Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation Code Coverage GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation
  5. It can be largely used as a drop in replacement for fuzzywuzzy. However there are a couple API differences described here

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/rapidfuzz/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.
Note that from RapidFuzz 3.0.0, strings are not preprocessed(removing all non alphanumeric characters, trimming whitespaces, converting all characters to lower case) by default. Which means that when comparing two strings that have the same characters but different cases("this is a word", "THIS IS A WORD") their similarity score value might be different, so when comparing such strings you might see a difference in score value compared to previous versions. Some examples of string matching with preprocessing can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and distance.

Simple Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("this is a test", "this is a test!")
96.55172413793103

Partial Ratio

> from rapidfuzz import fuzz
> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.9090909090909
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> from rapidfuzz import fuzz
> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
84.21052631578947
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Weighted Ratio

> from rapidfuzz import fuzz
> fuzz.WRatio("this is a test", "this is a new test!!!")
85.5

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.WRatio("this is a test", "this is a new test!!!", processor=utils.default_process) # here "this is a new test!!!" is converted to "this is a new test"
95.0
> fuzz.WRatio("this is a test", "this is a new test")
95.0

> # Converting string to lower case
> fuzz.WRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.WRatio("this is a word", "THIS IS A WORD", processor=utils.default_process) # here "THIS IS A WORD" is converted to "this is a word"
100.0

Quick Ratio

> from rapidfuzz import fuzz
> fuzz.QRatio("this is a test", "this is a new test!!!")
80.0

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.QRatio("this is a test", "this is a new test!!!", processor=utils.default_process)
87.5
> fuzz.QRatio("this is a test", "this is a new test")
87.5

> # Converting string to lower case
> fuzz.QRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.QRatio("this is a word", "THIS IS A WORD", processor=utils.default_process)
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 76.92307692307692, 1), ('New York Giants', 64.28571428571428, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
('Dallas Cowboys', 83.07692307692308, 3)

> # With preprocessing
> from rapidfuzz import process, fuzz, utils
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2, processor=utils.default_process)
[('New York Jets', 100.0, 1), ('New York Giants', 78.57142857142857, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio, processor=utils.default_process)
('Dallas Cowboys', 90.0, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
    for word in words:
        scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-3.7.0.tar.gz (1.6 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-3.7.0-pp39-pypy39_pp73-win_amd64.whl (1.6 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.7.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.7.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.7.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.7.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (2.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.7.0-pp38-pypy38_pp73-win_amd64.whl (1.6 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.7.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.7.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.7.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.7.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (2.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.7.0-cp312-cp312-win_arm64.whl (842.7 kB view details)

Uploaded CPython 3.12 Windows ARM64

rapidfuzz-3.7.0-cp312-cp312-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

rapidfuzz-3.7.0-cp312-cp312-win32.whl (1.8 MB view details)

Uploaded CPython 3.12 Windows x86

rapidfuzz-3.7.0-cp312-cp312-musllinux_1_1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

rapidfuzz-3.7.0-cp312-cp312-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ s390x

rapidfuzz-3.7.0-cp312-cp312-musllinux_1_1_ppc64le.whl (2.0 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.7.0-cp312-cp312-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

rapidfuzz-3.7.0-cp312-cp312-musllinux_1_1_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

rapidfuzz-3.7.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.7.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

rapidfuzz-3.7.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.7.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

rapidfuzz-3.7.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.7.0-cp312-cp312-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

rapidfuzz-3.7.0-cp312-cp312-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

rapidfuzz-3.7.0-cp312-cp312-macosx_10_9_universal2.whl (2.7 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.7.0-cp311-cp311-win_arm64.whl (848.1 kB view details)

Uploaded CPython 3.11 Windows ARM64

rapidfuzz-3.7.0-cp311-cp311-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-3.7.0-cp311-cp311-win32.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-3.7.0-cp311-cp311-musllinux_1_1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-3.7.0-cp311-cp311-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-3.7.0-cp311-cp311-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.7.0-cp311-cp311-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-3.7.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-3.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.7.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-3.7.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.7.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-3.7.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.7.0-cp311-cp311-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-3.7.0-cp311-cp311-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-3.7.0-cp311-cp311-macosx_10_9_universal2.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.7.0-cp310-cp310-win_arm64.whl (847.3 kB view details)

Uploaded CPython 3.10 Windows ARM64

rapidfuzz-3.7.0-cp310-cp310-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-3.7.0-cp310-cp310-win32.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-3.7.0-cp310-cp310-musllinux_1_1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-3.7.0-cp310-cp310-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-3.7.0-cp310-cp310-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.7.0-cp310-cp310-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-3.7.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-3.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.7.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-3.7.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.7.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-3.7.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.7.0-cp310-cp310-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-3.7.0-cp310-cp310-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-3.7.0-cp310-cp310-macosx_10_9_universal2.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.7.0-cp39-cp39-win_arm64.whl (849.2 kB view details)

Uploaded CPython 3.9 Windows ARM64

rapidfuzz-3.7.0-cp39-cp39-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-3.7.0-cp39-cp39-win32.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-3.7.0-cp39-cp39-musllinux_1_1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-3.7.0-cp39-cp39-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-3.7.0-cp39-cp39-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.7.0-cp39-cp39-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-3.7.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-3.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.7.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-3.7.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.7.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-3.7.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.7.0-cp39-cp39-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-3.7.0-cp39-cp39-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-3.7.0-cp39-cp39-macosx_10_9_universal2.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.7.0-cp38-cp38-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-3.7.0-cp38-cp38-win32.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-3.7.0-cp38-cp38-musllinux_1_1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-3.7.0-cp38-cp38-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-3.7.0-cp38-cp38-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.7.0-cp38-cp38-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-3.7.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-3.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.7.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-3.7.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.7.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-3.7.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.7.0-cp38-cp38-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-3.7.0-cp38-cp38-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-3.7.0-cp38-cp38-macosx_10_9_universal2.whl (2.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file rapidfuzz-3.7.0.tar.gz.

File metadata

  • Download URL: rapidfuzz-3.7.0.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for rapidfuzz-3.7.0.tar.gz
Algorithm Hash digest
SHA256 620df112c39c6d27316dc1e22046dc0382d6d91fd60d7c51bd41ca0333d867e9
MD5 4cb3bc6b6d912e3cda5e7b5e43687e8d
BLAKE2b-256 6575e52ee00ebf8c13f8ca60b61641dfc1b8786b0d0d2fd4065cb337c861fe3e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 86eea3e6c314a9238de568254a9c591ec73c2985f125675ed5f171d869c47773
MD5 5d24911e623a8a9a76c857b2cf1d7cf0
BLAKE2b-256 fc35fdb2bddd9d8724b34622ba1d5aacc263d69600420c7840420732ef7a2c02

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 20e7d729af2e5abb29caa070ec048aba042f134091923d9ca2ac662b5604577e
MD5 37597a6e8d88714e3ceec4cee59a5d11
BLAKE2b-256 b0d3c12b0465830698aec61559d71cf2d05d76a5ce1b522d8e7b72afa20d4903

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 86c7676a32d7524e40bc73546e511a408bc831ae5b163029d325ea3a2027d089
MD5 776b97acf3b70c7427d4806246b9fd95
BLAKE2b-256 4e1a663c28e1d762c11f4fc572564844892c0f24fa6f45752bd5a5dd47eefac0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1252ca156e1b053e84e5ae1c8e9e062ee80468faf23aa5c543708212a42795fd
MD5 b168e92150a47cb86c8d4e7e4b716d35
BLAKE2b-256 53227c41df226407c2d10a5b1719d02b078b7331ff6fa0f04dee2b39537aafa4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b917764fd2b267addc9d03a96d26f751f6117a95f617428c44a069057653b528
MD5 78be46e565f5ded9efe0dd0b62c9bc15
BLAKE2b-256 e4d60aee54f355cd52859cb61822725d64acf8db3130eeb720644b193addc84f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 7ba14850cc8258b3764ea16b8a4409ac2ba16d229bde7a5f495dd479cd9ccd56
MD5 6b24949277b4cd4f0322f685e55b004f
BLAKE2b-256 236c1bf6071242f46ac7fd0ec815407ee9b160b3041ff2ed1b48c5a606896492

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2bc0b78572626af6ab134895e4dbfe4f4d615d18dcc43b8d902d8e45471aabba
MD5 8cc7a23969f2f133e875480ad3398cdd
BLAKE2b-256 63ecf5805d705f157f159001ceab1265f9e87be2455a86d0a3c3a8fa91b51b55

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 209dda6ae66b702f74a78cef555397cdc2a83d7f48771774a20d2fc30808b28c
MD5 029b663e4df298d3f73d0b3378cc0947
BLAKE2b-256 652dd11eff35626ad8489ee23c9d853b678a63d215a47a81f12582233eeb91cc

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 632f09e19365ace5ff2670008adc8bf23d03d668b03a30230e5b60ff9317ee93
MD5 230b6b56f45125c392d854341409953f
BLAKE2b-256 aed9c8fd68ac8367de0abb44325c5c485de2eec994f2b2c7037d87071b4bce9e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4e50840a8a8e0229563eeaf22e21a203359859557db8829f4d0285c17126c5fb
MD5 456333a7dfed80eeb03ac9186c41844e
BLAKE2b-256 e1b93f976e7e55f1cfd3616d4a81a4268e7bf5bd8a341dcb61adfc08eda98ac6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp312-cp312-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 8fdc26e7863e0f63c2185d53bb61f5173ad4451c1c8287b535b30ea25a419a5a
MD5 a2fdb42d6ee46426a136cff0556927d0
BLAKE2b-256 192121c2570ba021be5e0e0a4af2bb8247ff3bc29caeb0004f8cac56bfbb0f98

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 d7361608c8e73a1dc0203a87d151cddebdade0098a047c46da43c469c07df964
MD5 938b98396a78b44f72bedf69d1973449
BLAKE2b-256 b108d549da70057154942cccd989270303d25487a4f25ff3fb38942053bef27a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.7.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for rapidfuzz-3.7.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 c86bc4b1d2380739e6485396195e30021df509b4923f3f757914e171587bce7c
MD5 99902f2582e9fd9cd1b48ee9225bfa0a
BLAKE2b-256 e9154e8fb2175a70ed2b5324041772c7d1d9c487ad18a9abd9fb617c139b6674

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9bad6a0fe3bc1753dacaa6229a8ba7d9844eb7ae24d44d17c5f4c51c91a8a95e
MD5 367962bbbe09dd30deec0b3e0d917a4e
BLAKE2b-256 4992be6e9115dc7169dc2d7bbc560c1bcd014ddbd7c3cc04a32d28311ead9d10

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp312-cp312-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp312-cp312-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 a9acca34b34fb895ee6a84c436bb919f3b9cd8f43e7003d43e9573a1d990ff74
MD5 48f86c3b23ae18efa8e5a72b8c9b7527
BLAKE2b-256 39bbcca8de938ff426fd7e7840b6c8aa859f9c2d3590693cbf90083235bd44a0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp312-cp312-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp312-cp312-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 42c2e8a2341363c7caf276efdbe1a673fc5267a02568c47c8e980f12e9bc8727
MD5 8ec3f5fb51cb4709978161a8f8ee77b4
BLAKE2b-256 e0b1bf32f962525499de8783f2fb32e3bee437379f7eeebed4bd1c77750b52f5

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a1f268a2a37cd22573b4a06eccd481c04504b246d3cadc2d8e8dfa64b575636d
MD5 9d24f3610d3979cca751b3190789f450
BLAKE2b-256 0c4a95c379d616b7b6e257dc2f5553c77fba006414b90ba4c8bbb6626d5f129f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 5a8ba64d72329a940ff6c74b721268c2004eecc48558f648a38e96915b5d1c1b
MD5 ab8dea7e937ae8172fe0e6a68e335bf7
BLAKE2b-256 164fe62ee70e41952ea9fc9ebea4f6e8b846be1bc36eb7e1a8280410230ee269

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5f2075ac9ee5c15d33d24a1efc8368d095602b5fd9634c5b5f24d83e41903528
MD5 ad325674a057d99e47abdf83c85ff38e
BLAKE2b-256 047bbfa144fddf1457d65ff17412be36d2c284afab69779d77f47b8d8839bd30

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 74e692357dd324dff691d379ef2c094c9ec526c0ce83ed43a066e4e68fe70bf6
MD5 c3b381703a6dfb13816ee1c1e7f471f2
BLAKE2b-256 79949e318b8070c87d6319c54f549e2fd44915b7d09e67abab3a55201e79f1a8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 0cc77237242303733de47829028a0a8b6ab9188b23ec9d9ff0a674fdcd3c8e7f
MD5 96f05e17f74b2eca6df3d622d44df3ce
BLAKE2b-256 ae798f482d978f554e8ff769f2ca1ddb793efa5580c8aad8d15bad6e89156b46

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 eace9fdde58a425d4c9a93021b24a0cac830df167a5b2fc73299e2acf9f41493
MD5 042be6ce6be7aa528230b748eae33a2d
BLAKE2b-256 ff9e2e7ca7a34f9a7398028644aa40ed58f1f9f2bb6d6f096452ab0e30d49fa7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f39eb1513ee139ba6b5c01fe47ddf2d87e9560dd7fdee1068f7f6efbae70de34
MD5 11ed53a817a9eafb54a1f81bab4c0de4
BLAKE2b-256 22577675944e639564a40b1220dcd00d29afaf055c88d3fb4b591c66ce3985fe

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a9460d8fddac7ea46dff9298eee9aa950dbfe79f2eb509a9f18fbaefcd10894c
MD5 42bd2d2d83031c752ec49aa18366e28d
BLAKE2b-256 8ca4aa02a7b1f35830aa8c2a6d933137f955157dbf6d1400a92979299e1aa18d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 51a5b96d2081c3afbef1842a61d63e55d0a5a201473e6975a80190ff2d6f22ca
MD5 c3909228ccc3b3ec66c93d65e674f581
BLAKE2b-256 0da3ba178c0ae92d46a1f3af9c9b24478b581927de5f8b2e333ad935b124ede9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 075a419a0ec29be44b3d7f4bcfa5cb7e91e419379a85fc05eb33de68315bd96f
MD5 60fcb70168983476caa30bccc2f64664
BLAKE2b-256 3533935fcb7d623014044888cfeaab5a1705cc9cdf502377bd4cef45f0c9dd91

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp311-cp311-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 0b13a6823a1b83ae43f8bf35955df35032bee7bec0daf9b5ab836e0286067434
MD5 a6fe79e193a6f11d574bf964ce9b8131
BLAKE2b-256 b3877ef754e6954c9718ff751bd3d8f3524e80e1bad6f2bb8a7dc9b37cc45050

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 594b9c33fc1a86784962043ee3fbaaed875fbaadff72e467c2f7a83cd6c5d69d
MD5 32a17f02f44d8ea25025ecdda322a396
BLAKE2b-256 0a74fa9386929ebfb199a3fabe663db727617f1519630090c93822c9758bd13f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.7.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for rapidfuzz-3.7.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 dfd1e4819f1f3c47141f86159b44b7360ecb19bf675080b3b40437bf97273ab9
MD5 772c03201c48a9e27f7e32c6b099c32c
BLAKE2b-256 dad3b8e779953ea8cec0f9639cf438b8db970056c9228ff7a5553cb0b6e7394a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f332d61f51b0b9c8b55a0fb052b4764b6ad599ea8ce948ac47a4388e9083c35e
MD5 2009c35281657c5d713aa3e0f482e425
BLAKE2b-256 12ea10939c70b99a3334366b39c2a28dd5981094debfd195308034b78c2389b6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 1dfceaa7c2914585bb8a043265c39ec09078f13fbf53b5525722fc074306b6fa
MD5 6e46fa6b508def393421212b4e6a8ff7
BLAKE2b-256 fd6282a015c12e3da1bf75e3e7a0afb5dcd4da27f901a95322bb69f5602e5d43

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 92b8146fbfb37ac358ef7e0f6b79619e4f793fbbe894b99ea87920f9c0a9d77d
MD5 539ee15e0582500ee4116506f0ae96d9
BLAKE2b-256 334864f173dbb31f7514c1132956d727880519963471a1109d9bcbf8041b8784

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 dc3fdb4738a6b83ae27f1d8923b00d3a9c2b5c50da75b9f8b81841839c6e3e1f
MD5 5cbebdcaafb1b06fb867e9d57eeca292
BLAKE2b-256 18d7d416b3e0c52c34ef7751f5eda49d9628b403b976a5469c576f2bf83d12bf

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 40998c8dc35fdd221790b8b5134a8d7499adbfab9a5dd9ec626c7e92e17a43ed
MD5 5b525997f8efbd89c3d018140a1db378
BLAKE2b-256 63cbb0b20fb245cde9714b356f540901c07a830ab63df0a01e044b59130a4a53

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 579cce49dfa57ffd8c8227b3fb53cced54b4df70cec502e63e9799b4d1f44004
MD5 5a520cfb01241f57e489260b72cb0d75
BLAKE2b-256 4fb72743e279c69c4efd0df153d0e68458ae1eba22e473a45f45b1e80b01e548

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 16895dc62a7b92028f9c8b6d22830f1cbc77306ee794f461afc6028e1a8d7539
MD5 68b316c411633ad24563b75981826d38
BLAKE2b-256 c7dd91382a1475f3f30b9e5209f4f0cf3c27ebfa68510443d6da0f039933bd66

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 be08f39e397a618aab907887465d7fabc2d1a4d15d1a67cb8b526a7fb5202a3e
MD5 842b0c720d7e2abb77e6e43a4ecbc183
BLAKE2b-256 47a1c2d661fd86cdb7c49fc7e761172e00f78e2c880807fd2efe68a8d0584ba1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d1b14489b038f007f425a06fcf28ac6313c02cb603b54e3a28d9cfae82198cc0
MD5 14243b56c68fcd189c5267b2b725459d
BLAKE2b-256 03e780083e2e0b6afa6c5db4928d6e5b13e8d64d608b47b1a770d36705187516

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 49b0c47860c733a3d73a4b70b97b35c8cbf24ef24f8743732f0d1c412a8c85de
MD5 09e939dd7438f4041b896fa0915078d3
BLAKE2b-256 381c2c6c078a6ecad683e913b08d90898cc3a56ced29d673d04712dfb373c6ec

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 63044c63565f50818d885bfcd40ac369947da4197de56b4d6c26408989d48edf
MD5 35b9d5230965727cc4f613658e073eb1
BLAKE2b-256 2e7de73bdbf9a573b743ae5ffdf893c05c1902fa88a6e2872b66ad7621bc8a52

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2f9070b42c0ba030b045bba16a35bdb498a0d6acb0bdb3ff4e325960e685e290
MD5 c339543f6fe6cb13fa47700a6c7ddb88
BLAKE2b-256 7c15fbcb7f18f9d47ebb000e7af7ec7492f0d740baff0425b9542f69e2b5057b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ef6b6ab64c4c91c57a6b58e1d690b59453bfa1f1e9757a7e52e59b4079e36631
MD5 7e65c1d1cf5fa7756497cc0dd69e1e84
BLAKE2b-256 7c32eefe7a5efabd8d35fcd57767c9ab289823cf0706028195d5d6dac1bb067b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp310-cp310-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 d5a3872f35bec89f07b993fa1c5401d11b9e68bcdc1b9737494e279308a38a5f
MD5 17abbc81af9accfe49555c13cc31f82a
BLAKE2b-256 332e633f33fb8fbb75f92bfd67ca402e02f3861a97367b7a8498cd7198daee4f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 91f798cc00cd94a0def43e9befc6e867c9bd8fa8f882d1eaa40042f528b7e2c7
MD5 51b1ff196933cf055ac372b30296058a
BLAKE2b-256 38c07a7a6df6922c1f9689cef5bcce747ee2b987151b7bdb2581b1fc4bbc9441

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.7.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for rapidfuzz-3.7.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 e499c823206c9ffd9d89aa11f813a4babdb9219417d4efe4c8a6f8272da00e98
MD5 e41d306951eab102d5f5de0154233f60
BLAKE2b-256 d6957129208d87ba4f869109b7f5ebf17f74138eede20c823187ea6fa41a652f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9e17a3092e74025d896ef1d67ac236c83494da37a78ef84c712e4e2273c115f1
MD5 589075ba62ecc355d3b46f8d6f25503d
BLAKE2b-256 24db13249013bdd717efc34a1cc8bac2d6ee03164bfe5a15c13873ba23c1d99a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 c788b11565cc176fab8fab6dfcd469031e906927db94bf7e422afd8ef8f88a5a
MD5 3b8e9fe7d26380cbddc219f1aacfe971
BLAKE2b-256 f94ab2fd1b5cc4c9a559fe0be527dc4be1eab2c0d2216a4ea1cf4de7ba4378d8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 b5881856f830351aaabd869151124f64a80bf61560546d9588a630a4e933a5de
MD5 03de22e078c086f0f4ddc3c49abd3733
BLAKE2b-256 d9095ef65d92ffa578f436102f91399d8f91c48e486cc35d6b26c578bfd969f5

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b4a7e37fe136022d944374fcd8a2f72b8a19f7b648d2cdfb946667e9ede97f9f
MD5 982c2f8679b1a00bdb6a484a207cdbcb
BLAKE2b-256 c6727f6c67906cc5080d442998454b9fbc3d38faba4612a8c30664a6bbeedc71

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 d7878025248b99ccca3285891899373f98548f2ca13835d83619ffc42241c626
MD5 aec12c42136dbe06dd7bfb9dd8cef314
BLAKE2b-256 9dfcc97d21695ecf55c052febf77273469ee6548c0c05d4d5c65984153eb44ef

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8e11c5e6593be41a555475c9c20320342c1f5585d635a064924956944c465ad4
MD5 00772095598c29abf37625a5aa02bf39
BLAKE2b-256 2091bb1dde3afc0aa4d336a62146dc4cccaa8ba7aa6557bbc8261e01724f1cf7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 18bc2f13c73d5d34499ff6ada55b052c445d3aa64d22c2639e5ab45472568046
MD5 9abe4a21e68dd1d69c8e1cb8616394e1
BLAKE2b-256 2c891912077647a23d1425d66ad819f58c400d1c63527a812a5f3e3d165cda10

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 600b4d4315f33ec0356c0dab3991a5d5761102420bcff29e0773706aa48936e8
MD5 bc200ac0c675f67659373e836359414a
BLAKE2b-256 c916031326510301a1f1522a82ed3d836ce674558384521f638e58b5b1df889b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1efa2268b51b68156fb84d18ca1720311698a58051c4a19c40d670057ce60519
MD5 ed08befe4bedddf3231964b6a85dcacd
BLAKE2b-256 9d9cc799913eb00f1d349385184bbcd68f63b5bf2f259ae0c93961b367afb322

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 04bae4d9c16ce1bab6447d196fb8258d98139ed8f9b288a38b84887985e4227b
MD5 30a64f0a844f6de68378dfe2ab892532
BLAKE2b-256 d7de3cc96cb2dd36ef859896e1cb8d85d1bc7a6efc2a667703bc73630bbfb2fd

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 08671280e0c04d2bb3f39511f13cae5914e6690036fd1eefc3d47a47f9fae634
MD5 1a51f5520b456005f86a910494170044
BLAKE2b-256 f61061d463d6762755ec4fdcc7edd36190a8e80650432f8892697eea4b967488

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4bb9285abeb0477cdb2f8ea0cf7fd4b5f72ed5a9a7d3f0c0bb4a5239db2fc1ed
MD5 3fb127f356c64a8f9866f6c791caea72
BLAKE2b-256 9be9feb06eaa7990bc6cd0dede896c6c16aa9a20171816d09af1b773271cf32e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 860f438238f1807532aa5c5c25e74c284232ccc115fe84697b78e25d48f364f7
MD5 ba2f289176fbdaa7983c7b3503325102
BLAKE2b-256 afac462e66d827ce8d0f7d849efc93e5e367b6c1e7f9b193608c996f3cb81dbd

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: rapidfuzz-3.7.0-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 849.2 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for rapidfuzz-3.7.0-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 aa163257a0ac4e70f9009d25e5030bdd83a8541dfa3ba78dc86b35c9e16a80b4
MD5 21f7a70c80127aed41b3e2e6b5ca2593
BLAKE2b-256 a2e3f1f31f785afcd08e8562022cf6cdaa66f533a28b3fa443eeab28418b22e7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.7.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for rapidfuzz-3.7.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 dd5ad2c12dab2b98340c4b7b9592c8f349730bda9a2e49675ea592bbcbc1360b
MD5 995025685b897ce895af9e16f17a9842
BLAKE2b-256 2960186c0af8fa54df1e3ff68cfc503692382a91b31b1e85df811eb7e79fb7ef

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.7.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for rapidfuzz-3.7.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 7be5f460ff42d7d27729115bfe8a02e83fa0284536d8630ee900d17b75c29e65
MD5 e8b59dd331ccc13826a1d6ded090ebcd
BLAKE2b-256 461832ed512bc9aaa8d75d0ef11bd5ffc5fe9116b3acd13e3a5e2c8d6c7a9669

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7f9f3dc14fadbd553975f824ac48c381f42192cec9d7e5711b528357662a8d8e
MD5 09ce051ed66dc781e12a25734f681e9e
BLAKE2b-256 c799f397fd4f1cfd127bfe144d1921069757652d4e4b8248ea70d855e0bb8e70

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 faded69ffe79adcefa8da08f414a0fd52375e2b47f57be79471691dad9656b5a
MD5 84b7a244385eaf5e3118c94385cd49e6
BLAKE2b-256 8755633b7fb0e82c5be6b0ca3417575168d2c47a766d1aaf893382cc024018fc

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 358692f1df3f8aebcd48e69c77c948c9283b44c0efbaf1eeea01739efe3cd9a6
MD5 e81ad13937e5aae865ff899d22414c05
BLAKE2b-256 c16908eec63cc838b008784d2513cd5cd90b5088c6c06b4bb36a45b4dae8664c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 9ea720db8def684c1eb71dadad1f61c9b52f4d979263eb5d443f2b22b0d5430a
MD5 15a6b4b3282c10b407af923dd3cb5853
BLAKE2b-256 d0f299e7541201f52b41e7e4ea9352e6b5f99504f4d4951fda5ef9fcb3432628

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 3a6a36c9299e059e0bee3409218bc5235a46570c20fc980cdee5ed21ea6110ad
MD5 41854d564d7a9011fd2d7549aa4e39a3
BLAKE2b-256 c7885f575d80ffd9aea0f6350ba3229e09d184214be79c300bb3fd3f980a6a7e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ce728e2b582fd396bc2559160ee2e391e6a4b5d2e455624044699d96abe8a396
MD5 b43595ee69999a0ac4b6a066be79e52e
BLAKE2b-256 0fd9cca5b2de1838198ec1ea9d657c68dd8a6007022fdc3577a0217c570c224e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 c0cc9d3c8261457af3f8756b1f71a9fdc4892978a9e8b967976d2803e08bf972
MD5 b5ca15686343130e00967b5c1162e654
BLAKE2b-256 a117b64f2ff49c1b1d0feb98e362588a94d71535135c422045a94ff46045da35

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 4efa9bfc5b955b6474ee077eee154e240441842fa304f280b06e6b6aa58a1d1e
MD5 18e935cc9987a610907755c2582cd262
BLAKE2b-256 edb140ede783bfdd3afc2eab97e08d3a4d83b8bd6d100cf7010874528607159f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 611278ce3136f4544d596af18ab8849827d64372e1d8888d9a8d071bf4a3f44d
MD5 987f496fc8c3918646fae3260317c289
BLAKE2b-256 3c217d5507cccc16925a093ec1a606717825b249cc68a714678bf843692b961d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1522eaab91b9400b3ef16eebe445940a19e70035b5bc5d98aef23d66e9ac1df0
MD5 c543cc28946a36f4c874cf265edd6c7e
BLAKE2b-256 761bea544fcd1113830d4b0c624ddbf2be66e2624753b740d7fdde14c43770be

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 419c8961e861fb5fc5590056c66a279623d1ea27809baea17e00cdc313f1217a
MD5 78de804360ff23b46d2986b44e3b3af1
BLAKE2b-256 52ef063d5e7cc78414d9761e90f01e682168b9865a33c1c2e36509f4792405d6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4e09d81008e212fc824ea23603ff5270d75886e72372fa6c7c41c1880bcb57ed
MD5 a80bf00646225f3ad8304e0e71ac0f42
BLAKE2b-256 1da196a42bbd2161af1089f92381499460c8787e95024cf139f4644484cb32f4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e8041c6b2d339766efe6298fa272f79d6dd799965df364ef4e50f488c101c899
MD5 3dc2904b198083594ab22980dabee86b
BLAKE2b-256 f0b91d29bc1526812b038c583113d0bd7f018dedf80fb0a95b46856af88d77c0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.7.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for rapidfuzz-3.7.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 41851620d2900791d66d9b6092fc163441d7dd91a460c73b07957ff1c517bc30
MD5 a2facc57df377850de1a06b52eb5a8cc
BLAKE2b-256 425d0aa53b6e844fc5428ffee83f1bdaf41b523361c72c6cee9bee93e1c88cad

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.7.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for rapidfuzz-3.7.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 3e55f02105c451ab6ff0edaaba57cab1b6c0a0241cfb2b306d4e8e1503adba50
MD5 f87556da640cb56ea0227a2562544c8f
BLAKE2b-256 877a0512480ee43ba88cd92d8a2af713ab40834ff307b0095030b18224aec7aa

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7bc944d7e830cfce0f8b4813875f05904207017b66e25ab7ee757507001310a9
MD5 f5f5d57de05d25241ac52cca83cd328b
BLAKE2b-256 c8ee508d16dedc956224a38f1be45e7313728a67b9f78f911987a96324be73ac

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 7e4eea225d2bff1aff4c85fcc44716596d3699374d99eb5906b7a7560297460e
MD5 8b3ae0798ffb31a6bb325ce18f6431a9
BLAKE2b-256 3e744e77c1dc18d8a50546d57508d80947d5883e908437debd0b668f90d80b13

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 150c98b65faff17b917b9d36bff8a4d37b6173579c6bc2e38ff2044e209d37a4
MD5 9de60f28cd49e6fe944cc2dcfcf14ebc
BLAKE2b-256 e42b01ebd86d51cb13de356676200d622a7eba92cc60a6162bca375e76fae54b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0828b55ec8ad084febdf4ab0c942eb1f81c97c0935f1cb0be0b4ea84ce755988
MD5 0231881a416fb02c2b217fcc3ce0b324
BLAKE2b-256 a9b13587464c73e564b694c83cc933e5eb55ce0c83efd8a7afce8a82e8298e9d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 01581b688c5f4f6665b779135e32db0edab1d78028abf914bb91469928efa383
MD5 ec91399b38ecbe325b5cc42a76d502ca
BLAKE2b-256 70d13cb4c1aa8ffcc14106e103b895c32132e4a2d8c0551d1987889013f5f218

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4604dfc1098920c4eb6d0c6b5cc7bdd4bf95b48633e790c1d3f100a25870691d
MD5 e70a595a365ca36fc592d96a8eb2e6d6
BLAKE2b-256 7cbd9770fd07241d800f7f8c27af946391769615a0a0472931013c2379b0676e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 187db4cc8fb54f8c49c67b7f38ef3a122ce23be273032fa2ff34112a2694c3d8
MD5 422cf02e77463c24eb4d40e2f125761c
BLAKE2b-256 e3d8832cbc95be342517fb60b130809b289d6d51b1bcdd9933aff487874a1778

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ecd70212fd9f1f8b1d3bdd8bcb05acc143defebd41148bdab43e573b043bb241
MD5 1f43ad6dd2b19b27822bd3de6a149f45
BLAKE2b-256 92e1a6c35babae4c56f0eb90bff7c7a4040a135b0f0385256759332df69f1cbf

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cda4550a98658f9a8bcdc03d0498ed1565c1563880e3564603a9eaae28d51b2a
MD5 ddac7ba2115cfdd474e4cae276ac67c6
BLAKE2b-256 01bb71aece339a5e210cc4fa066b4bf261d01e8a15044a2c2fd74610ff0b31de

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7c837f89d86a5affe9ee6574dad6b195475676a6ab171a67920fc99966f2ab2c
MD5 a537ffbba5ac26e210ca9cb4ba76959d
BLAKE2b-256 6dea10313209a2e370fb5a23ae994ef7fe50a06dc5fc048e470263d4ea77b7a4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8e70f876ca89a6df344f8157ac60384e8c05a0dfb442da2490c3f1c45238ccf5
MD5 723c1c59eafaf9cc50e7f67b74fcc440
BLAKE2b-256 a4919a91b43aa18bec1422015bce5953d7c096ff59b8ada29b6417ef1695d2e8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5bd394e28ff221557ea4d8152fcec3e66d9f620557feca5f2bedc4c21f8cf2f9
MD5 4bf4eddd586c326bcfacad926ca38ea0
BLAKE2b-256 6ceef41067e0ce16a1be9d593f096c288bcb65373cbdfc0d404617e582b46e0e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.7.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.7.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9b6167468f76779a14b9af66210f68741af94d32d086f19118de4e919f00585c
MD5 ac180cc2f8f212148bf108fcb5e235fb
BLAKE2b-256 dc4b6a62a65b015574117d6807710e7ff888b2a65b14352e7726cc09a86efa0b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page