Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation Code Coverage GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation
  5. It can be largely used as a drop in replacement for fuzzywuzzy. However there are a couple API differences described here

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/rapidfuzz/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.
Note that from RapidFuzz 3.0.0, strings are not preprocessed(removing all non alphanumeric characters, trimming whitespaces, converting all characters to lower case) by default. Which means that when comparing two strings that have the same characters but different cases("this is a word", "THIS IS A WORD") their similarity score value might be different, so when comparing such strings you might see a difference in score value compared to previous versions. Some examples of string matching with preprocessing can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and distance.

Simple Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("this is a test", "this is a test!")
96.55172413793103

Partial Ratio

> from rapidfuzz import fuzz
> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.9090909090909
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> from rapidfuzz import fuzz
> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
84.21052631578947
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Weighted Ratio

> from rapidfuzz import fuzz
> fuzz.WRatio("this is a test", "this is a new test!!!")
85.5

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.WRatio("this is a test", "this is a new test!!!", processor=utils.default_process) # here "this is a new test!!!" is converted to "this is a new test"
95.0
> fuzz.WRatio("this is a test", "this is a new test")
95.0

> # Converting string to lower case
> fuzz.WRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.WRatio("this is a word", "THIS IS A WORD", processor=utils.default_process) # here "THIS IS A WORD" is converted to "this is a word"
100.0

Quick Ratio

> from rapidfuzz import fuzz
> fuzz.QRatio("this is a test", "this is a new test!!!")
80.0

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.QRatio("this is a test", "this is a new test!!!", processor=utils.default_process)
87.5
> fuzz.QRatio("this is a test", "this is a new test")
87.5

> # Converting string to lower case
> fuzz.QRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.QRatio("this is a word", "THIS IS A WORD", processor=utils.default_process)
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 76.92307692307692, 1), ('New York Giants', 64.28571428571428, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
('Dallas Cowboys', 83.07692307692308, 3)

> # With preprocessing
> from rapidfuzz import process, fuzz, utils
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2, processor=utils.default_process)
[('New York Jets', 100.0, 1), ('New York Giants', 78.57142857142857, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio, processor=utils.default_process)
('Dallas Cowboys', 90.0, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
    for word in words:
        scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

This version

3.8.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-3.8.0.tar.gz (1.6 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-3.8.0-pp39-pypy39_pp73-win_amd64.whl (1.6 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.8.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.8.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.8.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.8.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (2.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.8.0-pp38-pypy38_pp73-win_amd64.whl (1.6 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.8.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.8.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.8.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.8.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (2.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.8.0-cp312-cp312-win_arm64.whl (858.4 kB view details)

Uploaded CPython 3.12 Windows ARM64

rapidfuzz-3.8.0-cp312-cp312-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

rapidfuzz-3.8.0-cp312-cp312-win32.whl (1.8 MB view details)

Uploaded CPython 3.12 Windows x86

rapidfuzz-3.8.0-cp312-cp312-musllinux_1_1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

rapidfuzz-3.8.0-cp312-cp312-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ s390x

rapidfuzz-3.8.0-cp312-cp312-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.8.0-cp312-cp312-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

rapidfuzz-3.8.0-cp312-cp312-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

rapidfuzz-3.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.8.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

rapidfuzz-3.8.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.8.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

rapidfuzz-3.8.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.8.0-cp312-cp312-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

rapidfuzz-3.8.0-cp312-cp312-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

rapidfuzz-3.8.0-cp312-cp312-macosx_10_9_universal2.whl (2.8 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.8.0-cp311-cp311-win_arm64.whl (864.4 kB view details)

Uploaded CPython 3.11 Windows ARM64

rapidfuzz-3.8.0-cp311-cp311-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-3.8.0-cp311-cp311-win32.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-3.8.0-cp311-cp311-musllinux_1_1_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-3.8.0-cp311-cp311-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-3.8.0-cp311-cp311-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.8.0-cp311-cp311-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-3.8.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-3.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.8.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-3.8.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.8.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-3.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.8.0-cp311-cp311-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-3.8.0-cp311-cp311-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-3.8.0-cp311-cp311-macosx_10_9_universal2.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.8.0-cp310-cp310-win_arm64.whl (863.3 kB view details)

Uploaded CPython 3.10 Windows ARM64

rapidfuzz-3.8.0-cp310-cp310-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-3.8.0-cp310-cp310-win32.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-3.8.0-cp310-cp310-musllinux_1_1_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-3.8.0-cp310-cp310-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-3.8.0-cp310-cp310-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.8.0-cp310-cp310-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-3.8.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-3.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.8.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-3.8.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.8.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-3.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.8.0-cp310-cp310-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-3.8.0-cp310-cp310-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-3.8.0-cp310-cp310-macosx_10_9_universal2.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.8.0-cp39-cp39-win_arm64.whl (865.3 kB view details)

Uploaded CPython 3.9 Windows ARM64

rapidfuzz-3.8.0-cp39-cp39-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-3.8.0-cp39-cp39-win32.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-3.8.0-cp39-cp39-musllinux_1_1_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-3.8.0-cp39-cp39-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-3.8.0-cp39-cp39-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.8.0-cp39-cp39-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-3.8.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-3.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.8.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-3.8.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.8.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-3.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.8.0-cp39-cp39-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-3.8.0-cp39-cp39-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-3.8.0-cp39-cp39-macosx_10_9_universal2.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.8.0-cp38-cp38-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-3.8.0-cp38-cp38-win32.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-3.8.0-cp38-cp38-musllinux_1_1_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-3.8.0-cp38-cp38-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-3.8.0-cp38-cp38-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.8.0-cp38-cp38-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-3.8.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-3.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.8.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-3.8.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.8.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (6.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-3.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.8.0-cp38-cp38-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-3.8.0-cp38-cp38-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-3.8.0-cp38-cp38-macosx_10_9_universal2.whl (2.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file rapidfuzz-3.8.0.tar.gz.

File metadata

  • Download URL: rapidfuzz-3.8.0.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for rapidfuzz-3.8.0.tar.gz
Algorithm Hash digest
SHA256 08dae251048dea15609e0a9331bac90d3e6d1d183af2a455b80c7bbf2bb0750e
MD5 47fa8023ac8d240602d7d0b226d065eb
BLAKE2b-256 fc8ede1d1ee1a7d80c990391385ad65b1f6d09726c2440aa43877cd0670a3308

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 56d26f416c9178564849d744c0618e07869611e35b999e92fede136fef2a3af3
MD5 2e9bfb02f0d6d51fd8454ef171a62a46
BLAKE2b-256 43b5db11240ea1f5908faca9b138108eac5221330322433fad5768a117c7f59e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8ced9c59198d299aa90d75976fb96b4a43ac641c5d7829df93b3c312130cb098
MD5 323d683db398628e6781dc882fa35069
BLAKE2b-256 6a37e95f55575ef12e1e563953ae3028e31aad7fa6ec0f6f4c7fdf4052d0719a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 dd7c84839db57bbec5e8cd2164194e79eb0bb2297a4be87376ab9534110067ad
MD5 b01846aa32626a71a68f3209999db4cf
BLAKE2b-256 04e1a1f528773196137d6616b763041e1ded3cbefbc819b68d92d9da8c6df38a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 da26863214bfd1b87de9b6ac38a47c246205aa22053dfdad724841ed9f3e04f7
MD5 55b1121d15647418ff9b0dcb6ed0f84b
BLAKE2b-256 b5baf2ad2880431e6ee408e5929fffc953544ed46b44affde88dc1af5c5df9ae

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5109822163ac321c9a3f48df5dfe3d0afe083123ada130d2abf3fd3e5a82323e
MD5 21d77a719ffd7bd3db2ecc422d3a77b0
BLAKE2b-256 980ed390f1404a5461cb0e32b854a0131cae9338c62cee7ab520b7299cca7e88

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 e2aa6574178eb80eabfab5ed879b2275449516cd127cae18298ebad3119c9340
MD5 f8c4bb880d7e1d8830c13da360b632d5
BLAKE2b-256 03a7edc48c5b8e22fa5b53b5af0fd9254beb124e885857401ec636b8908be503

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6dfc8e46760a60d35a16d235291c955169edf04151080eb7672650fc704ad008
MD5 6867357195f96717deedcb09b9dcea72
BLAKE2b-256 9e2f4d48ecf1df0a6bff2466879904fed1bd46969669055d976ba23b8d3a6b49

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 676ed4a5362031cf188cc53f4dfec39f1a201a29423d50fce249033134171703
MD5 77fcaaf5fd71f95a6ccf61c2637e721c
BLAKE2b-256 adaa68386f6e76656999b1ee2324099d104f6c0f5baaef9a7cc87c896b9176a2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 24d64e8e632e0ee4f705fb710b1e86e97beb9c803bd8d681ecc3221e10cde16f
MD5 5f9ffa32ed946d4415cd072523d64204
BLAKE2b-256 9d69b32ca8ae8f1ca426fa28edfc2465428331c33b21f0acb6065c1be9e1b000

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9544bb057a022c929444e388881d7708de19f32f03b7616bade0ef7f81d907eb
MD5 e17bcef90ff01ff3811fc6aca3734bd6
BLAKE2b-256 f13ff7b28469ad00e25f091f53f141801fd4537623c2e5caeecfd6d0ec1f6f6c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp312-cp312-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 42c4bbf5a66584ed12868fbb64901704586de7486e71bcf12ea0a7c860bec9ff
MD5 391ad3509502a7aa2bffd9dbadd3eb12
BLAKE2b-256 ee85751512eabe60cfa8f2fa995c97dd844a944d7532d1398627131f70dc8ee6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f0c99f49b4490e34a1e3bb4c6c94c2107644bc7af8bfb3ef0cd719a7b81bdab1
MD5 66e5df88892b219918606cf173261bab
BLAKE2b-256 23d47b40e6744dacb02611e1b8d513b6d17d214652e8b43975bf12e47b23411f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.8.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for rapidfuzz-3.8.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 57ca5bcd5edeab930d850fb94ca29101e0df30e753e4431065879661c376f46b
MD5 e1df8017a67d6fe00e0ba0e969ff8afd
BLAKE2b-256 22df33aec793677b48160586033c7333a9dd195d5967340c7cfbe56cd061fd5e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0e73b05b31593c4dbf5bb628d7057b81229774aedbfbc7cbf6b54cc13fdcd774
MD5 d928104858011b66b04601042ddc1307
BLAKE2b-256 e5a50ad20d9f6a15cd7d14d86d55ff4a4386eb8a4302c695c145032a2606d8fd

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp312-cp312-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp312-cp312-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 51f53406a22dd90b5afdca0885bfaece0b445c569ad9f4e34be4c6057db589c2
MD5 1709a33ce84bb1f842af54b08222adb2
BLAKE2b-256 e34c7d1184eba6a6c956d88944b7e0066bade197eea39b95a1342b5a35de8c86

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp312-cp312-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp312-cp312-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 03cebef6b4c9aa06ef4c158603f71104b1a18295ded6928f529655f08aa4c5c6
MD5 3fd841762bf08da6d4b169a3cbdf4b66
BLAKE2b-256 b9d707ea973de84134479770c0f4e72cfc94ddafa8b0d0162f908c68488e0de0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2940bcbe6e21882d2027aecc468a00eab8dd61ab6c90443cfca6c243d1f60ad8
MD5 475a10bd789fd8653b622a2d303c1a76
BLAKE2b-256 3b129324c46fc387fe2d5ea45c06771f6e05353c09a9c250c3b53c4854f4804a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e5851eff4baf0f35073f3544be9ff3cf20810278a148e1726bb25f74c25e9629
MD5 264d6e05ff35354f5a21f3a89013af13
BLAKE2b-256 1e8be86a8e76540a91bab766dbd3ad31cc5b7c0bd9ef9a69d6c59e78f04ea922

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5be9e496458474ef6526640e3575fcf4e99f508fe8c19c629141e3be84fa9d76
MD5 ec0a4218fbb80fd5b2d78bf7e9118755
BLAKE2b-256 e63fe0b59f6cae50c3c7290742b591d2dcedee15e477121eae6eedc9561e1935

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 931fff5bec58606c8a9bba5172134e463c165687b11ea8596c8ddb70594c9f01
MD5 5c16c6e3383b578281df0f7cc37ca9d2
BLAKE2b-256 bf0dc0798f33136f2dc4c425f74d243cb6b0e03e669abdb3656be720e6c01d6c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 8412e0cee087198e4eb07d85cc83cdc861aec3dc3a784dea06f0cf47e916529e
MD5 34d7573843fc4b9f045e861303d479ad
BLAKE2b-256 97fe4b3ca30d67660a0cf3e2f0ae2d6594131c0e4d20f639f7da1a8276eb0ef4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 623a7870540fd821e93d5a984019dea16aae3e60d074fab8bda97be2a0274935
MD5 5cbb28334b287d5977b9c5d83266d056
BLAKE2b-256 e95ffea85e7846d9d641213683ad7d5fd04442b4d5840e82e1f2c3e995a11c6b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 298c3cee61ffb1065120ac8ed46b81e0eb783b83da25af414ab4bc4747705002
MD5 6fb3cb96563dfabb35c47091b6fd0f56
BLAKE2b-256 c429b2f98a4ce0e3f31bd24306388376de464b4fe0a6a492db3d50b4226599c7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bfc6e59965f5e2dc80e23a97264bcb73aff51e47c46db6e0309f9bd66b9378b6
MD5 f7cf90789ec7d0c9887375af1e953f73
BLAKE2b-256 79da6f10a740ca5898a162f5f3ed16fb102d50f90accc5587647ac82c66f70b6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f80d9b420c7d216eac6c8d6921ef96a054c4b8246b2939ec1df000719e3a216f
MD5 3bdaa8d6e763d071c6d695e07a99129e
BLAKE2b-256 515a41aee771ff2cf56d8349a91798f21a5ebfc638ee4bf828e997f3fa2378ef

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f65b70036e419d8b80ec609e498fb023493e0033fa7f166312e6f994c8072ab2
MD5 e60c55441c17f19d47a15f06bf0d3350
BLAKE2b-256 88fe374efdd97dbb42844076e40076c0de26b1e30e17b7dc51a2d8349a2ae917

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp311-cp311-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 7a2c56ccf3a9a722bb796b0d992a3042f4a65a587c2deed8f9fae5cbc77cecca
MD5 b045fc7c99cfd7cd15b5f53685a6fa0a
BLAKE2b-256 4bf830f219889fa9c5bf2d1ec992e15887a430960698231d4f48a927395e5b87

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 73597846922bd4d5cc87fa6847029a965dc97fe940fcd583fcfdbe4c2dca6719
MD5 537b7cead05e236750a8c7e03c4119e9
BLAKE2b-256 f21afb4450726eb66086b50f22c5bd80e2828595cb9be4e9edd5220d11e8f26a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.8.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for rapidfuzz-3.8.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 5fbd441c6fe107f990d3603d475dac451a32d29f1b379cbb032eade2c95987cd
MD5 95b083faf3dfa6b06c6a92355446810b
BLAKE2b-256 5b3d6affeab80fb5043d219f842da74d7476b2d530c2cdaa395523f6c6ae4062

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 02b0f551032f2d108e0ed3076e671dce4d5bde592de359a938cd80e62a39b480
MD5 2828ec6e86c0da11f534395b5e2c317a
BLAKE2b-256 0236615d95e910f2601cd9e3c0ba1e6cf0ede662228e6f1085b61a1577720517

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 fc5f6dd0a3bf3d2164e479733615013487d4ace2e927ed491db428de350ede2f
MD5 74b81f00c222f5c659d47b2b52814c5e
BLAKE2b-256 6206253a31451bda8ae8e5dde6788734f8778d4b4191c154f7f3ae2b81f32035

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 9360ad239ae238d91985fc8910c0fbca26f3684db6009531a4fecdd22732a5f2
MD5 7b9f873f6497f18eb65a9ed993bdcbf7
BLAKE2b-256 0f0eba81f60d8c4c595a11ec232f1378a618e1b437c46e658e69d38ff87fa711

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f1ab1a22d5522f57fb64d3e1c8c8153c3980ba44b35b0883b357e0af9a4dc242
MD5 4782ce426f308effb3f33fa1446fa858
BLAKE2b-256 716ce6d579e3884550293b9c47bc703aeb31f798e38b7a66fc2e8f66b6543837

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 adf2e9fb1cff99d5b56da8fbd3bdf3ddeb0d2a2ac901a1004b537cbcea559cd2
MD5 9319f0249be91737c9be655dc31072ac
BLAKE2b-256 0d187ec03483202e16df029c4937539e74d746053f1cd36678f6ab217ee05fb3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 39e8525654e2ed389427cf8404d4b2fa52488c8cba492742db5d3c0eb13fff6d
MD5 d027ed7b6601bcf71eb389fe1feb607f
BLAKE2b-256 0c27ebb699fe7dd894ba1639174405e78a7489d4f446a02e535cf8cda1661c87

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 29b718a486034821fe14b17f241afeed7bdc1086f60e6fcc7d96bf02609468dc
MD5 4135bfa911362fa18420fbdf3b0eb94d
BLAKE2b-256 dced6c59df26de7e2fbc0918e609d15c7631dafe5f3570405d2a9b12b8092420

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 38aa49fcf07770cf0b05d1b47fd69dab4f00d095894f8b73b1f608059a912df2
MD5 e706040f2c23122ede1361232dfc6c20
BLAKE2b-256 99b4892d01aa75ff8de5be53df74704874aa60ac213f60386c1eede3154a696a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a0a132826ac9375b65405bfdc435d0163c20c38a461f5737b8d2eecbd97e54db
MD5 9f463a29e010c97351e6c18037567448
BLAKE2b-256 c5548752466924cb461f65f777916ed22a7284009ea0b88248567e3d6822899b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 df86c7cf7be5eedfa9d2ed5b291cfc0fb2e7fb5178449b84434e07eb8d05d70f
MD5 4a59ca4bf41425e79236ffd861118a2b
BLAKE2b-256 9521274ba20ebdae4e88bc78146adc899d5e98181320d3dcc99674f0a6ebebf6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d4024c277ac8835c903b54da9e825cca91d52a2abb993b06e0da8e3875913b90
MD5 d3b164dbc4fc2420ee04f8425f74e3c9
BLAKE2b-256 29292551558aaacb9a8887d3ebec00161ca6a93daed9f0d752fdb54bd1b6f940

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 14d183de4326be5a501f68494ea9229bbd7452461157a17181c10f42c69b977b
MD5 9acea3a6e13529b97218ef7214e076f2
BLAKE2b-256 9cb909fd8794fc4fabb892d561f11a557e90173e126258bba24a02839b1f35e1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 6529a6caced5e52f3b73f83e498808be0510e7e3c7c9d2fd1f32eb178ca7d3d2
MD5 3444d02143ae2b582bf6b31acd00c218
BLAKE2b-256 f64dc3399a58223c12f8ae3a37f4308af3b646835fd923d56c61ed85824d517a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp310-cp310-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 7d7577ac8bbe558045bc75045d0edd90171b8e0faaad60a598d821a1da0865af
MD5 d8805d33401af41b7ae81c84ec46fe07
BLAKE2b-256 38c3b55aa7c2629ceef95564bf74baae70b3b2d962f5d56ac56a5dbe6821362c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0101fe8eff86343d44627e151f5610035329a5029b90509bef24f173b591f710
MD5 fc08068b9091885473ba7f5a4129a695
BLAKE2b-256 88d7b6d75d283f849a0f5a4fee5e0b39c5760172f99321f226a2f46512c4b67e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.8.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for rapidfuzz-3.8.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 38616bb054d8abe2752c4cbdf837d22a184872519d3e2b9b9aa27582d7a9a23b
MD5 13d58a32f712c0c0ee1d52a478ea9932
BLAKE2b-256 5f1bbfa7ab484cd41e608a483107663c1304ec3819cf2f033c45a14182e57f52

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b397e51739c3eb21b82c4fe1f7f4174e53baae32a185bf212acbd0a6623b83f3
MD5 5c6513dd1376977c968ba453a5d94f9d
BLAKE2b-256 2513297debe1e5754e495d04e62962ade80e0fd48d88467945f1d0bc7c5465f1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 dee968bf271e0d254e54d21467e126beab1b6a98b8b26b227872f2fe43d4af9f
MD5 2df7233c77eba52a47ba4a58dd44d2aa
BLAKE2b-256 c0f56b37c826cea6c853617a76ec506e51db9e730e5f75db77e8dbb079302ba7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 e3eabd8a598d99fb120bcc519d3d92a475b89adf630993cdf97fe0dc51a68331
MD5 125a2f6f6135bd503951a6901a2a7ff2
BLAKE2b-256 ba754d67919734e8fef57a28d62bcce881c2d2be268cf51f7275e43fd79bf805

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 43ba24778e90f6c09c805a6006db5fb2a088c428f79cafe15fa023187d909905
MD5 07f505c59653e8d3587223c26c199dff
BLAKE2b-256 9be29fa719ce65db9d8b07feeb79d672fa3f2e80e484adb271e9218b8a4827b3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 bf90004d3586a7cb97556f043c1662e2d585b8ffa0cd84a24c8fd426944183ab
MD5 c86adf20965bfa3feaa668f30bf7d925
BLAKE2b-256 0b7002f0c827dab0ab9b29da20c51773c19a2416b4cdab6be743c2c1a90c0664

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 407f2de5fb59e93f1792fd4ef2aa161588c02130034602a2265c94b02751f096
MD5 1b992b99416e6b58b4f9da37ce327290
BLAKE2b-256 90b7b42e78ad1727c7a7c0de48a492430dd267a5d26c36749411dd76cd228668

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 39d18267858f5ce833715da0bd8fd995af3fc7818cd821e954db77e48d7668bc
MD5 eb6c6f38c837d0beca6e32d4ee23a25a
BLAKE2b-256 69374c2e5c6fd557e0fc04421d857045d957183c15ab857cd5e492bf1559eb37

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 5ab2778adfa3a70e3109cb5e3b10597a18b853e001875f5cf8f7d7dec6c2e590
MD5 82ea112cfcc626729bde30c52258967b
BLAKE2b-256 c88abbb1399c69ff553e55ce4ece6b02971bd4be7796460bf7e70ad2a4850ec1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e6203b8679fed03598b296fe40268cee59d5ed56fa8e517ea0a600f5c1dd56a2
MD5 8d54c2b5a60ab8c3c412aead25ddcef2
BLAKE2b-256 25921d7e0ac5511b79ad2243a9e28af51f15a8befca94e68ffbacf7a71840535

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9bc499f2b0638780e616faee087f7f805e2651ebef68e92ab664c78af59b44a9
MD5 3a5557eb106de6be6df9ae5b499fd5f5
BLAKE2b-256 2e2f41b4aaa6f09dfd7e5c0904efe441f12dd703b390740e9db1b0958ea176a3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 547ec4276c33be5e8d9aeb1278ef870a74d0c672063d655b147e33dea8eb7637
MD5 9e8904930bfe0792e25f863dc1071ec1
BLAKE2b-256 e815d76d80b87d28b7646b9655ccd0b25cd9829ccbd9d83db7f7c4ac425818c0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8dcadb4c1033ef58577b97f1aa45960c9ba3cc29449f478e2d8b058ab523db18
MD5 9e469ebe516141d31e2d218fb96b007c
BLAKE2b-256 a382543ce6ce14be4687339757da6df1107719547cb2666f02c45be4313537f4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8a812f9b7d7f48014667b9395b4f4c821da9cf2f82f52081ecd69dcf32e9c434
MD5 0153fa9d2b005d81110af77d8bae21ee
BLAKE2b-256 6b9c42df6496101a5e626e7c4df74878433ea3cb22b3253b48ba320749327cb1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: rapidfuzz-3.8.0-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 865.3 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for rapidfuzz-3.8.0-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 16dcd484fc915abc65d51a6916e8702b5611b331a29576880a6156bf76d87f30
MD5 24155389671dd11a75608c001b48a10c
BLAKE2b-256 0e3437ce5dcde888542968fa6c8e93d995cf2c0f78b8d85993e25135c60d5c41

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.8.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for rapidfuzz-3.8.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8931e76a4a7ef2b3c487cf19a0821be0c5121619c9aa85dbb12daae2f7de4733
MD5 30d1eaf1e86778ac33208c557077d496
BLAKE2b-256 d54cab7e15b399604fa6c1f52d721f3a117f4ff6c3141a5933c412a4af29a6de

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.8.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for rapidfuzz-3.8.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 274e6281153e90c0c376accde304afb2ba8eb5e1a1fd47d67ad9c7c4e08a8d4b
MD5 86e00f7cd2b32ae1796968c0db3e8a40
BLAKE2b-256 0ffbfb2445b5359fd388484c01eaa3af7eb7b4f59edc0d90ae7d7708bb527018

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ca0f54a6239df38be4fb71a135196acdfb10c2685304902006f8a915ee3aa9b8
MD5 309b886f1555d44bd441b38fa2d805b5
BLAKE2b-256 21bab0dd2b4bed5247cc05450dd1dfbe92d13f3125aff2c21119115ac4c5cc28

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 ba8d43a659246d361e15ec21f27578db34133a5a3a5c4ecd8e32585f61494e88
MD5 5737d2fc0f631c5a8851174a8b68d59f
BLAKE2b-256 04e328026c2991b56c14470e3d1e4ad7add4acfd07cb871902cd12d04af76b75

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 ca61969a88a3ad9cbc15203de9c8430c3a3d0930e35e8f4c9e0c9c40830be039
MD5 259b095da3bb62b6d6331a8240a55ea8
BLAKE2b-256 4bf2682ec1bfd8625a06c1fa1b8dc3e6d46088d3d50f91c566a2f33f8f422bd2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ded628ba3604edcfadaa07594c0774fef29159307002016e392fd64a7d5de44d
MD5 fb63b2008001f558a8cf65c8bb6d316c
BLAKE2b-256 c9c11f21ee3dbfa2683e5d3438aac57379e6386cddbb3efce94383834cf8265f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 081da05c9b8a3d99b091bf07d1745f6f4e3252748f735c92f748892864efd821
MD5 be4ac29e73c5a1ddb8d9295b474a2443
BLAKE2b-256 fdfd5c1475193751f44356d9d2e435bd96cf520c43a65b22e748f5058e85f783

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 40c7cc6edcf148948c2fe5cd23ac8021e1d71f90a126e15d22eba2e2949afcaf
MD5 6ebb5bc6d798313744be5aa90216c3b9
BLAKE2b-256 534d54e27b78a1c80c2f91a20d38eb76575e723b27c0d51c9668c69a8600e38b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 4716cc3fecefe9cd64ea39fc39560b05c3f3c03211a6af55cfb64a1384135d9c
MD5 c3c1db1c17c445989caefde984086f9d
BLAKE2b-256 939fe9e7e42ed0186cf5daf1356455d19053a0bf67b7002737e85d9d997ffe1c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 385eb0a582f36958d140bb10586f1a57ec4bdf934f3bf828412171b440649865
MD5 6cf291f74899d240b364d258812f0c61
BLAKE2b-256 ed61dd03949edbc445bcf6d72f3867cb9bd44689b7767a13b79c2a57aa56588a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 652e68cf96451c575613a8487f7492f1621f5ce1c78d174dea5d08d3fd501ba5
MD5 c1d82291860b54a5cf2e5aa5f24660f8
BLAKE2b-256 61e54cceb7277a75fcbbf48f053ef7bcb44f315d420405e862dd6babe746be8b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a34aabb7cde1386400c2f0ecb1ee1843b45154215c72d86c707470fd17c7e63f
MD5 a14f28dd7967c2825b7601bae7cba81a
BLAKE2b-256 775ae2d118f70ae09314008ccd97d0f5c8ddacb42757993365aa20c18e219161

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f95b075589068015470ac0436da402fdf207ad1589eda95a0621ff783a17e3a9
MD5 136d75a87f3e734c37e18f9a91cff144
BLAKE2b-256 5905c40abe88c046f6ec83862b89d749b26e5774a3ae08d388975a0e928fdb60

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fcdb848f9140aed78b3a30853eef30d13028b1d3714b28ba9c6485b53364e8d0
MD5 40ed0c849b2d5312e8539f05fa6a696d
BLAKE2b-256 74e7277497620118f4b5c3c650d7446303644c124c729ef2bc39ee195e42cfde

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d1570effad05dcb3cdb17711abbf2c39302a0846cffab1734222e7933b545799
MD5 fba3810fefd0780ba271906f5606272a
BLAKE2b-256 7c560684d2f3054de2cf67a85f55f55e930016eee987892e6c065e12ac7bb0bb

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.8.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for rapidfuzz-3.8.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9e080a55fb0ad00f7b8f6deb53bf6096aea64355e93548d73da18adbce51aa34
MD5 ac1f77769aa77a2c08c0ac190e1bbeca
BLAKE2b-256 1ec7751ae266cfd50ce9e497f1b8b15f26ddaa8217e91a0fd2c8fb3f25e383a8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.8.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for rapidfuzz-3.8.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 92ec19f43e491d24405ee2e61ec04f6f78ccc085a0729310ac33413aaf19e72a
MD5 39dbade493db04d5fcef46006fefbb35
BLAKE2b-256 87a9977f1edcb61962051f719ef67953515c60234f12a583dfdf38e5ec952b28

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3b6c73560addbf760a96f54b442adf9e1d1f9d8c39d3dfc78edff3fa57a84859
MD5 0e9c7ddd01ceb61005e0983664ccc052
BLAKE2b-256 29f3967a338d36945d73a53b53904439dd4df433862b014b8563b6929c578705

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 3f6db4e18c1137f3321999483558364fb4460edf2560b400ae96b2ecd62b17ab
MD5 4494f757611f04a096e25facc3face24
BLAKE2b-256 2fdd52de06de70031ef0441c980a74165db289abd2d5f2a36eb5efc22166d23f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 58ed4bb6b78968fbfc11f464f30ff3229bb2bc2f8e9726117bb35c7d67cec25d
MD5 ed0e7c8e9e84d413d30d99960b63fb9a
BLAKE2b-256 7972b5d095c42bd2a9630e29dc16d0a4f2905447601c29a23f5f51b268938a10

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 77746e334ca5992cf356d2ac4e834fc0f6a84ec8f9d2c8c70713f7a1095fae1a
MD5 ac81a4e7b34d234092a4e886098f7447
BLAKE2b-256 e97e1a27f2657a1f6b01963d2c35e5ea75def0eb83cce71c4a75ed2f9154fdac

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e9ad55a1e8e106076c5b443eca18770e3af60f5b89add679e9ddcc0cf1c13425
MD5 68aa7d1ffcd2b309e091a284075be810
BLAKE2b-256 8287beb673ab0c214f84deedb8c0f9f921b316cafed1f259b0f4b469f7ccb133

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6efc5fbf633e8f99e9f08d4c7be0a3eee9690ee78158795ff49f3ec8a79ff5fa
MD5 070237e06e1b66e793bfb06cfb846fc8
BLAKE2b-256 1a9de682a04255f984c2b092a0f16d0ce62f43cb6eacf431ac9ae622e83fd35f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 eb216b4d4e90cedb04be3568e9185bd197d9b2fba2c6349fcaa20f2f6d634783
MD5 76fc6aaac28f697c8734a7c6b844a439
BLAKE2b-256 69f9145ce5a36241d989f728afdc1ccf96c9419b99ce26161774d5959c31fc9e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 4d7b4e8ad5f7e46262ae6c94a09b8bbb4d8e1644c8264a747a1a5bf126fc39af
MD5 d80f345bf56fa21a2a4ef91153c9c061
BLAKE2b-256 ee2f572a8283739df0e8215cc376477edf4cd738eaa44d0802299d542cb0a045

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 78406b550a1bc19209fc9e1bcda65e865e212b70d2e64b5dbadb584dff3b5fa2
MD5 078296cb506e78b85b226b69ee221332
BLAKE2b-256 0de4dd3ff73ba7d0b7555b45e6758a42f2a643a666527da1bb785c7ac9b5f670

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 09407eb48ef3efc65a1cd0f407499f5205751e2747c7d0ca3a61172613688be0
MD5 0e9ec594ed5d6a248c01f9384207a2ba
BLAKE2b-256 b0149068734ce379610b886d58e24f98d139d2fa8025153a97f2adb804edeaef

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b53979bf59845a3dbae5f11e1bfa670c0334aad4d8cc688f2e74a34dfe791298
MD5 4fb9e6dd123596c112bce3930aa1b5bb
BLAKE2b-256 2718136b40fa27a4b978f21f8f253294ae7876cc7d6771038aeed67df456b6de

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5d2e5aa3712a9ebdf86d900a7baa2f98111480020daf31f1dbd5e3a076418006
MD5 0704814421954cae9fab8ad596bc95c7
BLAKE2b-256 029e40d6a52e048302544039f1c8366b791dd97eda96df1d3998bacc74f03df6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9af7432ec55351a2aa17c80696d4d41f05cfcc04addfb3237e9bf554b8366245
MD5 f76705637368b1dfafec15127124cff9
BLAKE2b-256 789c72f2986fdd3c79d62cf96164396675900caf63d6b86ff5e506ed8925f3fb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page