE2b-256 cadbb487a8326df9d2a0cde528df6323c95a8af08d75d8f5634167c923ac63f4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d7a4b458096be3b39bf5778e26ac96ac10399b8e4fd40a03fd55a155c093acf5
MD5 2f9260352502be4839325441bdd08e74
BLAKE2b-256 55c635e627a0d09dc8f2fef8cb43f1e6da6e990fdc90e871910fdd0727d3dbaa

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3bf1f610954ec936d87d58eb0247af61e35c41a92c30f3cfe0478baf764558bf
MD5 bf8006b14f1b039cd7a91e2b39105bb2
BLAKE2b-256 06227fa7c41b2ee883bceea8810ca1367b285d5ffd9711bca49ce5bfdf3e5cee

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b21e65818a7e4846bacfa1bd77bc337b02107cc88a7b262dbaeb7944e0c8958d
MD5 f7eb6b0c8f6ae10922b3cdc9fd9addf5
BLAKE2b-256 067bfab1b7c882db6f159bcb4b5a042a96025de11c806e0700618c5821f98e4a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: rapidfuzz-3.6.0-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 843.2 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.7

File hashes

Hashes for rapidfuzz-3.6.0-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 f4378ad75d176c067dc9f79898a8b767305cfac97712f769859b118164852893
MD5 496b6ef38eeed2098dc39eaf86aafec0
BLAKE2b-256 f3262e89fc65bed8a479c4fab8bdcd1583ff5e6449c8fdb0b91f481c13749f88

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.6.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.7

File hashes

Hashes for rapidfuzz-3.6.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 26c671bd3f2954df7e3d9635d5870177ba7d7433ec610bc3d4ba75648d89b9e9
MD5 bcbd5e1170b286e3b9218b7403587d74
BLAKE2b-256 1b2ecba3bef5948e6f9065a3f796b759f5a1140bd68e0cc527492fd88414260a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.6.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.7

File hashes

Hashes for rapidfuzz-3.6.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 834d9bd0fca92fb5cd92a7027df5d0492c3d3c2111f365dc8168f5a2f2582a36
MD5 2e7a9646a9b3094311bc36e1c3e3d51f
BLAKE2b-256 14c9fa0b72a182f607269461a87da5f5c3650ae41155013ec358f01384aee1c0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 863c6ee97d156026bc1685fb7878c440833c221e935474e5b0ffb255b0888356
MD5 904fd529aa81bb87e1b9175a243a4804
BLAKE2b-256 45f84362f9faf95825a649aadb808cc70147d4b7bacdde5b446c79d03bf085e3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 2a3c44bafd6d919ccf3f36d454c3e70cafc4c1aa8557970befbb9ae4930e32d7
MD5 fe2e5dcf2cf9f21903845533a6f95005
BLAKE2b-256 cec7d1c4b0aa4cbe0644d9e89f47f33f807c5c2d6df16c071283466af0cd111d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 a1d8640e1cad1757378a810c363695822462f331c40b23f30c1bbbc477d77c68
MD5 4e744806a30804e629ee98551414354e
BLAKE2b-256 5c5e484b3e9693e23aa2b84c2755eb5575405159eebdbe34bd1cf6cb4fe351dd

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8a5087f5c0b4e8584cd6044c279b4a6df15420a0074bf914e50bdebc9ac4db77
MD5 2f7d88601bb25fb32e854e60b1682e08
BLAKE2b-256 0aa1d22aaeba7d910043eb8eb220bbd8e7071272e15caa8b1fc810e8a930d5df

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 23b278a7d8f2cdc1a54cf9b72a48f76dc9f1b68373f2a3299f8b6cc5e796c160
MD5 38c4260918c0d8b6ac532c99a14d4c5b
BLAKE2b-256 9ec062220c92019c3dcb23254d8154a6a4d5b5b7638c577713ffa4158b96552a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 029ae17bbe55671884702adc16225ca25ca447f86c1dba95b564fcd51eb82d44
MD5 6fdd014c14a2faf5473eb83f2237ca7a
BLAKE2b-256 472be8c59d53f51883a3aaaeae2935dcb7963fd050377b377bfcb2bd8e5119f9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 b89591f5eb1c3a7509a5294bfd65b3eaca7ee7e0583bdd84122e2fc2e37e6973
MD5 fbd0066d8d8fe79ccc1c90429cf0a2a1
BLAKE2b-256 35382752c97bc502a96542924ea4656b90e98f21edfded8e96fa00785190beef

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a14ebea5e14b3b8c91c02be8adf9397247397f1f2be7e9cb6962ded9cc4d2cba
MD5 3cb0392666a3658dfc941553a8851d2f
BLAKE2b-256 987f5d4f675731babf4b3f15bb6e031457c6d2be151e2081dce9c91d50b2675c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a5801f45fb585c21b6dbe08658a0d38e08ddca7b1ffb3825f39a59bb78998529
MD5 437db84f821113771d0b7da5bee79bdf
BLAKE2b-256 9a1948f58fcbba1b6a32040b87ea62cbaa7643840e577fb0ee7df66867a27e55

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 52ecaa0619248cc0faa098cc8fa96a65296a9b734f2e8cd509a2cf1358041ae5
MD5 07aedb6a6e8531f350633b80d10b00a8
BLAKE2b-256 9fe8a706b85a76b8cb9c2153d778b3323bac87ce52d247230c3adfaf91aef39a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f916630b388d465ab54bb205398abbb38b3f8eeed8f224accee534271ca52fba
MD5 628c7436945d2c29a846ad6ebc21414e
BLAKE2b-256 6bfe71636b6ec12c9f75c1162b5020d0a1e71de92776793dc1012a7b8526e287

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1f2ecf1e23ee64a7cdce01be1350b977169ac866d27f7301a3add21993163b68
MD5 f5b15c0950e2e792d5956ecb612575e9
BLAKE2b-256 588d9ff52574c50a310bb081057e19f27f1349c71f829d19d8994e17cf5c03dc

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 82db5d39f9d87b639a23d700200fea379916114d5352e9574d1a11f82b9d8bca
MD5 4d0c3f11843d5a9041b8fc6691043625
BLAKE2b-256 37b0951f1d05ea1d94b43f9589a8b603513d2f650c2e42f4dd1766006fbb83fe

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.6.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.7

File hashes

Hashes for rapidfuzz-3.6.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d920bead489ff2f02893261dd180f2c24afa4f0d00ec24b6b31311966e02f66f
MD5 d72c83abe2cc107190bcfcece2443723
BLAKE2b-256 c7e74e3772144e40c6dd3d0b14631be0a7531c3b3f5026ac4bbab2fe9c168183

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.6.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.7

File hashes

Hashes for rapidfuzz-3.6.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 da1f2cff6f0128f1ff7c2745051a87f3cd8946036d4036a9dc464868ad5d3a53
MD5 07339facdeb4b5e69d12076e58b344d9
BLAKE2b-256 c780a0237e99e9e06f7607d7c64a39fb02d893b1a0393ac9db626cbcb8989b5a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 19159a69f9d1132cffeb5fcea344f09ec02212654b92a913c9d3deaf3d387f46
MD5 a81dfff2228a711300fda60a58cabb3d
BLAKE2b-256 c8001dab2718ae7ef5d2c4b5ef4242dbbd58d858eb77480e7b5216d8ef5831d3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 5475ea451df17a802c3f78c58f63701c2e99762ce71b9953c2a8da574f450807
MD5 95bfe29638e0adeac7765307eeeefe46
BLAKE2b-256 ff11e54be36d99ebf3883a6a9e71f18f1f073be45f461d92c756246cfadc221e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 0c8d8e72030c7ad2b486a6cdcb0af7b51c0041db1e9e0e6c41fa3e3d244df284
MD5 895bad95815f5fdf654641cb92917e2a
BLAKE2b-256 8cdae289b55c8710ae92cd735b1cbea1f53673511230418e32c4dd07dfed6ee8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 67a97425abac462e0cb6be02a9adf581577d72e18aa922ef121400e203273657
MD5 524d4e5e09b5f11d3fa98576c16a2921
BLAKE2b-256 f6c6555ec3b134c173dd4e6c6aa976ffa48d31bca10aef22d3a6ca4199b20814

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 cb2ddc1afe32fc8d70dc37d825a04ab1df98a91f40ad6b17d976c5b6fbd99130
MD5 0f60743be941d1fd6e6d26984286e2f9
BLAKE2b-256 f3c62502693d6381ae28f2bd4a35611418bb8eca4588cb86a3fec2b0c8f49688

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a40e52fcd1b61421de465113624bc802546b106fa02aa28b001b0db493651fd1
MD5 6f98140903c30f2ba8ca9c875ba45540
BLAKE2b-256 bf6336b88055baa4430306a84e86a3e0da0b8754f01c9e7ba85cc5fedfd1b3d0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 f70743f5626743dfab402697953ce0e9458d52000a2d5f52ae0e110facfd62bd
MD5 e0645e4914429c85fccac1aec9ce3c7b
BLAKE2b-256 e80424677f0cd8861059ca2274c68ccac89fa984292ff6ea7aea4fe2afd18bbd

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 76e3d6507ce10696765709093cdedfc814e64960535dcd4f684564c02b6e6d07
MD5 a9c248f0637d323eff323a0754cfce24
BLAKE2b-256 32106f124e9cac50f42a9054cfd0a43524787114a4941eddaad3a4a63497421f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4d58f3fd98495d3597137056eb88372ac9360b74a46ab298115230f259e1efa2
MD5 6c2a4db435e6c03193535579fc441098
BLAKE2b-256 6fd41dc1b7fe80485ebe1e7eb869108bebebb33eb392e9a63788bc76bac1ec6a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a829e8486988889d6a316f528d92364a88c11a10fb53a8b981ae9cd52ab5846b
MD5 a8e6a1cd347ee29e1db307af73d9efd5
BLAKE2b-256 2feb9bbb15e81acb8a70b06324e78503b40788b7b01dba280c746a8ea9efe76c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8ee4151e1ca81cdc8247847d8e041f2ed9e087d550bc21088506b1599c4c842a
MD5 95450765fbce1c74fdac652c49f7e791
BLAKE2b-256 7366ba2deb615f00ef442f51304bb573adf5f1a2475ea168d03564247209acdc

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 40e381099e36df52e073abe18aa24e9ace17b7800c2b38d7818b9c77ba22a622
MD5 9adff19bd1900c7873166f72c86d2088
BLAKE2b-256 90b13cffa443df2c575afd9c531b3aa7de6f403ea556625cf9cfcd6b2861ce4b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 606eb61b04f1f023048dae46e9a002354bde304a192d3b7f6fcc6e75d3910879
MD5 84785ff8f8c88189a634f7b10aa34d73
BLAKE2b-256 ed63c6bc576b0bce60989b74e9aa4988a1b3ea94bbd771205f9d50988a85c877

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page