Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation Code Coverage GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation
  5. It can be largely used as a drop in replacement for fuzzywuzzy. However there are a couple API differences described here

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/rapidfuzz/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.
Note that from RapidFuzz 3.0.0, strings are not preprocessed(removing all non alphanumeric characters, trimming whitespaces, converting all characters to lower case) by default. Which means that when comparing two strings that have the same characters but different cases("this is a word", "THIS IS A WORD") their similarity score value might be different, so when comparing such strings you might see a difference in score value compared to previous versions. Some examples of string matching with preprocessing can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and distance.

Simple Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("this is a test", "this is a test!")
96.55172413793103

Partial Ratio

> from rapidfuzz import fuzz
> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.9090909090909
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> from rapidfuzz import fuzz
> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
84.21052631578947
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Weighted Ratio

> from rapidfuzz import fuzz
> fuzz.WRatio("this is a test", "this is a new test!!!")
85.5

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.WRatio("this is a test", "this is a new test!!!", processor=utils.default_process) # here "this is a new test!!!" is converted to "this is a new test"
95.0
> fuzz.WRatio("this is a test", "this is a new test")
95.0

> # Converting string to lower case
> fuzz.WRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.WRatio("this is a word", "THIS IS A WORD", processor=utils.default_process) # here "THIS IS A WORD" is converted to "this is a word"
100.0

Quick Ratio

> from rapidfuzz import fuzz
> fuzz.QRatio("this is a test", "this is a new test!!!")
80.0

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.QRatio("this is a test", "this is a new test!!!", processor=utils.default_process)
87.5
> fuzz.QRatio("this is a test", "this is a new test")
87.5

> # Converting string to lower case
> fuzz.QRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.QRatio("this is a word", "THIS IS A WORD", processor=utils.default_process)
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 76.92307692307692, 1), ('New York Giants', 64.28571428571428, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
('Dallas Cowboys', 83.07692307692308, 3)

> # With preprocessing
> from rapidfuzz import process, fuzz, utils
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2, processor=utils.default_process)
[('New York Jets', 100.0, 1), ('New York Giants', 78.57142857142857, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio, processor=utils.default_process)
('Dallas Cowboys', 90.0, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-3.6.1.tar.gz (1.6 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-3.6.1-pp39-pypy39_pp73-win_amd64.whl (1.6 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.6.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.6.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.6.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.6.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (2.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.6.1-pp38-pypy38_pp73-win_amd64.whl (1.6 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.6.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.6.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.6.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.6.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (2.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.6.1-cp312-cp312-win_arm64.whl (838.2 kB view details)

Uploaded CPython 3.12 Windows ARM64

rapidfuzz-3.6.1-cp312-cp312-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

rapidfuzz-3.6.1-cp312-cp312-win32.whl (1.8 MB view details)

Uploaded CPython 3.12 Windows x86

rapidfuzz-3.6.1-cp312-cp312-musllinux_1_1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

rapidfuzz-3.6.1-cp312-cp312-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ s390x

rapidfuzz-3.6.1-cp312-cp312-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.6.1-cp312-cp312-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

rapidfuzz-3.6.1-cp312-cp312-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

rapidfuzz-3.6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.6.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

rapidfuzz-3.6.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.6.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

rapidfuzz-3.6.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.6.1-cp312-cp312-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

rapidfuzz-3.6.1-cp312-cp312-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

rapidfuzz-3.6.1-cp312-cp312-macosx_10_9_universal2.whl (2.7 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.6.1-cp311-cp311-win_arm64.whl (843.2 kB view details)

Uploaded CPython 3.11 Windows ARM64

rapidfuzz-3.6.1-cp311-cp311-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-3.6.1-cp311-cp311-win32.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-3.6.1-cp311-cp311-musllinux_1_1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-3.6.1-cp311-cp311-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-3.6.1-cp311-cp311-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.6.1-cp311-cp311-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-3.6.1-cp311-cp311-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-3.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.6.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-3.6.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.6.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-3.6.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.6.1-cp311-cp311-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-3.6.1-cp311-cp311-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-3.6.1-cp311-cp311-macosx_10_9_universal2.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.6.1-cp310-cp310-win_arm64.whl (842.5 kB view details)

Uploaded CPython 3.10 Windows ARM64

rapidfuzz-3.6.1-cp310-cp310-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-3.6.1-cp310-cp310-win32.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-3.6.1-cp310-cp310-musllinux_1_1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-3.6.1-cp310-cp310-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-3.6.1-cp310-cp310-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.6.1-cp310-cp310-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-3.6.1-cp310-cp310-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-3.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.6.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-3.6.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.6.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-3.6.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.6.1-cp310-cp310-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-3.6.1-cp310-cp310-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-3.6.1-cp310-cp310-macosx_10_9_universal2.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.6.1-cp39-cp39-win_arm64.whl (844.3 kB view details)

Uploaded CPython 3.9 Windows ARM64

rapidfuzz-3.6.1-cp39-cp39-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-3.6.1-cp39-cp39-win32.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-3.6.1-cp39-cp39-musllinux_1_1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-3.6.1-cp39-cp39-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-3.6.1-cp39-cp39-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.6.1-cp39-cp39-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-3.6.1-cp39-cp39-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-3.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.6.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-3.6.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.6.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-3.6.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.6.1-cp39-cp39-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-3.6.1-cp39-cp39-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-3.6.1-cp39-cp39-macosx_10_9_universal2.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.6.1-cp38-cp38-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-3.6.1-cp38-cp38-win32.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-3.6.1-cp38-cp38-musllinux_1_1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-3.6.1-cp38-cp38-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-3.6.1-cp38-cp38-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.6.1-cp38-cp38-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-3.6.1-cp38-cp38-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-3.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.6.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-3.6.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.6.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-3.6.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.6.1-cp38-cp38-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-3.6.1-cp38-cp38-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-3.6.1-cp38-cp38-macosx_10_9_universal2.whl (2.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file rapidfuzz-3.6.1.tar.gz.

File metadata

  • Download URL: rapidfuzz-3.6.1.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for rapidfuzz-3.6.1.tar.gz
Algorithm Hash digest
SHA256 35660bee3ce1204872574fa041c7ad7ec5175b3053a4cb6e181463fc07013de7
MD5 1b419ba0b390ae23877850b66f43d7dd
BLAKE2b-256 d4f4039e35e99c967100d73616ec08d4c02325f67e0d5c32a6d5a49a7f620942

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 3028ee8ecc48250607fa8a0adce37b56275ec3b1acaccd84aee1f68487c8557b
MD5 c84d4216cf430aa6234e82e9c66a88d3
BLAKE2b-256 053d4465da5c2af5e18230c6e8f948c342d98d15a58f948bca6fcd08064f78ee

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2b155e67fff215c09f130555002e42f7517d0ea72cbd58050abb83cb7c880cec
MD5 47821b8573c09dbdcc18b2794257eb35
BLAKE2b-256 8922a5b4251ada99e55d65db02d1cbacd3b75107762be5fc0a2736dc868367c3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 76c23ceaea27e790ddd35ef88b84cf9d721806ca366199a76fd47cfc0457a81b
MD5 08c06d327dc7a71043c642236880a641
BLAKE2b-256 dcf9f66a83af1f943e69babdec9078709a131ce5442552ce32bfa73442a602d9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 692c9a50bea7a8537442834f9bc6b7d29d8729a5b6379df17c31b6ab4df948c2
MD5 8c8ee80435624b2f4fdef499548fb185
BLAKE2b-256 5347db93093f6bcebd9457d37cb57f032619fa93eb2d4a019c4fe9ddf1d8ccc3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bcc957c0a8bde8007f1a8a413a632a1a409890f31f73fe764ef4eac55f59ca87
MD5 d870afd4a56a427c82157d2c5fa7ae12
BLAKE2b-256 a7784c4f9b5006802be0cee220890891569cf834dff1c0ff3b28ae420948cd76

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 ca3dfcf74f2b6962f411c33dd95b0adf3901266e770da6281bc96bb5a8b20de9
MD5 cff84edd1d2ccf55746e61779393c513
BLAKE2b-256 2a27fe98ffad84219a12fa119b0f46db07bb657653f089b9fc8020b6e4961337

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8e4da90e4c2b444d0a171d7444ea10152e07e95972bb40b834a13bdd6de1110c
MD5 fbbcbf24ac0e2bdd01c028e05ac2c09b
BLAKE2b-256 9e0319772ec0adddd5aa49fae237643f60e06d9b7747737a32c1f153d86cdfb6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6dede83a6b903e3ebcd7e8137e7ff46907ce9316e9d7e7f917d7e7cdc570ee05
MD5 d52c1a037b9de67a62b25f480be0a416
BLAKE2b-256 c63d1d6796e95fb488e5acab064c3b8e399f8b15fa41f3c230253006d12692cf

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 53251e256017e2b87f7000aee0353ba42392c442ae0bafd0f6b948593d3f68c6
MD5 251784f82b6e6b194aa890bb21859ee1
BLAKE2b-256 8b06f1c426feff4aa8362dec207712ab9d3d12d8df519e40936495839e1212ea

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 eef8b346ab331bec12bbc83ac75641249e6167fab3d84d8f5ca37fd8e6c7a08c
MD5 5c69d92936a47b0a36f56df4f971cca8
BLAKE2b-256 2f6a7c94ba259ec8c4b2e65d752af351cba75c8892d91f2b47921dae231a233d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp312-cp312-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 3c84294f4470fcabd7830795d754d808133329e0a81d62fcc2e65886164be83b
MD5 cb6bb831a4ba727d8c83d41d81e5967f
BLAKE2b-256 c3a19e961ce649b9b87050c510fb42e23b71cbd3c654d29ff789adf492cf4ce6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 dad55a514868dae4543ca48c4e1fc0fac704ead038dafedf8f1fc0cc263746c1
MD5 2210a56d40aba3cdf9ea99685ce18f81
BLAKE2b-256 2178e79197b0137a0264e2fcf5dbfede06f0cdfb15fdf14d5c29dfb770b9ea7b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp312-cp312-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.6.1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for rapidfuzz-3.6.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 5d82b9651e3d34b23e4e8e201ecd3477c2baa17b638979deeabbb585bcb8ba74
MD5 3a9820c79ab6ad9b35691a7e89c15635
BLAKE2b-256 c5c295e3274a9bc8d1a849941ed951fc8f761ddb4261d40f49ed469ac389398a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f056ba42fd2f32e06b2c2ba2443594873cfccc0c90c8b6327904fc2ddf6d5799
MD5 5b52d200879f27ca6f51ba5c5be4e20b
BLAKE2b-256 ce4942de7d0d5778cf0949f62f0abcf7f30253fb71c3f8ce94c18bfddd800131

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp312-cp312-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp312-cp312-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 a3ee4f8f076aa92184e80308fc1a079ac356b99c39408fa422bbd00145be9854
MD5 76c456b03e4e53c83361e09a4997b090
BLAKE2b-256 bd2064946438a29252f1f959b511a2c04f56b929bca2b31bfecd9540618008a0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp312-cp312-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp312-cp312-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 0a9fc714b8c290261669f22808913aad49553b686115ad0ee999d1cb3df0cd66
MD5 0dbf6ec69d74f7c0431610d4b7b15bcf
BLAKE2b-256 5fd9b9151657ae725de52e80fb9223a6d4202c5b9ef93fb896daf6ad6603fe64

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e49b9575d16c56c696bc7b06a06bf0c3d4ef01e89137b3ddd4e2ce709af9fe06
MD5 cb9f01a1eff18dd7f5060a0afca2f4c5
BLAKE2b-256 5dc100efa630c78a524d395b431226b43dbbdfa83f0131fccfeeacf13eeba26b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 c1a23eee225dfb21c07f25c9fcf23eb055d0056b48e740fe241cbb4b22284379
MD5 9a06de3bf8ad9daebeed2a9e3c2da91c
BLAKE2b-256 facdad1d39bc8f26b12e9ec70c3daad43a4405e9177409b18a707ae509ad250e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fde9b14302a31af7bdafbf5cfbb100201ba21519be2b9dedcf4f1048e4fbe65d
MD5 d786391b15e3dcd6101b42b42e73eff4
BLAKE2b-256 f36285d983e39e06475c0fc9a2b2bdac8ebd9061b1d61fae68c4560975349bac

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 da3e8c9f7e64bb17faefda085ff6862ecb3ad8b79b0f618a6cf4452028aa2222
MD5 622d9301b4e81c545abb21d334bd9413
BLAKE2b-256 b62366c05577f729f47e101a4986e9cf5c556819c2b4a466e0ad5dac2ca74388

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 6b0ccc2ec1781c7e5370d96aef0573dd1f97335343e4982bdb3a44c133e27786
MD5 c08bfefe12988431198f83217a261f8c
BLAKE2b-256 08ec9ac730b3c41ada46a20d531d92ab45f5c11802481345a5c78338c36e6ec9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 03f73b381bdeccb331a12c3c60f1e41943931461cdb52987f2ecf46bfc22f50d
MD5 b56adb0ac81764286677e28ddb577272
BLAKE2b-256 539b988f8914a294f9bfbbc4ff2649fdecff527b262638934d7372bd11bff253

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1dfc557c0454ad22382373ec1b7df530b4bbd974335efe97a04caec936f2956a
MD5 df45b0c2bb1a69c2a1cd1a56e0c2f38a
BLAKE2b-256 3881b83396f8df464a5acb62e378e0ddb421bc66557c90f4dbe7759369cc1976

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7142ee354e9c06e29a2636b9bbcb592bb00600a88f02aa5e70e4f230347b373e
MD5 08ca2ca2686e6b32f94e9ddfc380493b
BLAKE2b-256 f2ca6c6cfd7854cd05d0bf5844b9dba28c7fcb000f7d1de4387ed172c1641e10

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 588c4b20fa2fae79d60a4e438cf7133d6773915df3cc0a7f1351da19eb90f720
MD5 cf871f9be71e7bb362f76752a52027b8
BLAKE2b-256 c9d1c238be61cd1162a9a2a4c223313c0a831a6f64a322c9e10e71af513203cb

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b2ef4c0fd3256e357b70591ffb9e8ed1d439fb1f481ba03016e751a55261d7c1
MD5 383a81e04381ccd5b962babcd62c5b7b
BLAKE2b-256 70be19df5d79b9bf350228466439ba86027744db5ba1ecd5ac8536918764ea8b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp311-cp311-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 484759b5dbc5559e76fefaa9170147d1254468f555fd9649aea3bad46162a88b
MD5 3489332af8ae43c96fa37abd7c0463ac
BLAKE2b-256 23a78eaf7fb236448cc08c135d31a5073b67ae619b75991dbb3ff3c08799a00f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d79aec8aeee02ab55d0ddb33cea3ecd7b69813a48e423c966a26d7aab025cdfe
MD5 05d0785fd1e29d807fe041c3f73a67cf
BLAKE2b-256 faa90bcd4017323d40cec6fc1639eddae1f90b5e080be0c62eb34670b69aa009

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.6.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for rapidfuzz-3.6.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 266dd630f12696ea7119f31d8b8e4959ef45ee2cbedae54417d71ae6f47b9848
MD5 4eb8459779be5d09e85cc0c4a9171e8d
BLAKE2b-256 79f4197dd4590b6e0295ae9f5992e8b7cc39a8868c42082a5419b0174211f08a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 841eafba6913c4dfd53045835545ba01a41e9644e60920c65b89c8f7e60c00a9
MD5 089b34ad2e9043f81a4b08621bb36fca
BLAKE2b-256 530a5f3945c400163bd448a0a01ee97f0d932207e1925a6aa105509dae677f4c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 3c772d04fb0ebeece3109d91f6122b1503023086a9591a0b63d6ee7326bd73d9
MD5 64de46de9fe95a95803339a47721979f
BLAKE2b-256 2f52d601d661f3ca035bbcc3fceba0ad737eda3d3dc519cb50f31b8ecbf4ba64

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 064c1d66c40b3a0f488db1f319a6e75616b2e5fe5430a59f93a9a5e40a656d15
MD5 2fcb10b5faafa9af1c0a8696f3b6eed8
BLAKE2b-256 81e8476107627d8acb7133bad8e4e6a4c7965d6a8329e75fec7c74f0ba0bdd44

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2b19795b26b979c845dba407fe79d66975d520947b74a8ab6cee1d22686f7967
MD5 2683976cf60e10a54f97f9105c702122
BLAKE2b-256 7c505f203ef6e400d1715828c2e025a59138bbc723216678219655d2292c3219

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 2e03038bfa66d2d7cffa05d81c2f18fd6acbb25e7e3c068d52bb7469e07ff382
MD5 bbb4d97a6a8e76abb4a6835bbc429e35
BLAKE2b-256 1c3f1f16df70626d1aaf6c74ba0bf2d24286d2d24df9d041361812b300725b07

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a490cd645ef9d8524090551016f05f052e416c8adb2d8b85d35c9baa9d0428ab
MD5 fae06599d60c81d5d4f86e680db06e8a
BLAKE2b-256 c4947b7dc8ecd1357d220636ce154bbfb1ba3eb57d97dc3d1b2c8016bdd43f7a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 b7e3375e4f2bfec77f907680328e4cd16cc64e137c84b1886d547ab340ba6928
MD5 f14754d6757a41895695fca3ee3016b6
BLAKE2b-256 b795daa8f40cd54c38880e61b3baefa1b432ade7efbfa61cf9607a26b1e1c810

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 060bd7277dc794279fa95522af355034a29c90b42adcb7aa1da358fc839cdb11
MD5 389dba91b4a80b314e99157140ce18e0
BLAKE2b-256 68e75aaec4a9a298c199da3c1f154bb9534845dc049fb9abcad4975af4cf681e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7420e801b00dee4a344ae2ee10e837d603461eb180e41d063699fb7efe08faf0
MD5 ab0c9365d1024c5f30090f5ab16e4f0a
BLAKE2b-256 2eddfa3d1521d09cd3a5a9abe308b532693e956ea49f3d62b5730fb1c4603e03

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 edf97c321fd641fea2793abce0e48fa4f91f3c202092672f8b5b4e781960b891
MD5 3caa7fac7ca09370fe479e8a007dda64
BLAKE2b-256 03a80bef8ab43b025ca956d52b81eebcb6a19a09ea8ca03b67e50ab8747abb8b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 82300e5f8945d601c2daaaac139d5524d7c1fdf719aa799a9439927739917460
MD5 a59847adc96d631c2020d135d4d8274d
BLAKE2b-256 e8000add85e5a1642ad1253f29ae63a18d1038c599d5cfd3de0c401c5e8ceb76

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 40cced1a8852652813f30fb5d4b8f9b237112a0bbaeebb0f4cc3611502556764
MD5 2b9ea7206955b25681ad19fc2478a9be
BLAKE2b-256 54bb1d55ce3cfbe792e0436200fd45f48f69541f7b2f6037bdddae69622e2496

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 fbc07e2e4ac696497c5f66ec35c21ddab3fc7a406640bffed64c26ab2f7ce6d6
MD5 7c3574f989ed85509b93f9a89dbef74b
BLAKE2b-256 917b49038278d8f2c545b640c2282492d5f257c8a91b9a8f23db3219383fe234

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp310-cp310-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 f59d19078cc332dbdf3b7b210852ba1f5db8c0a2cd8cc4c0ed84cc00c76e6802
MD5 4a8e491d6f4fc263c20cd481c4a397c6
BLAKE2b-256 ba1c8ba927ee953e9373a4ecab3168aeeadf97b61a558c973e65d9d66a19ff1b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4243a9c35667a349788461aae6471efde8d8800175b7db5148a6ab929628047f
MD5 6fd312e755c82857d8acf4d586fd8033
BLAKE2b-256 419bef70e7c6f52f72ee2cffb0f74f33a6ad0b7e50b9e6df8ad65b7b6805ee40

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.6.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for rapidfuzz-3.6.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 c65f92881753aa1098c77818e2b04a95048f30edbe9c3094dc3707d67df4598b
MD5 8e689d89a687d28425fb3ab89526cf57
BLAKE2b-256 6bb38ea67abb54bf4ec4881871b8b6ff8d4d246b0cf637302e00c93f12411dfb

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a1788ebb5f5b655a15777e654ea433d198f593230277e74d51a2a1e29a986283
MD5 0b31dbf616676f53f2f0e129d908cee9
BLAKE2b-256 c1af5412e4ff769b99a3d7a53734ed2fff576f7c3b652534c57f874f2dae8ff2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 08b6fb47dd889c69fbc0b915d782aaed43e025df6979b6b7f92084ba55edd526
MD5 6e06fab78aeb832995bfaecabe2f2c43
BLAKE2b-256 9923adf0728898eb85419d69859acf272b1c23d4a46e66b332cba4717b8c91bd

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 06e98ff000e2619e7cfe552d086815671ed09b6899408c2c1b5103658261f6f3
MD5 fddd59284dd86019e46f6615bd612873
BLAKE2b-256 89ad164bc496c8471b258220c9c283629ee383db14c28bf68560c83604147e8b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d73dcfe789d37c6c8b108bf1e203e027714a239e50ad55572ced3c004424ed3b
MD5 590dbb7b4d08d2c655bb183c3e59a68c
BLAKE2b-256 bdf0b75228a40c646dd34666aa921232c2d5cf037dfd9159b254d6a9d0aa64ce

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e06c4242a1354cf9d48ee01f6f4e6e19c511d50bb1e8d7d20bcadbb83a2aea90
MD5 87768d2c08e21d53b0ade8120aa6c2ab
BLAKE2b-256 7777a3a653d038cb1ac7bd315e46f4bdf3ad7b595df8077685de0d4d609eee04

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 96cd19934f76a1264e8ecfed9d9f5291fde04ecb667faef5f33bdbfd95fe2d1f
MD5 f153ab1c524e69356324957dcd8b6179
BLAKE2b-256 02393f94121e21b78e0a2699b272a8906ee5eb6f9d70082d90784464b0a4fcc8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 ed0f712e0bb5fea327e92aec8a937afd07ba8de4c529735d82e4c4124c10d5a0
MD5 d0b0bf0e5d33497871268c6e97fb98b4
BLAKE2b-256 f9c3ab61fa115ecc6416cf17dec098b83fbda8d2c73ba0675f0f593ddacf6ef7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 01835d02acd5d95c1071e1da1bb27fe213c84a013b899aba96380ca9962364bc
MD5 6c9ab8f637c5cdf17fe6a794e80edc8b
BLAKE2b-256 e75e4f2e04541502c5dc846ac5562afb77a43c2030d50913798dc090c6c2a1d4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d056e342989248d2bdd67f1955bb7c3b0ecfa239d8f67a8dfe6477b30872c607
MD5 fa1c72f9f8b157ca5717977c30f8a6a5
BLAKE2b-256 5e88a3da6a2a51d48c6cfea664640bbf14cb39f051a6ea2bf21eb015a3a2bb16

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 23de71e7f05518b0bbeef55d67b5dbce3bcd3e2c81e7e533051a2e9401354eb0
MD5 79faa419004faa8e97a0b4d71f316d38
BLAKE2b-256 d0498798c0d2aeee59f2867cc957f6961eb7b5135e4d863303485ceffc5cdc6d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5a2f3e9df346145c2be94e4d9eeffb82fab0cbfee85bd4a06810e834fe7c03fa
MD5 fddb5fca982a54b9843194ec7a2ed400
BLAKE2b-256 1285b7e6f2534893db1527b26d638ef5d91919650c4d993f8d8b74d4ebf2a7ad

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2a791168e119cfddf4b5a40470620c872812042f0621e6a293983a2d52372db0
MD5 7679f906e64e9c1f332069e891d6fabf
BLAKE2b-256 2a0efb74ff1cbf01cb4ec3a1d4e1eab7b9b9783545a1d21b089e9b34d6ea04d9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ac434fc71edda30d45db4a92ba5e7a42c7405e1a54cb4ec01d03cc668c6dcd40
MD5 365152346470977bd1f70b6e606a9d6a
BLAKE2b-256 14825fd8bf0b549d2fd7b9be5a8bd4f9341a9036395beeeddc23acda44dfcaba

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: rapidfuzz-3.6.1-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 844.3 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for rapidfuzz-3.6.1-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 1c47d592e447738744905c18dda47ed155620204714e6df20eb1941bb1ba315e
MD5 1d6ef3d67e1414f219249709128b36a5
BLAKE2b-256 7fa1010e4dee272ac0713f8a5b97925c96ca8485131cb94c69c7ffe7702b5758

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.6.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for rapidfuzz-3.6.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ebcfb5bfd0a733514352cfc94224faad8791e576a80ffe2fd40b2177bf0e7198
MD5 29611ae3a97bac12162354b545621ae0
BLAKE2b-256 bc08ba6e4591fb1950046f5a177fd21191cd54c58fc13b5e0fade9a4b6310b50

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.6.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for rapidfuzz-3.6.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 8d7a072f10ee57c8413c8ab9593086d42aaff6ee65df4aa6663eecdb7c398dca
MD5 d04801fb87d4ef0d94035a4ed80bb2e7
BLAKE2b-256 0a348f2546e88ce16a435aa299ae9de58b01f721683717d65e89f908661e3877

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4381023fa1ff32fd5076f5d8321249a9aa62128eb3f21d7ee6a55373e672b261
MD5 ccb11baa63e7026b527f05d4f77fe45f
BLAKE2b-256 39b6b1786540f6c6a7b88faa389df375404d1a1d5b2486d1e45f68235faf6a43

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 dec307b57ec2d5054d77d03ee4f654afcd2c18aee00c48014cb70bfed79597d6
MD5 a1709d6a45f1b307b6527be8cf9b5a18
BLAKE2b-256 f02667d14e2c8c4e1654aa1ff1c2ee280119f855149bc209484e3a5e4489e037

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 49b9ed2472394d306d5dc967a7de48b0aab599016aa4477127b20c2ed982dbf9
MD5 a3b654073aac379f2abf6a083fe8a627
BLAKE2b-256 6e8a6a587e3e90bef15a301eaf1bfbfd56874e83c7f8cd0fadf9e5894004da86

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b53137d81e770c82189e07a8f32722d9e4260f13a0aec9914029206ead38cac3
MD5 511e3db4bd379680481349a4600f15a3
BLAKE2b-256 2e87a56d1e9b16c2010a97055fc78e6d7fcbe1d5ea8733712e3187b38624c001

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ad9d74ef7c619b5b0577e909582a1928d93e07d271af18ba43e428dc3512c2a1
MD5 e49e3a9a179267d11f93f5a8d00bcef0
BLAKE2b-256 71b909b7db8af1c3a277b69a0f4bbbb338a030bcf1ce9a670c7c75c71ad40fd0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7183157edf0c982c0b8592686535c8b3e107f13904b36d85219c77be5cefd0d8
MD5 ffde1c6391b38bb8b7a8387af09edb87
BLAKE2b-256 dbe85bfe249904438663155693fb2972df07535cdcd0def29d76b900039da264

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 5dd95b6b7bfb1584f806db89e1e0c8dbb9d25a30a4683880c195cc7f197eaf0c
MD5 d06887f6a754ae2a0c6b72e061f8fbc5
BLAKE2b-256 40905046cd880615f4f307effc5ecf52200aaff85bc8c792eca21dda8964f9d9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a03863714fa6936f90caa7b4b50ea59ea32bb498cc91f74dc25485b3f8fccfe9
MD5 adceccd04e7d682844b157e77f40bb41
BLAKE2b-256 600e0125382bd4f0f20d0aef6bf3c03590695d15f5de0bf1ede4a0867e79c107

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a59472b43879012b90989603aa5a6937a869a72723b1bf2ff1a0d1edee2cc8e6
MD5 4bcaa40849dc7151bd0a9e99c5c31dcd
BLAKE2b-256 1a4b6d96d3fb4e7f9917da9a64671b4065aa230c4d048ece8b52cb619b787721

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 42f211e366e026de110a4246801d43a907cd1a10948082f47e8a4e6da76fef52
MD5 a7a05833e53f80d9fa3b1f8aa664c450
BLAKE2b-256 270c8f950cc634f3ea3386e024a69bf069b4b77ba2c2d226a91b85c48b2fdc62

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d2f0274595cc5b2b929c80d4e71b35041104b577e118cf789b3fe0a77b37a4c5
MD5 d4b74101adde01c6ed121ea7017e89b0
BLAKE2b-256 77bb549a9f0ca5455847340f37041adae5a2b6c1733519d50cd9f25f855b7f01

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2963f4a3f763870a16ee076796be31a4a0958fbae133dbc43fc55c3968564cf5
MD5 ff79f485402470017f0fe41b548ad8b5
BLAKE2b-256 129c8dc4b887f8640942855014d22f40b275e36cdd7c26284e924ee82e8fa9dd

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 757dfd7392ec6346bd004f8826afb3bf01d18a723c97cbe9958c733ab1a51791
MD5 099637794a5e3d442fdb6d0f958d5696
BLAKE2b-256 8b018466656d59415e6f87fd486868d342f90df64602de5ffbd62d00f490c84b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.6.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for rapidfuzz-3.6.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a553cc1a80d97459d587529cc43a4c7c5ecf835f572b671107692fe9eddf3e24
MD5 5be48d4b4483f94ea5f76988a45932d4
BLAKE2b-256 7f770a95013291a143e9544661b64eb4874dae5ed293a56eeaa2181c31920b98

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.6.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for rapidfuzz-3.6.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 7fec74c234d3097612ea80f2a80c60720eec34947066d33d34dc07a3092e8105
MD5 9cdf3bf19afe1c4faf4cdb272796aa74
BLAKE2b-256 b55c42f5b6577b0da9a4b71c80c28c8874761f5aded263fa9e7cc13aed47818b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0bbfae35ce4de4c574b386c43c78a0be176eeddfdae148cb2136f4605bebab89
MD5 ef50039af3f308760d1ebc2195ffce92
BLAKE2b-256 a10761fbacc6b5627e974b2868abd58a1522f0c02740aee8403c88196bcba522

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 1e12319c6b304cd4c32d5db00b7a1e36bdc66179c44c5707f6faa5a889a317c0
MD5 e44c03d59750b4821fcd0380527fd8b4
BLAKE2b-256 235d634e613c9d09a711d30d5becf1f327f615e540f6434ea9c0360107f9de0a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 0402f1629e91a4b2e4aee68043a30191e5e1b7cd2aa8dacf50b1a1bcf6b7d3ab
MD5 8c5cba5259067012956247b34536afbc
BLAKE2b-256 3a0e500bf77d60028023aca21fef6b0d20b9497af84ae9055e66aae2349287ec

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 cd4ba4c18b149da11e7f1b3584813159f189dc20833709de5f3df8b1342a9759
MD5 24fa945310eccd714060616f34245c56
BLAKE2b-256 b4e7132f2bced25d12176430d39d1193b539f19417d564400354fa38cdfd8be3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ae598a172e3a95df3383634589660d6b170cc1336fe7578115c584a99e0ba64d
MD5 f0e0b7a0b45e6a986c0e7ab4b0ada99f
BLAKE2b-256 623f43186a982136560590c0344672f6b7a66922d55f52cb5949b0f2a521b05c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 12ff8eaf4a9399eb2bebd838f16e2d1ded0955230283b07376d68947bbc2d33d
MD5 5a24ee52d85c405d1f1551d86a3a0d19
BLAKE2b-256 d958e794b3c8e635935452fb012d57ef25a367f5df66cc884ca20528494838aa

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 1936d134b6c513fbe934aeb668b0fee1ffd4729a3c9d8d373f3e404fbb0ce8a0
MD5 a359366428b1afc4b911d19058ddc8aa
BLAKE2b-256 251d745c9d11dcd5e5d14fb15d312379ccf82944235219ec02276d07759db225

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 be156f51f3a4f369e758505ed4ae64ea88900dcb2f89d5aabb5752676d3f3d7e
MD5 74798469eea077ee5a75f97c247a661e
BLAKE2b-256 25c4faccb7e9df1afd5564f23eb04119eb27176b481a5544cfc0cf62432d5502

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f382f7ffe384ce34345e1c0b2065451267d3453cadde78946fbd99a59f0cc23c
MD5 e059fc049006d11a6431e1ea6e5618b8
BLAKE2b-256 e1bc178d1605da28142599e0b8ec479e2294d48ae2be095c3645116ec9197555

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b3e5af946f419c30f5cb98b69d40997fe8580efe78fc83c2f0f25b60d0e56efb
MD5 89aa6456db7dbf27b2e1ab3e56cd6100
BLAKE2b-256 f2fa125eccfaa873e7ad42dc301be01f52bdfe01b408d79004d2892c0ef0cf3f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 be368573255f8fbb0125a78330a1a40c65e9ba3c5ad129a426ff4289099bfb41
MD5 bdd8d6e93dd21750390318bac0740499
BLAKE2b-256 2d3b1ab9b54d1cdfde066114aed4ae47d2935abdcfae4f0252f4b80c95d72403

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 01eb03cd880a294d1bf1a583fdd00b87169b9cc9c9f52587411506658c864d73
MD5 dd0c4a1421fbf9b53e04f4af7c5fa09a
BLAKE2b-256 ba977d7bd0fa753318b7e6213ea1214c3697f58cd29e417fa31285648b0fb64b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e19d519386e9db4a5335a4b29f25b8183a1c3f78cecb4c9c3112e7f86470e37f
MD5 7ccdf3c8401a2cef6a6794667823cb49
BLAKE2b-256 4ad673113060cac1401356628403e2d76cced738d652379adca06e74b3d5b484

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page