Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation Code Coverage GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation
  5. It can be largely used as a drop in replacement for fuzzywuzzy. However there are a couple API differences described here

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/rapidfuzz/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.
Note that from RapidFuzz 3.0.0, strings are not preprocessed(removing all non alphanumeric characters, trimming whitespaces, converting all characters to lower case) by default. Which means that when comparing two strings that have the same characters but different cases("this is a word", "THIS IS A WORD") their similarity score value might be different, so when comparing such strings you might see a difference in score value compared to previous versions. Some examples of string matching with preprocessing can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and distance.

Simple Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("this is a test", "this is a test!")
96.55172413793103

Partial Ratio

> from rapidfuzz import fuzz
> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.9090909090909
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> from rapidfuzz import fuzz
> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
84.21052631578947
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Weighted Ratio

> from rapidfuzz import fuzz
> fuzz.WRatio("this is a test", "this is a new test!!!")
85.5

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.WRatio("this is a test", "this is a new test!!!", processor=utils.default_process) # here "this is a new test!!!" is converted to "this is a new test"
95.0
> fuzz.WRatio("this is a test", "this is a new test")
95.0

> # Converting string to lower case
> fuzz.WRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.WRatio("this is a word", "THIS IS A WORD", processor=utils.default_process) # here "THIS IS A WORD" is converted to "this is a word"
100.0

Quick Ratio

> from rapidfuzz import fuzz
> fuzz.QRatio("this is a test", "this is a new test!!!")
80.0

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.QRatio("this is a test", "this is a new test!!!", processor=utils.default_process)
87.5
> fuzz.QRatio("this is a test", "this is a new test")
87.5

> # Converting string to lower case
> fuzz.QRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.QRatio("this is a word", "THIS IS A WORD", processor=utils.default_process)
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 76.92307692307692, 1), ('New York Giants', 64.28571428571428, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
('Dallas Cowboys', 83.07692307692308, 3)

> # With preprocessing
> from rapidfuzz import process, fuzz, utils
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2, processor=utils.default_process)
[('New York Jets', 100.0, 1), ('New York Giants', 78.57142857142857, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio, processor=utils.default_process)
('Dallas Cowboys', 90.0, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
    for word in words:
        scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

This version

3.8.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-3.8.1.tar.gz (1.6 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-3.8.1-pp39-pypy39_pp73-win_amd64.whl (1.6 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.8.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.8.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.8.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.8.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (2.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.8.1-pp38-pypy38_pp73-win_amd64.whl (1.6 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.8.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.8.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.8.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.8.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (2.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.8.1-cp312-cp312-win_arm64.whl (858.4 kB view details)

Uploaded CPython 3.12 Windows ARM64

rapidfuzz-3.8.1-cp312-cp312-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

rapidfuzz-3.8.1-cp312-cp312-win32.whl (1.8 MB view details)

Uploaded CPython 3.12 Windows x86

rapidfuzz-3.8.1-cp312-cp312-musllinux_1_1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

rapidfuzz-3.8.1-cp312-cp312-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ s390x

rapidfuzz-3.8.1-cp312-cp312-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.8.1-cp312-cp312-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

rapidfuzz-3.8.1-cp312-cp312-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

rapidfuzz-3.8.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.8.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

rapidfuzz-3.8.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.8.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

rapidfuzz-3.8.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.8.1-cp312-cp312-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

rapidfuzz-3.8.1-cp312-cp312-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

rapidfuzz-3.8.1-cp312-cp312-macosx_10_9_universal2.whl (2.8 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.8.1-cp311-cp311-win_arm64.whl (864.4 kB view details)

Uploaded CPython 3.11 Windows ARM64

rapidfuzz-3.8.1-cp311-cp311-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-3.8.1-cp311-cp311-win32.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-3.8.1-cp311-cp311-musllinux_1_1_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-3.8.1-cp311-cp311-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-3.8.1-cp311-cp311-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.8.1-cp311-cp311-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-3.8.1-cp311-cp311-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-3.8.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.8.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-3.8.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.8.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-3.8.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.8.1-cp311-cp311-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-3.8.1-cp311-cp311-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-3.8.1-cp311-cp311-macosx_10_9_universal2.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.8.1-cp310-cp310-win_arm64.whl (863.3 kB view details)

Uploaded CPython 3.10 Windows ARM64

rapidfuzz-3.8.1-cp310-cp310-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-3.8.1-cp310-cp310-win32.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-3.8.1-cp310-cp310-musllinux_1_1_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-3.8.1-cp310-cp310-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-3.8.1-cp310-cp310-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.8.1-cp310-cp310-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-3.8.1-cp310-cp310-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-3.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.8.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-3.8.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.8.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-3.8.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.8.1-cp310-cp310-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-3.8.1-cp310-cp310-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-3.8.1-cp310-cp310-macosx_10_9_universal2.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.8.1-cp39-cp39-win_arm64.whl (865.3 kB view details)

Uploaded CPython 3.9 Windows ARM64

rapidfuzz-3.8.1-cp39-cp39-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-3.8.1-cp39-cp39-win32.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-3.8.1-cp39-cp39-musllinux_1_1_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-3.8.1-cp39-cp39-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-3.8.1-cp39-cp39-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.8.1-cp39-cp39-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-3.8.1-cp39-cp39-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-3.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.8.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-3.8.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.8.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-3.8.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.8.1-cp39-cp39-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-3.8.1-cp39-cp39-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-3.8.1-cp39-cp39-macosx_10_9_universal2.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.8.1-cp38-cp38-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-3.8.1-cp38-cp38-win32.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-3.8.1-cp38-cp38-musllinux_1_1_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-3.8.1-cp38-cp38-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-3.8.1-cp38-cp38-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.8.1-cp38-cp38-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-3.8.1-cp38-cp38-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-3.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.8.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-3.8.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.8.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (6.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-3.8.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.8.1-cp38-cp38-macosx_11_0_arm64.whl (1.2 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-3.8.1-cp38-cp38-macosx_10_9_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-3.8.1-cp38-cp38-macosx_10_9_universal2.whl (2.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file rapidfuzz-3.8.1.tar.gz.

File metadata

  • Download URL: rapidfuzz-3.8.1.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for rapidfuzz-3.8.1.tar.gz
Algorithm Hash digest
SHA256 a357aae6791118011ad3ab4f2a4aa7bd7a487e5f9981b390e9f3c2c5137ecadf
MD5 4f90b5729e417f5321ed131136171eb5
BLAKE2b-256 2a8bc5b482bd99c7b4b8e6db31b707333d85f33f0c7eebb72724a1e932f3b6b1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 81fd28389bedab28251f0535b3c034b0e63a618efc3ff1d338c81a3da723adb3
MD5 f9c8219d1cfd50974fcf50bcffa51e1c
BLAKE2b-256 3d917e5e9076aca0e238f18aa59b1a7ffd59fa567a9e84cbb7086198651a75d9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1edafc0a2737df277d3ddf401f3a73f76e246b7502762c94a3916453ae67e9b1
MD5 cce6b7da117e78603977e142a48fce77
BLAKE2b-256 9cf8294f94ec04fd99878aa7f5add29a66a4476337f130b6760dfbdb29549f2a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f9d5d924970b07128c61c08eebee718686f4bd9838ef712a50468169520c953f
MD5 2928e20d80165b70abc7f59ba6c03c5d
BLAKE2b-256 c73fef246047b0bc7977642372f68c6c4f5f34a98a1a07a06476c2c83054bd2c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a02def2eb526cc934d2125533cf2f15aa71c72ed4397afca38427ab047901e88
MD5 89c68737fa210b3ae0a229ebcc923c56
BLAKE2b-256 4e90aa2137e6d1b5fffe818db34b6144f58cd4335335258d02686281c7b3289d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 313bdcd16e9cd5e5568b4a31d18a631f0b04cc10a3fd916e4ef75b713e6f177e
MD5 c36565c64216fabd0c6f8635e242cc8c
BLAKE2b-256 5b3780b3fb9d13134835df49c80e4b4ae3a57c73211285dcb0ea8839cb605d09

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 6d4f1956fe1fc618e34ac79a6ed84fff5a6f23e41a8a476dd3e8570f0b12f02b
MD5 3deeef944f5ac6c89f462a8b3a16eaa2
BLAKE2b-256 510a606bfc64f975027ea7181f3cd14f7f65dba2f9e650bc236a8f925f6aae61

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f8e57f9c2367706a320b78e91f8bf9a3b03bf9069464eb7b54455fa340d03e4c
MD5 2c3bbd762e0389a80abd6a41d9e1068d
BLAKE2b-256 5b58104e650884bc6ff6d4cba28af5b933fc5ae61f6a2b0d16a96c38faa0731c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1ef119fc127c982053fb9ec638dcc3277f83b034b5972eb05941984b9ec4a290
MD5 863a8ebc19af58c066ca802c2631e4ac
BLAKE2b-256 772ac74b0b428d261d3e17a1d6eae83a29c1c4b7556a0978079a1ddf0e7ee5d2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 07d7d4a3c49a15146d65f06e44d7545628ca0437c929684e32ef122852f44d95
MD5 9d8b97abf21cde5ca8b3ee18b493bc83
BLAKE2b-256 0c96fd27cbe46b3d4801cb4cebca350125ea5bd909088c04b812835c24343613

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5f4174079dfe8ed1f13ece9bde7660f19f98ab17e0c0d002d90cc845c3a7e238
MD5 f130fa55cb16220062a0b40e54c2aec4
BLAKE2b-256 78cf42a1378f8417339b62bde79d9cc1da7c88a91a35b4a86b6c43e8c889e3b3

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp312-cp312-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 3aff3b829b0b04bdf78bd780ec9faf5f26eac3591df98c35a0ae216c925ae436
MD5 ef812214271e9b67d05f3f9aaf244bcd
BLAKE2b-256 2126965663f300ad58ae1997f369c9b72790ed88d60980d47e1810fb17f573fc

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 cc4af7090a626c902c48db9b5d786c1faa0d8e141571e8a63a5350419ea575bd
MD5 e6298e8b7b3ee74cfd3d58be148d708a
BLAKE2b-256 005db0d4d5fda08c6cf3ba24ba49785acbfaaff166bfb42e552b18dc08f5e845

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp312-cp312-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.8.1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for rapidfuzz-3.8.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 ceb10039e7346927cec47eaa490b34abb602b537e738ee9914bb41b8de029fbc
MD5 80a852e1816ce8d432fd63db68a93e4d
BLAKE2b-256 7eba85a81100c7d67ac75fd45abc3244ea6baa064a6c21f855d9f76aac6d576a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 392582aa784737d95255ca122ebe7dca3c774da900d100c07b53d32cd221a60e
MD5 11b9accf1aceb6d284c491da2690ec01
BLAKE2b-256 570cc5f51229fb1b4a1e04a013082d19eed60d171d7a45a7fd2eb55d87c1d855

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp312-cp312-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp312-cp312-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 9a16ef3702cecf16056c5fd66398b7ea8622ff4e3afeb00a8db3e74427e850af
MD5 243eeffb53dff902c3c4cd2483466d70
BLAKE2b-256 28b10ba0176d55dbd37f33a15f5bc985e52a05840571f9de3fc9639c4b5cde0c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp312-cp312-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp312-cp312-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 4d5cd86aca3f12e73bfc70015db7e8fc44122da03aa3761138b95112e83f66e4
MD5 2eea7550175c5b6e1f58cd91870a374b
BLAKE2b-256 88479f2bb7048572b68e6ed065bd00fe35fee35346b7710b7c33abd869ac488d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b0ba20be465566264fa5580d874ccf5eabba6975dba45857e2c76e2df3359c6d
MD5 6d1478a7eb20a231ec0ea99d10b75b35
BLAKE2b-256 23ae60683fbeec35584954bc8d51a57dde36216977889c339582cf0898d45e03

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 8b76abfec195bf1ee6f9ec56c33ba5e9615ff2d0a9530a54001ed87e5a6ced3b
MD5 e1f758921df70d8be786f1674908c8e3
BLAKE2b-256 7b82c1677203cb23b05fb1649f7918dc38ba2e1f03ccbc326a65d490dd707221

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 97c13f156f14f10667e1cfc4257069b775440ce005e896c09ce3aff21c9ae665
MD5 28cc563e43babfb993a8ba2e453447d5
BLAKE2b-256 6e742944b90f2122f9a80b714e879312654bbce40b579ee195e7285595b2a0b6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 8e08b01dc9369941a24d7e512b0d81bf514e7d6add1b93d8aeec3c8fa08a824e
MD5 ac0683345e2f0ca0944c39997c8cba5e
BLAKE2b-256 14194c547c9b5bd152421654f95918028532383525d9861dbbb0facdc880190c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 17d79398849c1244f646425cf31d856eab9ebd67b7d6571273e53df724ca817e
MD5 385415f968f850d8e6255f5564ccf105
BLAKE2b-256 db523931528afd6bffb41fa811fba2cf6c5547f8a7fd76fdee0bff67e500b3e6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1c0264d03dcee1bb975975b77c2fe041820fb4d4a25a99e3cb74ddd083d671ca
MD5 768e61c72d679bbf4a13fb4413077f0a
BLAKE2b-256 e55ebd6480fd0c8b6c5ce4f24cf650ac936e73c9e20fc55340fbd1b668878ff9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 16153a97efacadbd693ccc612a3285df2f072fd07c121f30c2c135a709537075
MD5 e7b364e8c4c7da260d4b9e751ed95364
BLAKE2b-256 cb05214f41ef076c9bfc4dfa1049206803b3ec8c5d0c6290b5e4968823854d7c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 25498650e30122f4a5ad6b27c7614b4af8628c1d32b19d406410d33f77a86c80
MD5 d0a8911fa2ac2567e3d375ac9d136820
BLAKE2b-256 202225143a705882340c84a1c8b92c70a64b92302ab2361e974c527a555542b5

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f176867f438ff2a43e6a837930153ca78fddb3ca94e378603a1e7b860d7869bf
MD5 2ae312128f900e391dc696d79931454d
BLAKE2b-256 fcbb44e3e8d95740ae991efecbfbd5e35517feee6a01582004a8d89f39994738

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 1905d9319a97bed29f21584ca641190dbc9218a556202b77876f1e37618d2e03
MD5 4ac8fcb168be4dc3fb6526fc269cceaa
BLAKE2b-256 842022254d73e3b461d978fd5b9bfaf4f949bcfda2b4687f1cd6dd5c7d18a22f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp311-cp311-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 c458085e067c766112f089f78ce39eab2b69ba027d7bbb11d067a0b085774367
MD5 aa9cf104660323a175e8943f5014e6cf
BLAKE2b-256 3a5a47c34da87b1bc38d9997792675807be005f2a1be9e45e4ea7dceb2fd2787

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6f7641992de44ec2ca54102422be44a8e3fb75b9690ccd74fff72b9ac7fc00ee
MD5 02a78a1c4594518d3f9952c07f3e40d6
BLAKE2b-256 590c57ee517b3f4acc7719f7c6bdcb31d7e64806060d456ce64de29741f1a58a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.8.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for rapidfuzz-3.8.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 209bb712c448cdec4def6260b9f059bd4681ec61a01568f5e70e37bfe9efe830
MD5 d3ff30ab9bb60879ac84ddf3a11fc706
BLAKE2b-256 40cd1bc18ef71bdc144f8ccfcec7ee118228535c0d76de69bbc5cac022155911

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c21d5c7cfa6078c79897e5e482a7e84ff927143d2f3fb020dd6edd27f5469574
MD5 5d3e3c7e4a8a16666677be2819a3ba98
BLAKE2b-256 b6321f8328bbf5f2cecd955c80061284f85b3ef90d62c0e696cbe7e9c498e8fd

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 8c40da44ca20235cda05751d6e828b6b348e7a7c5de2922fa0f9c63f564fd675
MD5 bcb24cf869dcfb35a7897653cdb38a90
BLAKE2b-256 50c3b46ba62a4f688f379cd787c0a13429f9d7dde8c45b4379a626784e505a5d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 48b6e5a337a814aec7c6dda5d6460f947c9330860615301f35b519e16dde3c77
MD5 2698920fa7daf793577e681a0af9d316
BLAKE2b-256 488912cb58fbdd09bb47ef4e94e9b988ea20bcd156f14af220e04438d36e4423

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 bbc15985c5658691f637a6b97651771147744edfad2a4be56b8a06755e3932fa
MD5 2f2ab4536f9ef9b25e41eb79ebadc717
BLAKE2b-256 309280adcc727b353c3c0aa45c4465dccf7e898bd29396c477f65bdadb646cdd

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 63044a7b6791a2e945dce9d812a6886e93159deb0464984eb403617ded257f08
MD5 cc78e04e06465599bb6f38ea5ad95fc2
BLAKE2b-256 e4bbe22d24f98516e63c8bbb58dc7be0cdb302527edf1a5ff970726a92040be4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a0643a25937fafe8d117f2907606e9940cd1cc905c66f16ece9ab93128299994
MD5 8fb8246dfa4161dfe0eeb17f19084b7a
BLAKE2b-256 f83ad0935c147c3ee30855418eca42e64cc1d10c9e0530c1dc646a9a91cb0db2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 6f34a541895627c2bc9ef7757f16f02428a08d960d33208adfb96b33338d0945
MD5 73c2da250b2f28d1a9b9372daf02a0e2
BLAKE2b-256 36ce72ce3ee2da459451f534baa7e50a91d789f5ec3c6f4a01254c1c5ecb4a31

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 9ea3d2e41d8fac71cb63ee72f75bee0ed1e9c50709d4c58587f15437761c1858
MD5 56a7d7aa20eb94920f616d4f098d8932
BLAKE2b-256 40b2b000a6b116660a1edb56f14e693e3e4ab5709c2e61542175a718058b372f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e62bde7d5df3312acc528786ee801c472cae5078b1f1e42761c853ba7fe1072a
MD5 c7a9d229f3d3a1c9764e2ded417436d1
BLAKE2b-256 05c9be6758b94db408b49d4a77b6f94648c411231f94de3329d48b074b6dc0f1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 799f5f221d639d1c2ed8a2348d1edf5e22aa489b58b2cc99f5bf0c1917e2d0f2
MD5 b4266710fccefde1a3861d5d0a4b7972
BLAKE2b-256 cb17f41a1218908506ace463caf8fb183221f28ba99fd5377ac8191c1b44592a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4969fe0eb179aedacee53ca8f8f1be3c655964a6d62db30f247fee444b9c52b4
MD5 c87e2e1a059ffba54c5c452792ea48dd
BLAKE2b-256 3f9ac81fb915a7ff5fe70c29314bdcf8912566197edc5a352d1ced21426d17aa

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2c6a43446f0cd8ff347b1fbb918dc0d657bebf484ddfa960ee069e422a477428
MD5 6821e2015612f70bc696df98b60bc37e
BLAKE2b-256 190cb13e88276166786b5d6c99558164262fa6e5cee6aecb190d39cb8f77e8f8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 30c282612b7ebf2d7646ebebfd98dd308c582246a94d576734e4b0162f57baf4
MD5 c36bac51ce6c213e78f3f030ef30becc
BLAKE2b-256 a8ca1c99134eedad43cda0bcd1adf27c52c332ffa9c4159a4e20c36b5f269f79

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp310-cp310-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 c763d99cf087e7b2c5be0cf34ae9a0e1b031f5057d2341a0a0ed782458645b7e
MD5 b0e4a445bb4b4841113ab111b39deb1d
BLAKE2b-256 52ea10a6ba45d371cd63d1aee5df50849db505fce90cf23be4abc1601c865cfe

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 bca5acf77508d1822023a85118c2dd8d3c16abdd56d2762359a46deb14daa5e0
MD5 659dd8ee9bc13633c23c65eeb74c7837
BLAKE2b-256 ed29cfc6d0499ba3d940b1ca5162880103c88d119fc172cabd26b8f94e1bea57

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.8.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for rapidfuzz-3.8.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 50db3867864422bf6a6435ea65b9ac9de71ef52ed1e05d62f498cd430189eece
MD5 b51ddac90d4abc293ee8e04aad58e0c3
BLAKE2b-256 d233e01b1426f9d56b84e87f697b5ad12d070dfca56e122a7949996b087cc958

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c22b32a57ab47afb207e8fe4bd7bb58c90f9291a63723cafd4e704742166e368
MD5 b266ba69459663282d85db8aafa2b35f
BLAKE2b-256 33e72de026f7635e3daea9b90765200f0c942d6479fd0bf3e0c38258df315aec

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 2ba0e43e9a94d256a704a674c7010e6f8ef9225edf7287cf3e7f66c9894b06cd
MD5 8a7c428e1de54d576c3ac2da0a9216e9
BLAKE2b-256 fba08442e14cdeba13e6d67a02456f1573e87504b6312f0b9a83dada96b9dae8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 d4276c7ee061db0bac54846933b40339f60085523675f917f37de24a4b3ce0ee
MD5 f02ea3969ee1f7974bf9b086b35db163
BLAKE2b-256 426b8c76c08c9605b1f7b5b339e4eaf1ca51920438fd8583447b8da04f97eff9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 aa223c73c59cc45c12eaa9c439318084003beced0447ff92b578a890288e19eb
MD5 315ec8f019d70f571e5c28e1f4d1f802
BLAKE2b-256 87041b260feac05ce84bc6f8ee1699cb7a61761f09403b4be576301744a09c95

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 bc5a1ec3bd05b55d3070d557c0cdd4412272d51b4966c79aa3e9da207bd33d65
MD5 f69e6ffd5d62dbdb2d58ff00ae549830
BLAKE2b-256 b55de88f5ea372f0d5f903f21ba30a8a796123ca6c31cc701bb71d9bb9738812

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 987cd277d27d14301019fdf61c17524f6127f5d364be5482228726049d8e0d10
MD5 4bc61557f1f2bb890b952949595c79e1
BLAKE2b-256 47d84b23351344ac5cc90398912d85a82001c80619fc67f0a620191fd5862e23

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 267ff42370e031195e3020fff075420c136b69dc918ecb5542ec75c1e36af81f
MD5 d868b3e71e7e178015a7067181973747
BLAKE2b-256 1c8428e51ab0e8fcb1f608b63f801adb56d73179fc4d94734c025be2e52f18a4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 68b185a0397aebe78bcc5d0e1efd96509d4e2f3c4a05996e5c843732f547e9ef
MD5 9abb25d8d687d5fadc5498f82f74500d
BLAKE2b-256 35b6318a06ee584b239f1b969dc72a18e104d8c5dd68c7efaa3d05740c16c94b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2a8a007fdc5cf646e48e361a39eabe725b93af7673c5ab90294e551cae72ff58
MD5 3b8bb5ccb38515b84e20fa0d115ec055
BLAKE2b-256 cff69de2588ace38762354bae2c62b3a31f546c54cb951933315080f07dbb2f1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e6ec696a268e8d730b42711537e500f7397afc06125c0e8fa9c8211386d315a5
MD5 bc25e30cf913e78362339b7b759fdb8f
BLAKE2b-256 565003a55189f350a541d1ce86fad0cfc45907b8b69f51844adde4c157c64805

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ad4dbd06c1f579eb043b2dcfc635bc6c9fb858240a70f0abd3bed84d8ac79994
MD5 8f8991997c57b8037a108d3f416e8a6f
BLAKE2b-256 336c7accc67ff16c20c96b254fe9b826dda317f31bb69baf5748c964777852f2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0798e32304b8009d215026bf7e1c448f1831da0a03987b7de30059a41bee92f3
MD5 d1825b58497f75dc15d96f043b6469f1
BLAKE2b-256 41e67f625358634018fe26c69a05a03c374cd56e1bc26f51e851e20d1dcffcc7

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 1b176f01490b48337183da5b4223005bc0c2354a4faee5118917d2fba0bedc1c
MD5 f1814dd68979038ac93aec4210a270a2
BLAKE2b-256 21d2c825c1f38dd57b4c06066fe329a8824bed8332eaa0777a327ab346764a19

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: rapidfuzz-3.8.1-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 865.3 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for rapidfuzz-3.8.1-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 c9597a05d08e8103ad59ebdf29e3fbffb0d0dbf3b641f102cfbeadc3a77bde51
MD5 90a0d2df6c87a0e9b15ad28115da9d88
BLAKE2b-256 dcfa719949b0658729d6deeba9b48b137f8691b740742857748504461bc29b6f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.8.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for rapidfuzz-3.8.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2084193fd8fd346db496a2220363437eb9370a06d1d5a7a9dba00a64390c6a28
MD5 06726e87dfa9a95b092a7dcf0772861b
BLAKE2b-256 0f010516f485943114d4f39d3e06f1b343ddda84d26d9ff7222b156e30749acf

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.8.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for rapidfuzz-3.8.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 b7b9cbc60e3eb08da6d18636c62c6eb6206cd9d0c7ad73996f7a1df3fc415b27
MD5 f056f4962dd1ca8e2634cb9254ef3cc5
BLAKE2b-256 610b8f851486475b65caca82865e2f6fcd4312066769311451f3fa5d50a0789a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 14791324f0c753f5a0918df1249b91515f5ddc16281fbaa5ec48bff8fa659229
MD5 4c190cce39c60b744b4df28d68a8e87a
BLAKE2b-256 e46a5a5be2dfe4138c8d0e6af46b89721275940f4f430254d91af09c1d33af91

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 747265f39978bbaad356f5c6b6c808f0e8f5e8994875af0119b82b4700c55387
MD5 1e88837c58540ce5da4a0da3a02d854f
BLAKE2b-256 d3289b7a6eaedf63ed0491adacfe674aca42ef2fe93240307e214effa0f131ed

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 c04ef83c9ca3162d200df36e933b3ea0327a2626cee2e01bbe55acbc004ce261
MD5 c56acc29c432f8953cea33b6c4b5bd0d
BLAKE2b-256 ff9a9d7cea88cd53af13e0dd9f86d227c51b252f9e5b1cacf43dacc2644c8c6d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 827ddf2d5d157ac3d1001b52e84c9e20366237a742946599ffc435af7fdd26d0
MD5 089cee4730ca583a1f0a92bee87e32d8
BLAKE2b-256 4e16a7cffb3e5c62e66309c9e85694bf047e822ebf7ffaea1315143547d05025

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 231dc1cb63b1c8dd78c0597aa3ad3749a86a2b7e76af295dd81609522699a558
MD5 0306e24c2d4db457be6f786993209d75
BLAKE2b-256 77a9eea5820b3db6d5d070f5d006d71b63f56abefdd4bde23a05fc549a1ac0df

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3fee62ae76e3b8b9fff8aa2ca4061575ee358927ffbdb2919a8c84a98da59f78
MD5 c0b3dffcc79239c1f1192831a9190905
BLAKE2b-256 5db31a4fce78175b2b62c398a66b7876fb6fdcaaeaae6045a64c9c4578aab614

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 77ea62879932b32aba77ab23a9296390a67d024bf2f048dee99143be80a4ce26
MD5 23c7569c8163b024d3590c8a3e6b80c8
BLAKE2b-256 f313a07b73d1d53e7ddb3ea52bdc1285dfcef0159c4ba94003bd80da83f2bd05

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e4c647795c5b901091a68e210c76b769af70a33a8624ac496ac3e34d33366c0d
MD5 f5959e5ceabe42d53ab3dd9d2351b3e1
BLAKE2b-256 4ee8d9760a53c8b870bde86d5dc7dbf9fb7dc532e7421267c451fd7dcfd3e1f9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 00b5ee47b387fa3805f4038362a085ec58149135dc5bc640ca315a9893a16f9e
MD5 8f4bc4216191c3ecf07f7c33c2be6fb7
BLAKE2b-256 49084156bf18047e025d89ce039b9ac43acf324f2c2273e5344e4ffa04a21ed9

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a2ee3909f611cc5860cc8d9f92d039fd84241ce7360b49ea88e657181d2b45f6
MD5 6f71f3802e02b21164b4813df53195db
BLAKE2b-256 95b78e6b5e5384025d21e3c51e017f50a3701bc08b323f210a98c17372d49b32

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 58999b21d01dd353f49511a61937eac20c7a5b22eab87612063947081855d85f
MD5 85c1952e4674dd14543c085c653e4de4
BLAKE2b-256 008c9e7b356bf38c1a0d3d188be3d0009870a7c83f5f5c6e2809807734f80601

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1d5592b08e3cadc9e06ef3af6a9d66b6ef1bf871ed5acd7f9b1e162d78806a65
MD5 2664fa83aec087688e2983c14724e642
BLAKE2b-256 6475304177437a7ac766765346a0d8353073d78853b8d71b12f8f328165eeab2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b27cea618601ca5032ea98ee116ca6e0fe67be7b286bcb0b9f956d64db697472
MD5 2d1fdbc08abdb9f6143abaefb99998d9
BLAKE2b-256 fe40bfd207aa68675930be69a298c79c7ef63999f93f26f9de0748c676c6d491

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.8.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for rapidfuzz-3.8.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 bb571dbd4cc93342be0ba632f0b8d7de4cbd9d959d76371d33716d2216090d41
MD5 00e81243a7c837664549468453f39283
BLAKE2b-256 2245afa60ff0dc9952e30584650f74348d515ad5ceff89e5ad458033e660bcc8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.8.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for rapidfuzz-3.8.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 63db612bb6da1bb9f6aa7412739f0e714b1910ec07bc675943044fe683ef192c
MD5 245c8c915b4433c31befeaf260687662
BLAKE2b-256 6b62a852b38872585e2e1720da2a58b7259de1305c9fe9f41fedbeee193b9444

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6f8b62fdccc429e6643cefffd5df9c7bca65588d06e8925b78014ad9ad983bf5
MD5 b727dbf2e8111cebf428893c45eb536f
BLAKE2b-256 9944307b48b7f100184cae35789e218523aacc1a9285482b7d4362a170f1b82c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 d48657a404fab82b2754faa813a10c5ad6aa594cb1829dca168a49438b61b4ec
MD5 9aef37accb29abf412cd9c0f3ce2a495
BLAKE2b-256 be2fb6c8caa19ab8975f6884c4e615598b141df5c183eae9abe57d45605cab6b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 8e02425bfc7ebed617323a674974b70eaecd8f07b64a7d16e0bf3e766b93e3c9
MD5 3a167852eb3b4c6cea4073b21debcaf0
BLAKE2b-256 f7211070a2e0a8b969b927c0e1a44b5a63952c5313c2243861e4376e119eb109

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 90167a48de3ed7f062058826608a80242b8561d0fb0cce2c610d741624811a61
MD5 063b60fdfef27bd396eeb0f85892d3d9
BLAKE2b-256 e1f99a2efbacd3f80e2fdfcb342e85ff9c90e2529e76c9b9c183916453d76ec2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 9441aca94b21f7349cdb231cd0ce9ca251b2355836e8a02bf6ccbea5b442d7a9
MD5 13f5c3235959cf541803cf804bd90bac
BLAKE2b-256 d10663c796e45c54dc1a1b9218929e71cebe36549d79b369393c122b41086d57

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 718ea99f84b16c4bdbf6a93e53552cdccefa18e12ff9a02c5041e621460e2e61
MD5 8017c427bf24bc399f87f5eff42034e2
BLAKE2b-256 157a38f6cdc91f1443c0a1a0681b9449fd8f2f3b69af78fdf48f95d493366a0c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 c754ce1fab41b731259f100d5d46529a38aa2c9b683c92aeb7e96ef5b2898cd8
MD5 3fc6c1f8c04e47c91f1e35bd168cef37
BLAKE2b-256 4d24ee6293e8a0972dc6f77d6a68fb9526b319aafccfdc07901c1d5c592d244b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e3f882110f2f4894942e314451773c47e8b1b4920b5ea2b6dd2e2d4079dd3135
MD5 98263ff603300499fc6733f8fcf1661c
BLAKE2b-256 e5b3e60fa37e2365a53d4fa57de2baa0bfe3785facf112573971d918d0503ed1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 41219536634bd6f85419f38450ef080cfb519638125d805cf8626443e677dc61
MD5 c40b695010768c6fefbdc8144e22d17b
BLAKE2b-256 b1348936d334c6da5be73f01319e382249bcbbce01a1ea867b215cb535c1f6e6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c4dbb1ebc9a811f38da33f32ed2bb5f58b149289b89eb11e384519e9ba7ca881
MD5 1afd25c3022a94fa60413de9dca3164b
BLAKE2b-256 cdd7b87c0b34ef3aa2ce362c02435e76dd411c83e99d9b12b6aa5e62c64c390b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d1a15fef1938b43468002f2d81012dbc9e7b50eb8533af202b0559c2dc7865d9
MD5 6f49f47aed26ff7be0afab3ca4be9e02
BLAKE2b-256 4cd180f94ce6fbb534036eff19e533ced1c8865fc23cc49c60a73f558bda9286

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f8af980695b866255447703bf634551e67e1a4e1c2d2d26501858d9233d886d7
MD5 0e4be51593aea7bbc9ccd24e8905d9e2
BLAKE2b-256 291d1e9ec1c880fbda93716483c65610d4711ceebd585dc48408bbe74d97f058

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.8.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.8.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 78a0d2a11bb3936463609777c6d6d4984a27ebb2360b58339c699899d85db036
MD5 bad73eecac6d8fd577f23d99b8304a23
BLAKE2b-256 1dbf3791aa5b5167b9d7510593e281b6a7689baac05af2de54c45078dd4fce26

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page