Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation Code Coverage GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation
  5. It can be largely used as a drop in replacement for fuzzywuzzy. However there are a couple API differences described here

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/rapidfuzz/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.
Note that from RapidFuzz 3.0.0, strings are not preprocessed(removing all non alphanumeric characters, trimming whitespaces, converting all characters to lower case) by default. Which means that when comparing two strings that have the same characters but different cases("this is a word", "THIS IS A WORD") their similarity score value might be different, so when comparing such strings you might see a difference in score value compared to previous versions. Some examples of string matching with preprocessing can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and distance.

Simple Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("this is a test", "this is a test!")
96.55172413793103

Partial Ratio

> from rapidfuzz import fuzz
> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.9090909090909
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> from rapidfuzz import fuzz
> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
84.21052631578947
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Weighted Ratio

> from rapidfuzz import fuzz
> fuzz.WRatio("this is a test", "this is a new test!!!")
85.5

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.WRatio("this is a test", "this is a new test!!!", processor=utils.default_process) # here "this is a new test!!!" is converted to "this is a new test"
95.0
> fuzz.WRatio("this is a test", "this is a new test")
95.0

> # Converting string to lower case
> fuzz.WRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.WRatio("this is a word", "THIS IS A WORD", processor=utils.default_process) # here "THIS IS A WORD" is converted to "this is a word"
100.0

Quick Ratio

> from rapidfuzz import fuzz
> fuzz.QRatio("this is a test", "this is a new test!!!")
80.0

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.QRatio("this is a test", "this is a new test!!!", processor=utils.default_process)
87.5
> fuzz.QRatio("this is a test", "this is a new test")
87.5

> # Converting string to lower case
> fuzz.QRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.QRatio("this is a word", "THIS IS A WORD", processor=utils.default_process)
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 76.92307692307692, 1), ('New York Giants', 64.28571428571428, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
('Dallas Cowboys', 83.07692307692308, 3)

> # With preprocessing
> from rapidfuzz import process, fuzz, utils
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2, processor=utils.default_process)
[('New York Jets', 100.0, 1), ('New York Giants', 78.57142857142857, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio, processor=utils.default_process)
('Dallas Cowboys', 90.0, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
    for word in words:
        scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

This version

3.6.2

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-3.6.2.tar.gz (1.6 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-3.6.2-pp39-pypy39_pp73-win_amd64.whl (1.6 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.6.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.6.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.6.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.6.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (2.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.6.2-pp38-pypy38_pp73-win_amd64.whl (1.6 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.6.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.6.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.6.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.6.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (2.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.6.2-cp312-cp312-win_arm64.whl (841.7 kB view details)

Uploaded CPython 3.12 Windows ARM64

rapidfuzz-3.6.2-cp312-cp312-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

rapidfuzz-3.6.2-cp312-cp312-win32.whl (1.8 MB view details)

Uploaded CPython 3.12 Windows x86

rapidfuzz-3.6.2-cp312-cp312-musllinux_1_1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

rapidfuzz-3.6.2-cp312-cp312-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ s390x

rapidfuzz-3.6.2-cp312-cp312-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.6.2-cp312-cp312-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

rapidfuzz-3.6.2-cp312-cp312-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

rapidfuzz-3.6.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.6.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

rapidfuzz-3.6.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.6.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

rapidfuzz-3.6.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.6.2-cp312-cp312-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

rapidfuzz-3.6.2-cp312-cp312-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

rapidfuzz-3.6.2-cp312-cp312-macosx_10_9_universal2.whl (2.7 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.6.2-cp311-cp311-win_arm64.whl (846.5 kB view details)

Uploaded CPython 3.11 Windows ARM64

rapidfuzz-3.6.2-cp311-cp311-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-3.6.2-cp311-cp311-win32.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-3.6.2-cp311-cp311-musllinux_1_1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-3.6.2-cp311-cp311-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-3.6.2-cp311-cp311-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.6.2-cp311-cp311-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-3.6.2-cp311-cp311-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-3.6.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.6.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-3.6.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.6.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-3.6.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.6.2-cp311-cp311-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-3.6.2-cp311-cp311-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-3.6.2-cp311-cp311-macosx_10_9_universal2.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.6.2-cp310-cp310-win_arm64.whl (845.7 kB view details)

Uploaded CPython 3.10 Windows ARM64

rapidfuzz-3.6.2-cp310-cp310-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-3.6.2-cp310-cp310-win32.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-3.6.2-cp310-cp310-musllinux_1_1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-3.6.2-cp310-cp310-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-3.6.2-cp310-cp310-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.6.2-cp310-cp310-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-3.6.2-cp310-cp310-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-3.6.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.6.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-3.6.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.6.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-3.6.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.6.2-cp310-cp310-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-3.6.2-cp310-cp310-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-3.6.2-cp310-cp310-macosx_10_9_universal2.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.6.2-cp39-cp39-win_arm64.whl (847.3 kB view details)

Uploaded CPython 3.9 Windows ARM64

rapidfuzz-3.6.2-cp39-cp39-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-3.6.2-cp39-cp39-win32.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-3.6.2-cp39-cp39-musllinux_1_1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-3.6.2-cp39-cp39-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-3.6.2-cp39-cp39-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.6.2-cp39-cp39-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-3.6.2-cp39-cp39-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-3.6.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.6.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-3.6.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.6.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-3.6.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.6.2-cp39-cp39-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-3.6.2-cp39-cp39-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-3.6.2-cp39-cp39-macosx_10_9_universal2.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.6.2-cp38-cp38-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-3.6.2-cp38-cp38-win32.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-3.6.2-cp38-cp38-musllinux_1_1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-3.6.2-cp38-cp38-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-3.6.2-cp38-cp38-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.6.2-cp38-cp38-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-3.6.2-cp38-cp38-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-3.6.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.6.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-3.6.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.6.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-3.6.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.6.2-cp38-cp38-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-3.6.2-cp38-cp38-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-3.6.2-cp38-cp38-macosx_10_9_universal2.whl (2.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file rapidfuzz-3.6.2.tar.gz.

File metadata

  • Download URL: rapidfuzz-3.6.2.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for rapidfuzz-3.6.2.tar.gz
Algorithm Hash digest
SHA256 cf911e792ab0c431694c9bf2648afabfd92099103f2e31492893e078ddca5e1a
MD5 c5d811cfe345a4806cd34d0b72b4c933
BLAKE2b-256 117c36511ff0e2e5f6cce4e854dfc1974a1519929214a38a165322f38dd01a19

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 259364199cbfeca33b1af369fc7951f71717aa285184a3fa5a7b1772da1b89db
MD5 499a9057cd73929a9f15d5584ffe6fd5
BLAKE2b-256 365fff2bae21fbe6ef8c7ee4eb4181beac44a04131516b59751183d7150a0e48

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7f9fa14136a5b0cba1ec42531f7c3e0b0d3edb7fd6bc5e5ae7b498541f3855ab
MD5 6505ad5f0e64489e2cf8afde1471a47a
BLAKE2b-256 9dc9699bce83fade244701e636c8a099dc1ad0436aa8046d53016763f7332e3d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d41dd59a70decfce6595315367a2fea2af660d92a9d144acc6479030501014d7
MD5 d81dbeafd0e57af9f4976907b295261c
BLAKE2b-256 162d9e58992205d06d2101448d50b78d94f02eb86a05e3c7a2376f8ce679f375

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 012221629d54d3bee954148247f711eb86d4d390b589ebfe03172ea0b37a7531
MD5 4b0f2b6a49bae0983d8341e9b7291369
BLAKE2b-256 260eba014c02a09a2f0540888ce684319faaa100223edddbc7388cbcde1b8f88

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f31314fd2e2f3dc3e519e6f93669462ce7953df2def1c344aa8f5345976d0eb2
MD5 a51c60ab65685175a61d00cdd14c2fbc
BLAKE2b-256 1fb1b561acb772b0ee588728aed71ab208991697b96bbe32d2d76ee02ee243fd

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 7382c90170f60c846c81a07ddd80bb2e8c43c8383754486fa37f67391a571897
MD5 777d002591e7d67c4a803c582a5ea576
BLAKE2b-256 4b220a7d03da8a6d23047756d79f561480a7d6ad7ce33b77ebab60e456375783

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 62df2136068e2515ed8beb01756381ff62c29384d785e3bf46e3111d4ea3ba1e
MD5 1f6ebd0703c5368835174f49a69c9ad3
BLAKE2b-256 208fad8fa0db74aedb0c59a026882a30a3059daac472ec317c7fda3bda426973

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d4f6de745fe6ce46a422d353ee10599013631d7d714a36d025f164b2d4e8c000
MD5 102cb09a8f01a1313ff8077f2f003eb4
BLAKE2b-256 8ae74197cd67ef1a83f5139ded8e912ec0169a1160743557a9d6d349e991246a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 53597fd72a9340bcdd80d3620f4957c2b92f9b569313b969a3abdaffd193aae6
MD5 10af725592a9ddd1d3def32ce7a49e34
BLAKE2b-256 0898ff4a1b315599cfed914c27e96a24c4603c54ab277956fa0b1e6f5be3ad54

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 36ce7b68a7b90b787cdd73480a68d2f1ca63c31a3a9d5a79a8736f978e1e9344
MD5 44d885df9498685bfa7af0a38988acc6
BLAKE2b-256 5c5cb7a3de45f94cfb1c1af9b9cfcdf3f801c33ab306294eda4c5ed199a6f45f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp312-cp312-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 b593cc51aed887e93b78c2f94dfae9008be2b23d17afd3b1f1d3eb3913b58f26
MD5 17425de92ffd50738cf7a2c06947599a
BLAKE2b-256 e0640556d180eab3baa83c2438a353176fd7d95bc16b1d393e8cd3e096e46be7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 87ac3a87f2251ae2e95fc9478ca5c759de6d141d04c84d3fec9f9cdcfc167b33
MD5 fe864a77edbe343c0c8d75d96c49683a
BLAKE2b-256 e9901f224c2e8821eb525db04d8457f44f005658697b1b1ba44d6bc83e31ba0e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp312-cp312-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.6.2-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for rapidfuzz-3.6.2-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 66b008bf2972740cd2dda5d382eb8bdb87265cd88198e71c7797bdc0d1f79d20
MD5 9aedad3660474456860ed2630befbe7e
BLAKE2b-256 f9ba8d0fe49edaaceb30b84cea54b4ea95490dca85927b0d20ada2619c483000

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 48e1eaea8fcd522fca7f04f0480663f0f0cfb77957092cce60a93f4462864996
MD5 7aeabbba969f8dbb41cf432fa63bb4e6
BLAKE2b-256 693a95a0d35d1b028f648f9dd0db943ce2819ebc923fe600bc8d7eac480c6bc5

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp312-cp312-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp312-cp312-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 9a74102fc5a2534fe91f7507838623e1f3a149d8e05648389c42bb42e14b1c3f
MD5 bb57fc9edcb699916839ff2398bffc62
BLAKE2b-256 6a7fc7151bdc2fefdf9beeccbc597a877e03755109e912c3de75a867354cf588

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp312-cp312-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp312-cp312-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 3c1dc078ef371fce09f9f3eec2ca4eaa2a8cd412ec53941015b4f39f14d34407
MD5 c0f0cc7bd9ffa55a24be84303cde0659
BLAKE2b-256 6afc16929a3719d395ca473dbc453a462fa9d32df4782a7d320c2c1e9e61936c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ddc380ffaa90f204cc9ddcb779114b9ab6f015246d549de9d47871a97ef9f18a
MD5 3d42fb2bf24ae39327e0488e1bfbf48a
BLAKE2b-256 428b0465399e03218e8a39a9bb03eebf7fb43d69772a64b9f1ee7adb5c9893d2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 3ae7c86914cb6673e97e187ba431b9c4cf4177d9ae77f8a1e5b2ba9a5628839e
MD5 9affe331ce86135e884b7bfdfb6ea8ad
BLAKE2b-256 0bfa4b399e2a113c64c3a6737f354bd16433612465260009c283c315575ee9f2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 80e51b22a7da83f9c87a97e92df07ed0612c74c35496590255f4b5d5b4212dfe
MD5 429273988a5ae682c08fb3467a5ea44f
BLAKE2b-256 0fc6ee8b50f93f1c91be424544cafd4848ada07101db3fd664365389dafd3c41

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 f8b77779174b1b40aa70827692571ab457061897846255ad7d5d559e2edb1932
MD5 c8f2329715e6f5d193887880451d7df5
BLAKE2b-256 74ff55b6a704db154f175b2fec088a302796e32a3a5119858af6fc882e758fe6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 617949a70150e6fffdaed19253dd49f7a53528411dc8bf7663d499ba21e0f61e
MD5 0376dd2b77573a6b80a2c0c948b3a9db
BLAKE2b-256 10bf4b8f1b244485d7194c72fee3f0a5a20f0eea821bb1efc3c853af97951cc6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e1507fc5769aa109dda4de3a15f822a0f6a03e18d627bd0ba3ddbb253cf70e07
MD5 72783952c77d681d408aba1d88b9c062
BLAKE2b-256 252f32dc0b06f8f8bc11956bf6c9720526d5787208b583138a95909256e703eb

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 74c6773b11445b5e5cf93ca383171cd0ac0cdeafea11a7b2a5688f8bf8d813e6
MD5 e48e0946a361c6e83b424cf51bcc91a7
BLAKE2b-256 7adbd8b3b5fc38b59cc01a3fe610fe9f0ecc1cd1282e422164a7602ec6920614

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6468f8bc8c3c50604f43631550ef9cfec873515dba5023ca34d461be94669fc8
MD5 1d920f84b4ea2aaa20431ed307eae00d
BLAKE2b-256 8655ab3e4104f26f4bf86bbf64679a8aa1d2d70879e2d075ec1de8a198fd3e1f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 337e357f693130c4c6be740652542b260e36f622c59e01fa33d58f1d2750c930
MD5 b39e3bfac9cbeccc081c4e2bc872b950
BLAKE2b-256 f843cb9389ef5edd0e0d2f58b8e148c40af4ecbb428f85d899c5c45c17d48160

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 de8adc12161bf282c60f12dc9233bb31632f71d446a010fe7469a69b8153427f
MD5 5d21cb85302a33aca6e09d3ca1b68199
BLAKE2b-256 5612c5376bdf06f4af24389f023e5132f616e00a58e25bb520bdd892eff4a955

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp311-cp311-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 af7c19ec86e11488539380d3db1755be5d561a3c0e7b04ff9d07abd7f9a8e9d8
MD5 44a415c1a3d7e6573a9b96ebdeba3b5c
BLAKE2b-256 6d55b535ff940700dfb08ca7c17732b4b39d26e102dff2b32de1e9f2d2c5e692

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 95a49c6b8bf1229743ae585dd5b7d57f0d15a7eb6e826866d5c9965ba958503c
MD5 d626687aab8bce39c7b55a915a7bac0d
BLAKE2b-256 a601eadc2a2a45ecef8c724737558fa56acc1bd876fa96958017d9d0d83c3589

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.6.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for rapidfuzz-3.6.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 9a07dffac439223b4f1025dbfc68f4445a3460a859309c9858c2a3fa29617cdc
MD5 5a97728fb7081e2525eda8aba6a0fdfa
BLAKE2b-256 8eaee0f305766658a012ef38a1425cc5baee4b7184235fa44fcefba3efd73efc

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d57b98013b802621bbc8b12a46bfc9d36ac552ab51ca207f7ce167ad46adabeb
MD5 a32d253e70a017057d7ec07d7e162666
BLAKE2b-256 9af95497b6938472719cfeab69ca512c0335e86e9acecf1b69dba5684c2345e4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 1dfe4c24957474ce0ac75d886387e30e292b4be39228a6d71f76de414dc187db
MD5 21cfe3bca84faa3ddc999e27b869e399
BLAKE2b-256 7b85ccae89d60b0fb731feafc6dfe1a10337914881e6f378c5d3592f3c917978

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 824cc381cf81cbf8d158f6935664ec2a69e6ac3b1d39fa201988bf81a257f775
MD5 d0c2051518075b9293a2d98111c70f7c
BLAKE2b-256 b10660892a7d02ed06c5ce56b96c49336dec2af6e2772ff23098a9f0b4be7c52

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e48dde8ca83d11daa00900cf6a5d281a1297aef9b7bfa73801af6e8822be5019
MD5 dcc16985db1f9e5a2d75d44b1938044e
BLAKE2b-256 68ae17687371f2a3b9a9cbb02d158f888383ea8089495bb406f1239e98dc1626

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 6d67b649bf3e1b1722d04eca44d37919aef88305ce7ad05564502d013cf550fd
MD5 2915c0dc669a56ffd3355e3b07f0bf2d
BLAKE2b-256 ec55c6416ea271fe71a3d76d209e272588794bd42d9a8b2c98bd82d1528d572c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 495c0d8e14e6f12520eb7fc71b9ba9fcaafb47fc23a654e6e89b6c7985ec0020
MD5 d42329970f4d4895958ad5ddfb458edc
BLAKE2b-256 a3496b56c6aa01f15fa682c7827c5d7432866790099a62f0f9f94e25b76283b3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 9d457c89bac1471442002e70551e8268e639b3870b4a4521eae363c07253be87
MD5 d9b4b0388c277abf2f0cca3f750e2d9a
BLAKE2b-256 d2a23e09936bf64d43436fd3f04ea0c0de87100b4dbc9641d97d65141a05294c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 673ba2c343644805acdae1cb949c6a4de71aa2f62a998978551ebea59603af3f
MD5 a5fbdfa6d1a51d1c795cb463ef78417f
BLAKE2b-256 5c58f662af54e5123e7bc7f5c77d7a595f57e7a19f3e78eea82cd0567b901dec

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a945567c2b0b6e069454c9782d5234b0b6795718adf7a9f868bd3144afa6a023
MD5 f98580ee0414c2924d743845fab57d4b
BLAKE2b-256 22abb26298596dd408b1985d8cbe0b594c04236bf96114bcc00d53060083147b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bd82f9838519136b7083dd1e3149ee80344521f3dc37f744f227505ff0883efb
MD5 9415217301468f79351f9f0ebc40b873
BLAKE2b-256 2ede5c79ea5c79c702ed72a8b3475f4b7f92991a229dd51297bc194b3b9fe786

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a7895e04a22d6515bc91a850e0831f2405547605aa311d1ffec51e4818abc3c1
MD5 78283d51d8315adc1a12bba0a4266ac4
BLAKE2b-256 bea1e1b38ce74d7d62b75afab3a531f33ec53a8e65c04401774f00908bf1d3d9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 080cb71b50cb6aff11d1c6aeb157f273e2da0b2bdb3f9d7b01257e49e69a8576
MD5 3bb310f9938c5baa7454b02a073d0095
BLAKE2b-256 d8ea140a9f6e7349d222bcab5e2cdbc4aa1e6e85f00938630ca0652014eec316

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e06f6d270112f5db001f1cba5a97e1a48aee3d3dbdcbea3ec027c230462dbf9b
MD5 ac0a0db7476c5a569f8e736121cd775b
BLAKE2b-256 ac8b84362eb63807686b286a51eec81c2f516d3a5c51c4a471e2880fc27915b3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp310-cp310-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 1c54d3c85e522d3ac9ee39415f183c8fa184c4f87e7e5a37938f15a6d50e853a
MD5 3572ab603703934a554b7c9c0de67014
BLAKE2b-256 c6ea5cee18e93499f1ada96c05a614b1d66041b5a5ebe5664dca8eb0aff9c144

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4209816626d8d6ff8ae7dc248061c6059e618b70c6e6f6e4d7444ae3740b2b85
MD5 6a4bf8ee73bf19abf3888a027c76fbb3
BLAKE2b-256 c69d9bb9d086933c92a402c489b906c90854138e8bca2baf97de13e90767000a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.6.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for rapidfuzz-3.6.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 c17c5efee347a40a6f4c1eec59e3d7d1e22f7613a97f8b8a07733ef723483a04
MD5 6f828e8be0dcc1377ca76a75ca38d678
BLAKE2b-256 52cd89ca0ac74458967f8d0dae337c3664497a3e18410e54e8e23392efd64af2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 423c7c588b09d618601097b7a0017dfcb91132a2076bef29023c5f3cd2dc3de1
MD5 30ae469e3eb9c4d6bd5dc79ba1ba5c8c
BLAKE2b-256 ed698a8de4a82bce95925ce1167cbc159f1e1a76a09330a268cb94d31f1c7c04

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 6ee98d88ae9ccc77ff61992ed33b2496478def5dc0da55c9a9aa06fcb725a352
MD5 ff6832d5b415c4fbbe47092258f744b7
BLAKE2b-256 7148253c23dde6ba0d2d1f0fbf3fcea88ece0bdbaee63d3392cda876843aae97

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 ef3925daaa93eed20401012e219f569ff0c039ed5bf4ce2d3737b4f75d441622
MD5 2967b3c2964706dbff48510db69192eb
BLAKE2b-256 76990ef7f4dd67a2d705021862fc27994e1633fab86ac0da12410254c1299c36

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 bec353f022011e6e5cd28ccb8700fbd2a33918197af0d4e0abb3c3f4845cc864
MD5 6dacf717ad5a9ef8e3391aa41e51fcce
BLAKE2b-256 77e407d70317817e7d7fe02ebee391035a1b9aa55d7423c0583b699080b5a02e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e706f302c6a3ae0d74edd0d6ace46aee1ae07c563b436ccf5ff04db2b3571e60
MD5 b36c6ca444e38cc78857072dd3e1bb8c
BLAKE2b-256 b60ef9fc8da2f5cd0860a7a73e104a738639a3624c40ec7cdbddeaf6ea045858

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 35aeac852bca06023d6bbd50c1fc504ca5a9a3613d5e75a140f0be7601fa34ef
MD5 b10ab6204c894db3a9c2b8a974683d4a
BLAKE2b-256 df36c10cebfa5bf3c8370369ae7b573196ce3de5e9b055b03e126110b4aa4787

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 ab269adfc64480f209e99f253391a10735edd5c09046e04899adab5fb132f20e
MD5 aa19d9df1261c1ff53dfc565758b5d3d
BLAKE2b-256 64ed475559c10384fe017a10cf9ebce678fcf7d81f337c7d5e24a2351c99a447

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 85a5b6e026393fe39fb61146b9c17c5af66fffbe1410e992c4bb06d9ec327bd3
MD5 a6985bc7cb5185ce57b6b99460ab24de
BLAKE2b-256 e16d61e1fcdcca4c48d25ce863e86098db4d7775d78a97dcb78525d6fda64cf0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cbd5894f23fdf5697499cf759523639838ac822bd1600e343fdce7313baa02ae
MD5 6db718c0fa4edb43129a80fc70a4841f
BLAKE2b-256 788a5a50da93bccb9195196f0c815f44a6e4592e47ad27d46042c3a45c98dea3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 be69f7fd46b5c6467fe5e2fd4cff3816b0c03048eed8a4becb9a73e6000960e7
MD5 11cad978895c7631ff47d19a678c443c
BLAKE2b-256 44f05816056f0cd73500c8816299868ab0c8157bd4d6928d8364f4905ea5920f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3168ff565d4b8c239cf11fb604dd2507d30e9bcaac76a4077c0ac23cf2c866ed
MD5 19e7e5632d9f92104795e1c3939a4622
BLAKE2b-256 4581d5d52133f647f35d9a4e3807579966057d4c7c2106085f43548f929e87e5

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 380586664f2f63807050ddb95e7702888b4f0b425abf17655940c411f39287ad
MD5 b3b8c17c502a0b2471b0b3cbf6303d47
BLAKE2b-256 2b58b2d16d9e87484513cd323bb70eb78d4897c1ea9694c6b1b3a6d11aaa1736

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a5637e6bf11b15b5aff6ee818c76bdec99ad208511b78985e6209ba648a6e3ee
MD5 564da86ee830853851d32b18d0bc2a96
BLAKE2b-256 ad5a1204ca975c6597ed880feefb678635905d96b73e829bdba220f20574ea9b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: rapidfuzz-3.6.2-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 847.3 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for rapidfuzz-3.6.2-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 6478f7803efebf5f644d0b758439c5b25728550fdfbb19783d150004c46a75a9
MD5 05690a8ab9aece38c8d74acdd28934ff
BLAKE2b-256 e331e91c42b8934e1d1c3e722476b58b059b674e465b2af3a876fb7b1c35b736

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.6.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for rapidfuzz-3.6.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 fe2a68be734e8e88af23385c68d6467e15818b6b1df1cbfebf7bff577226c957
MD5 6adaab0b7c4717d9eb76173d4c10c634
BLAKE2b-256 31bdc77bce6041eb4f1b32d45ce0ddd01070ae6ed5b8bc6f4238d4d060744378

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.6.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for rapidfuzz-3.6.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 2d580d937146e803c8e5e1b87916cab8d6f84013b6392713e201efcda335c7d8
MD5 8ed2a522c9d0f2cce49062edd11e0e7f
BLAKE2b-256 a490672cb7d0390ce1ad75cb10dd0936503f658889f308602857477aa3eb4820

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4fcfa23b5553b27f4016df77c53172ea743454cf12c28cfa7c35a309a2be93b3
MD5 9c8952a0c4c87bd5225a1471c6691e10
BLAKE2b-256 cb1dfb8780665a0842f7ffc1bd4c67dbe68932d4c45bbdc81333396cae7ec9da

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 6440ed0b3007c1c9286b0b88fe2ab2d9e83edd60cd62293b3dfabb732b4e8a30
MD5 74a29edd0cc1b0ecd9d52b13cad98d59
BLAKE2b-256 7e434cd6d64d8ebca21de86e2871490a01513d5e4e0f8283398eb1095de460cc

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 1df2faf80201952e252413b6fac6f3e146080dcebb87bb1bb722508e67558ed8
MD5 f8bb074dd5dc77ff5aa2ab2b151a9ba2
BLAKE2b-256 19fb242a51c2d1c24fcb5bb305d4605711faafc3feecd11d49119c1bc02c3d3c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2acd2514defce81e6ff4bbff50252d5e7df8e85a731442c4b83e44c86cf1c916
MD5 5e7fae1aff04bbb54514126ff9d45570
BLAKE2b-256 7d2e7574b6349d9001855d51b6c13f092af2d255ea18156905bf763532807ced

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 7f18397c8d6a65fc0b288d2fc29bc7baeea6ba91eeb95163a3cd98f23cd3bc85
MD5 278966f1444a88378611a946baed52b1
BLAKE2b-256 7f465cfab88331d8a8393fb509f02a10fc6a1c89b501600234cc4d50c2ae7535

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5378c04102c7f084cde30a100154fa6d7e2baf0d51a6bdd2f912545559c1fb35
MD5 52188d4ad54fbd43979b180c61334dd0
BLAKE2b-256 a30724e88e558ac8ef40d9e769191da5de84f38697d8b9f2dc0f8122aab029d6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 16270b5529de83b7bae7457e952e4d9cf3fbf029a837dd32d415bb9e0eb8e599
MD5 f1c27817db77ed37f8c79ffe4d6d6f28
BLAKE2b-256 24ee1ad9705821147db0d007907276d170736d5e18da03117e57023df6ee7257

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 d8e5a437b9089df6242a718d9c31ab1742989e9400a0977af012ef483b63b4c2
MD5 e04ef366bd7bb9c716cccee5cd0a6ab5
BLAKE2b-256 6f6cfab67d972f6c667768f08aec0e29ed279f694520a0d1ca621aad6b480e5c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 81a630ed2fc3ec5fc7400eb66bab1f87e282b4d47f0abe3e48c6634dfa13b5e4
MD5 7063debc8364525ea2a77ea62530adc3
BLAKE2b-256 be64602f18ec67bac998fa4c71a7d40aef0cbf2be55724be2b46cf1a3078d666

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2a46220f86a5f9cb016af31525e0d0865cad437d02239aa0d8aed2ab8bff1f1c
MD5 17f784cb096579984d463cd4ad229726
BLAKE2b-256 bd34d700b182fd6c65a34f4fa37bd82691c32582ec330a89c4c80354af39ca34

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ed52461ae5a9ea4c400d38e2649c74a413f1a6d8fb8308b66f1fbd122514732f
MD5 43c6cf74cb255cc48d6d3cfa75d3f691
BLAKE2b-256 54db0abbf2863849d1c34d93b392c172f326135cbb6318317e752a76aeb3c5d0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 28243086ed0e50808bb56632e5442c457241646aeafafd501ac87901f40a3237
MD5 aa8e6a2c5b3e4ad0fb9c3683013f38c2
BLAKE2b-256 d4504e13755fbe06f751aca14e992a9c6d67efdc402676a8bfe55d1c296a8f53

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 1b86b93d93020c2b3edc1665d75c8855784845fc0a739b312c26c3a4bf0c80d5
MD5 4e3dfec10502592dd6f082bcb05cd407
BLAKE2b-256 b5019222118911a8f903d188e519552bc79fcf9a3a14b87c455f1ec883e693b1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.6.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for rapidfuzz-3.6.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 354ad5fe655beb7b279390cb58334903931c5452ecbad1b1666ffb06786498e2
MD5 e9871296309beb8730a4b01dc93eda51
BLAKE2b-256 f1c91bbf8100fdeb5de1e4d9d5ed2dd92f275b50cdc1a712da3fd6e052cc25a0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.6.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for rapidfuzz-3.6.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 f3a70f341c4c111bad910d2df69c78577a98af140319a996af24c9385939335d
MD5 eeef6a80faf04c504bde9667e157d43e
BLAKE2b-256 41edb7374cfe538dfa276ba7ca2146d353f3c44236d5a549eaa79701844a6d65

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9bcc91ebd8fc69a6bd3b5711c8250f5f4e70606b4da75ef415f57ad209978205
MD5 6b4c27cf8d2974c790fe0ce087b52d9b
BLAKE2b-256 237c2167dc18962dc6ffc981970963e7ee3326c2f5bf3cc8e36f1425330890aa

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 84c1032ae42628465b7a5cc35249906061e18a8193c9c27cbd2db54e9823a9a6
MD5 82c8f429dc2219c5b20aff182ec8f3a8
BLAKE2b-256 fd75ffd80aebdd5e84bcff6305a2933df9a5f2c36040ac2c429d4745f0a5dbdb

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 3549123fca5bb817341025f98e8e49ca99f84596c7c4f92b658f8e5836040d4a
MD5 fae1f21a81dc4165865cd51bf7bcf96f
BLAKE2b-256 a7c6bda849dafd02fdbc937bcfecdbd0ba3db9905278d67bbe812fdd0a03f93c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4edcceebb85ebfa49a3ddcde20ad891d36c08dc0fd592efdab0e7d313a4e36af
MD5 9e38ddf48c637dc088fc03e240443815
BLAKE2b-256 2f9eae5c102ffe44b1bc93fc2e387575d77be1e9d4366be87b7e19480db84356

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 153d065e353371cc0aeff32b99999a5758266a64e958d1364189367c1c9f6814
MD5 e667410f271e2b66594ce95f8ffc3cbf
BLAKE2b-256 dbc94503002404d0cb9092db9b5ecabc8db83047b1c7a7e81decac5766346068

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eb2e51d01b9c6d6954a3e055c57a80d4685b4fc82719db5519fc153566bcd6bb
MD5 7bb2292a86ac1aee1d931b45758e947d
BLAKE2b-256 890688f002ac08d7525d2e2642c931acd1a8ed327887d62e21c377e47e582ef5

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 d07899506a5a8760448d9df036d528b55a554bf571714173635c79eef4a86e58
MD5 7b5bc965562e9d781d104f800dfdcdc0
BLAKE2b-256 15f89d0fc0cecf84858ae607015137ddbac8730f27d82be6e5c32c5174ac2f43

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 35bd4bc9c40e6994c5d6edea4b9319388b4d9711c13c66d543bb4c37624b4184
MD5 5ff03f59ea6f23828808b113faa88daf
BLAKE2b-256 375be4d0f29d3c6a74f410137351da9c1364727862b61292e9a705dea39c215a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4c279928651ce0e9e5220dcb25a00cc53b65e592a0861336a38299bcdca3a596
MD5 48f2d164be67b1f0e41d3e8e530bbaa9
BLAKE2b-256 a248c0d5907c1406850c80f3302724e9b9b43a2c245439b8811c1efb7160dd7c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cda81d0e0ce0c13abfa46b24e10c1e85f9c6acb628f0a9a948f5779f9c2076a2
MD5 462dc4c2683ae158634360f5cec306a4
BLAKE2b-256 83d38e76b79a62ea8028ce3a91da631c7040a026433323a90479e3d5e0a6b24a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 28c011fb31f2c3f82f503aedd6097d3d3854e574e327a119a3b7eb2cf90b79ca
MD5 ccd7906d6aeb1a2dd789926c6e211fb8
BLAKE2b-256 c2e1d9ffb2b7607ca6308c022d17924544c6d4857a395a35f901bd7f3e62dbbe

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dbee7f5ff11872b76505cbd87c814abc823e8757f11c69062eb3b25130a283da
MD5 fb5f4cee1522c9835ab65467aee0857d
BLAKE2b-256 db51a84d76d3e89e6660c242e86ac85e5613ac9b82d70586e03c55bd937b8809

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.6.2-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.6.2-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7d830bc7a9b586a374147ec60b08b1f9ae5996b43f75cc514f37faef3866b519
MD5 1f8e8e0202a16c54b89d364c3c989859
BLAKE2b-256 1ab0b3a62a93666bb6c34f3db08aa4558354268216560cd0c18f34a32e01028e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page