Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continuous Integration PyPI package version Conda Version Python versions
Documentation Code Coverage GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are a couple of aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It provides many string_metrics like hamming or jaro_winkler, which are not included in FuzzyWuzzy
  3. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. For detailed benchmarks check the documentation
  4. Fixes multiple bugs in the partial_ratio implementation
  5. It can be largely used as a drop in replacement for fuzzywuzzy. However there are a couple API differences described here

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++17 capable compiler.

git clone --recursive https://github.com/rapidfuzz/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.
Note that from RapidFuzz 3.0.0, strings are not preprocessed(removing all non alphanumeric characters, trimming whitespaces, converting all characters to lower case) by default. Which means that when comparing two strings that have the same characters but different cases("this is a word", "THIS IS A WORD") their similarity score value might be different, so when comparing such strings you might see a difference in score value compared to previous versions. Some examples of string matching with preprocessing can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and distance.

Simple Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("this is a test", "this is a test!")
96.55172413793103

Partial Ratio

> from rapidfuzz import fuzz
> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> from rapidfuzz import fuzz
> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.9090909090909
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> from rapidfuzz import fuzz
> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
84.21052631578947
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Weighted Ratio

> from rapidfuzz import fuzz
> fuzz.WRatio("this is a test", "this is a new test!!!")
85.5

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.WRatio("this is a test", "this is a new test!!!", processor=utils.default_process) # here "this is a new test!!!" is converted to "this is a new test"
95.0
> fuzz.WRatio("this is a test", "this is a new test")
95.0

> # Converting string to lower case
> fuzz.WRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.WRatio("this is a word", "THIS IS A WORD", processor=utils.default_process) # here "THIS IS A WORD" is converted to "this is a word"
100.0

Quick Ratio

> from rapidfuzz import fuzz
> fuzz.QRatio("this is a test", "this is a new test!!!")
80.0

> from rapidfuzz import fuzz, utils
> # Removing non alpha numeric characters("!") from the string
> fuzz.QRatio("this is a test", "this is a new test!!!", processor=utils.default_process)
87.5
> fuzz.QRatio("this is a test", "this is a new test")
87.5

> # Converting string to lower case
> fuzz.QRatio("this is a word", "THIS IS A WORD")
21.42857142857143
> fuzz.QRatio("this is a word", "THIS IS A WORD", processor=utils.default_process)
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 76.92307692307692, 1), ('New York Giants', 64.28571428571428, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
('Dallas Cowboys', 83.07692307692308, 3)

> # With preprocessing
> from rapidfuzz import process, fuzz, utils
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2, processor=utils.default_process)
[('New York Jets', 100.0, 1), ('New York Giants', 78.57142857142857, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio, processor=utils.default_process)
('Dallas Cowboys', 90.0, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparison between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparison I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
    "".join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
    for _ in range(10_000)
]
samples = words[:: len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
    for word in words:
        scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

Benchmark Scorer

The second benchmark compares the performance when the scorers are used in combination with cdist in the following way:

cdist(samples, words, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like cdist is a lot faster than directly using it. That's why they should be used whenever possible.

Benchmark cdist

Support the project

If you are using RapidFuzz for your work and feel like giving a bit of your own benefit back to support the project, consider sending us money through GitHub Sponsors or PayPal that we can use to buy us free time for the maintenance of this great library, to fix bugs in the software, review and integrate code contributions, to improve its features and documentation, or to just take a deep breath and have a cup of tea every once in a while. Thank you for your support.

Support the project through GitHub Sponsors or via PayPal:

.

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. That's why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

This version

3.9.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-3.9.0.tar.gz (1.6 MB view details)

Uploaded Source

Built Distributions

rapidfuzz-3.9.0-pp39-pypy39_pp73-win_amd64.whl (1.6 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.9.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.9.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.9.0-pp38-pypy38_pp73-win_amd64.whl (1.6 MB view details)

Uploaded PyPy Windows x86-64

rapidfuzz-3.9.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

rapidfuzz-3.9.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-3.9.0-cp312-cp312-win_arm64.whl (857.3 kB view details)

Uploaded CPython 3.12 Windows ARM64

rapidfuzz-3.9.0-cp312-cp312-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

rapidfuzz-3.9.0-cp312-cp312-win32.whl (1.8 MB view details)

Uploaded CPython 3.12 Windows x86

rapidfuzz-3.9.0-cp312-cp312-musllinux_1_1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

rapidfuzz-3.9.0-cp312-cp312-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ s390x

rapidfuzz-3.9.0-cp312-cp312-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.9.0-cp312-cp312-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

rapidfuzz-3.9.0-cp312-cp312-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

rapidfuzz-3.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

rapidfuzz-3.9.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.9.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

rapidfuzz-3.9.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.0-cp312-cp312-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

rapidfuzz-3.9.0-cp312-cp312-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

rapidfuzz-3.9.0-cp312-cp312-macosx_10_9_universal2.whl (3.5 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.9.0-cp311-cp311-win_arm64.whl (862.9 kB view details)

Uploaded CPython 3.11 Windows ARM64

rapidfuzz-3.9.0-cp311-cp311-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

rapidfuzz-3.9.0-cp311-cp311-win32.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86

rapidfuzz-3.9.0-cp311-cp311-musllinux_1_1_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

rapidfuzz-3.9.0-cp311-cp311-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ s390x

rapidfuzz-3.9.0-cp311-cp311-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.9.0-cp311-cp311-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

rapidfuzz-3.9.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

rapidfuzz-3.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rapidfuzz-3.9.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.9.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

rapidfuzz-3.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.0-cp311-cp311-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rapidfuzz-3.9.0-cp311-cp311-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

rapidfuzz-3.9.0-cp311-cp311-macosx_10_9_universal2.whl (3.5 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.9.0-cp310-cp310-win_arm64.whl (862.0 kB view details)

Uploaded CPython 3.10 Windows ARM64

rapidfuzz-3.9.0-cp310-cp310-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

rapidfuzz-3.9.0-cp310-cp310-win32.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86

rapidfuzz-3.9.0-cp310-cp310-musllinux_1_1_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

rapidfuzz-3.9.0-cp310-cp310-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ s390x

rapidfuzz-3.9.0-cp310-cp310-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.9.0-cp310-cp310-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

rapidfuzz-3.9.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

rapidfuzz-3.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rapidfuzz-3.9.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.9.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (6.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

rapidfuzz-3.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.0-cp310-cp310-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rapidfuzz-3.9.0-cp310-cp310-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

rapidfuzz-3.9.0-cp310-cp310-macosx_10_9_universal2.whl (3.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.9.0-cp39-cp39-win_arm64.whl (863.9 kB view details)

Uploaded CPython 3.9 Windows ARM64

rapidfuzz-3.9.0-cp39-cp39-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-3.9.0-cp39-cp39-win32.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-3.9.0-cp39-cp39-musllinux_1_1_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

rapidfuzz-3.9.0-cp39-cp39-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ s390x

rapidfuzz-3.9.0-cp39-cp39-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.9.0-cp39-cp39-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

rapidfuzz-3.9.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

rapidfuzz-3.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rapidfuzz-3.9.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.9.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

rapidfuzz-3.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.0-cp39-cp39-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-3.9.0-cp39-cp39-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-3.9.0-cp39-cp39-macosx_10_9_universal2.whl (3.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-3.9.0-cp38-cp38-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-3.9.0-cp38-cp38-win32.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-3.9.0-cp38-cp38-musllinux_1_1_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

rapidfuzz-3.9.0-cp38-cp38-musllinux_1_1_s390x.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ s390x

rapidfuzz-3.9.0-cp38-cp38-musllinux_1_1_ppc64le.whl (2.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ppc64le

rapidfuzz-3.9.0-cp38-cp38-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

rapidfuzz-3.9.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

rapidfuzz-3.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rapidfuzz-3.9.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rapidfuzz-3.9.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rapidfuzz-3.9.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (5.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

rapidfuzz-3.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

rapidfuzz-3.9.0-cp38-cp38-macosx_11_0_arm64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

rapidfuzz-3.9.0-cp38-cp38-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-3.9.0-cp38-cp38-macosx_10_9_universal2.whl (3.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file rapidfuzz-3.9.0.tar.gz.

File metadata

  • Download URL: rapidfuzz-3.9.0.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.0.tar.gz
Algorithm Hash digest
SHA256 b182f0fb61f6ac435e416eb7ab330d62efdbf9b63cf0c7fa12d1f57c2eaaf6f3
MD5 786976ec4d8d06a2ca22a0d3f4d6f3e7
BLAKE2b-256 299181aeb149fdcaac4682f6003741530ceaf9a85d90dc21a01a5849acb9c2fe

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d20ab9abc7e19767f1951772a6ab14cb4eddd886493c2da5ee12014596ad253f
MD5 552a0557fc3a4e224697298ca76d023c
BLAKE2b-256 65acbd86e65bc6795673826acdc4be290b987ff6acdc681745b04cd983820cda

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 623883fb78e692d54ed7c43b09beec52c6685f10a45a7518128e25746667403b
MD5 9037852c262d84045d1fb5eb181c2813
BLAKE2b-256 96766c36a243af1bc27e933603beacf46ef1ae994011faa994d9a4faf65bcd7d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 849160dc0f128acb343af514ca827278005c1d00148d025e4035e034fc2d8c7f
MD5 4e8088b119409c08c193abcd1166e73b
BLAKE2b-256 f124a8727b1eb9883e6926ca422043ec935da2c729bc9374996a96147f3fc866

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2bc5559b9b94326922c096b30ae2d8e5b40b2e9c2c100c2cc396ad91bcb84d30
MD5 505420815229dac96dbd6607e53b8d1b
BLAKE2b-256 155eb2cc20248521b59ff94c01861dd3db7586d100ddbe0962339cf6d9e2b27f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 491274080742110427f38a6085bb12dffcaff1eef12dccf9e8758398c7e3957e
MD5 04ac5604f68d1f773c4f779f8b6e465a
BLAKE2b-256 52d5bb398eaa8f4a65fd29622e07ea176348826c6b968928f59b879cc28fbcf4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 ae643220584518cbff8bf2974a0494d3e250763af816b73326a512c86ae782ce
MD5 0d2ed8b93eb6e6c84a61827961b4afda
BLAKE2b-256 b8d3926fb25d21dd1944955c7014b4a214252e1bd0138c74b20578be9232514d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b1256915f7e7a5cf2c151c9ac44834b37f9bd1c97e8dec6f936884f01b9dfc7d
MD5 c9501df11ac0c282f557a91a0fae995d
BLAKE2b-256 20c139152675e3c956566f7246d8abaab8ad586f8b9706346d343f47ba87d81f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0e2e106cc66453bb80d2ad9c0044f8287415676df5c8036d737d05d4b9cdbf8e
MD5 50e1b3e184daf8dfebc5ec9805cd6a9e
BLAKE2b-256 c6016f7c515757d05c022bb826ad8f3176d6f5887b9e619ea1da4a750775b45b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fb67cf43ad83cb886cbbbff4df7dcaad7aedf94d64fca31aea0da7d26684283c
MD5 f45e5235920d431b1543b61d3aca86ab
BLAKE2b-256 a36a7f1d2bcb30de38685e5b4497f44cafc1ac1c09a93dd91fd92243665fda63

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e33362e98c7899b5f60dcb06ada00acd8673ce0d59aefe9a542701251fd00423
MD5 9b0b289140fda213d71754ef5fe3280b
BLAKE2b-256 cda9be8037bdca0b6395b3d8a959c0a7cfec9637f505eba8b2bc4eb9c3eeca51

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp312-cp312-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 2a96209f046fe328be30fc43f06e3d4b91f0d5b74e9dcd627dbfd65890fa4a5e
MD5 ffc2c98e133c53b11d5bcef7681b1924
BLAKE2b-256 ea2e0710de7594f89f3a41684ddfd0aabe0abcac13bf6f5b8e7b334bd2df8e9e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 134b7098ac109834eeea81424b6822f33c4c52bf80b81508295611e7a21be12a
MD5 b7f3e71ac4ed30d2d4125af219cc3082
BLAKE2b-256 809fd787dcdb1a578af6734f76c18b0e178bb307b08a78293498e875f1d44e3a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.9.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 13857f9070600ea1f940749f123b02d0b027afbaa45e72186df0f278915761d0
MD5 f272bbaa840d83e7177c0b8c623cfb4a
BLAKE2b-256 d9daab0a874f02c22351959a60557f6f561d3e0f1e4d4247d6ce40fd4677d181

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2003071aa633477a01509890c895f9ef56cf3f2eaa72c7ec0b567f743c1abcba
MD5 c3b3547ce0d6ff5d985bde3f1e2b20cb
BLAKE2b-256 46227e19ce8e0c6a4836a112e1db84c4a01fe21f152efef3651678b745923238

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp312-cp312-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp312-cp312-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 8e5ff882d3a3d081157ceba7e0ebc7fac775f95b08cbb143accd4cece6043819
MD5 394e67853a2cda53ed081ab5b6be2cd6
BLAKE2b-256 d2ffb85fa640ec7e1b18cf6ec69b14bb74f3604a6b14218e44c918e82f7f856f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp312-cp312-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp312-cp312-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 731269812ea837e0b93d913648e404736407408e33a00b75741e8f27c590caa2
MD5 322922ce736abdc349607af640a9e886
BLAKE2b-256 8eccec5cc66958a8bc377979c0c001c3d971682eb5b273886fd706ff991dd319

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0e86e39c1c1a0816ceda836e6f7bd3743b930cbc51a43a81bb433b552f203f25
MD5 3b7da403b4602c29f1fbc41dd6586526
BLAKE2b-256 f9bd150bfc68d01f6e7b4380f8870da73832f45c2657d48694157c63c5c0fe95

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 170822a1b1719f02b58e3dce194c8ad7d4c5b39be38c0fdec603bd19c6f9cf81
MD5 1f097bf2a47c8bcd92b2279ed5ba4b12
BLAKE2b-256 5c2b41aa779f65e86ce482bc2d4014d2f6b4f4fb55b206244aefa6d5b83e1b8a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6993d361f28b9ef5f0fa4e79b8541c2f3507be7471b9f9cb403a255e123b31e1
MD5 00047942230082029336491344ed1edf
BLAKE2b-256 ee3e2966e77991f76e162d3b25550d38afd942d86811e75eafcb5755e786ec57

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 0ca799f882364e69d0872619afb19efa3652b7133c18352e4a3d86a324fb2bb1
MD5 f4a341c50a02660ca45643ac19f91acb
BLAKE2b-256 0f0f96f6f10db440b4208c47eaa4c34a8ec8315e5388bad678e1c454d3c27303

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f83bd3d01f04061c3660742dc85143a89d49fd23eb31eccbf60ad56c4b955617
MD5 eaf584e51c888193d77383572f640bd8
BLAKE2b-256 10158cf5790ffbe3548b9dfe5d77afd0e0244d5c1fae05c6753679d13f724075

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2444d8155d9846f206e2079bb355b85f365d9457480b0d71677a112d0a7f7128
MD5 b7b5da7c18199f5e64ca4f5a4bba59c3
BLAKE2b-256 6307a809f41c7aaa423e817080fe6b9086b0abfdd2b021a7ce6a0e45c1d55a13

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bdd8c15c3a14e409507fdf0c0434ec481d85c6cbeec8bdcd342a8cd1eda03825
MD5 46ab9de4d45fb54f7223466115c90c35
BLAKE2b-256 615c3425cc9a1212019c405964ca24226b28fd8907c97b725cf0fa21fdd8d0c4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ab872cb57ae97c54ba7c71a9e3c9552beb57cb907c789b726895576d1ea9af6f
MD5 74f465846d85c0cf4e2c4d25a19fe165
BLAKE2b-256 c3db752d2fbb7a736fe755c9490fa57fa68c6fbdb04ea62a7eb270c94d2dd008

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 633b9d03fc04abc585c197104b1d0af04b1f1db1abc99f674d871224cd15557a
MD5 d98eddcb2126fbd3e8a99364eb840dc3
BLAKE2b-256 09d3a26f74b77545e2d5f58ccd1cbcf13f96b8fcef1e99b11a4fa9cc719f3878

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f81fe99a69ac8ee3fd905e70c62f3af033901aeb60b69317d1d43d547b46e510
MD5 92aae4988e5878016d7f5784776dbb1c
BLAKE2b-256 e1538d1198f48bc865ff4f68406b31a85abf89e979371ceb362b691d494e960e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp311-cp311-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 a2de844e0e971d7bd8aa41284627dbeacc90e750b90acfb016836553c7a63192
MD5 7b8f825666009fe5f854d0f57a663b55
BLAKE2b-256 784c604cff7f20e23556b5614f44953fc6f6d1f2cded108fdebb8b3da4e380ca

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d5d5684f54d82d9b0cf0b2701e55a630527a9c3dd5ddcf7a2e726a475ac238f2
MD5 1977752cf2d9f574194227b16b6de4b6
BLAKE2b-256 01559aad2563ba629cc03228b97c0abe286a61fbfeb8c8e80202313914d722d1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.9.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 b9bf90b3d96925cbf8ef44e5ee3cf39ef0c422f12d40f7a497e91febec546650
MD5 526bcf8ffd7ca6035c482cd0c3ebb6b9
BLAKE2b-256 789886189bd4ca832aabdfa4af214a0c7fdc823b81c4f265499732a72cf43e15

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ff08081c49b18ba253a99e6a47f492e6ee8019e19bbb6ddc3ed360cd3ecb2f62
MD5 abb08078adb0930f2189faeaa877e93d
BLAKE2b-256 da9e004110566da8d3769a71e99cd47bf68271aaaceeb8700add2da078ecf6c0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp311-cp311-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp311-cp311-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 fc02157f521af15143fae88f92ef3ddcc4e0cff05c40153a9549dc0fbdb9adb3
MD5 077523835c9c296f763d1b8d9d7feff3
BLAKE2b-256 ca8730c5da5f1fead1dab51ca0c5f037d15aec9d1efb3fb2ea04df3dcbb7d318

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp311-cp311-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp311-cp311-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 c4ef34b2ddbf448f1d644b4ec6475df8bbe5b9d0fee173ff2e87322a151663bd
MD5 8232be86c55f9a440480a5b61e943588
BLAKE2b-256 fb8d30321c8dffb70aba64d5449404ebd6ba441277f06f475caf0d79e9c5d867

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 014ac55b03f4074f903248ded181f3000f4cdbd134e6155cbf643f0eceb4f70f
MD5 53a26e4445d06151573fc5948f665b9c
BLAKE2b-256 a2fd7c1c471c459ff274895d7a857209316dd987f935a56300984b337952bf43

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 c74f2da334ce597f31670db574766ddeaee5d9430c2c00e28d0fbb7f76172036
MD5 d82e121e2bffcade5373deebede7d649
BLAKE2b-256 e25ca9d4513e509201f57254abc63d768e3018c0c3014dff8a356489dadd12c6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 182b4e11de928fb4834e8f8b5ecd971b5b10a86fabe8636ab65d3a9b7e0e9ca7
MD5 cdd59d9dbc8da2c457440f1d7cb53b36
BLAKE2b-256 bdb9eee43acc9a0c26f1f415d29b1985f5fc694a600efbea3035d4d10ae61b6a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 28da953eb2ef9ad527e536022da7afff6ace7126cdd6f3e21ac20f8762e76d2c
MD5 c5e1eb48461d77441add1e57c22c9a9e
BLAKE2b-256 69e584c571c2e2d6c28ad86e862ef8a27168cf9159d4acd4d64dfa6fbe18c160

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 47d97e28c42f1efb7781993b67c749223f198f6653ef177a0c8f2b1c516efcaf
MD5 da7efe6df08ff3d831ed33e0008b07da
BLAKE2b-256 40180322dde84dd04e7a9c21e8552302326ffed5f5bda3b9153e3a7b3e00c476

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1179dcd3d150a67b8a678cd9c84f3baff7413ff13c9e8fe85e52a16c97e24c9b
MD5 884bdbe367576c81daae02cad3178821
BLAKE2b-256 1d3ebce7e686d05ca118ec5f5d674deb6e2fdd4929d98ec2dcd565f41e2c22cd

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 33cfabcb7fd994938a6a08e641613ce5fe46757832edc789c6a5602e7933d6fa
MD5 a5805b53f481be33ed44f85e9dd62f72
BLAKE2b-256 77c8627b2f75513736cba1519c90d141eb11d152e497ed4143d335eccd14997d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 905b01a9b633394ff6bb5ebb1c5fd660e0e180c03fcf9d90199cc6ed74b87cf7
MD5 56dc72c28e671e21342f92ddb0f74756
BLAKE2b-256 bf84a3e07222e3f48703232474844b3d0ab16ddd6a0c35af0ced7ce239820c22

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 36bf35df2d6c7d5820da20a6720aee34f67c15cd2daf8cf92e8141995c640c25
MD5 0dd8cf2810f3488c3a47dd570e393d20
BLAKE2b-256 804874b632b3c92fc3f65c1eb0e09f73ef74a46b9ac602c89fac5c3c07ccd8e6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e2218d62ab63f3c5ad48eced898854d0c2c327a48f0fb02e2288d7e5332a22c8
MD5 a1329c078ef6cba62f61b52b7daba60b
BLAKE2b-256 d4651ad391d3bb19155ab76118b5db57b0f41b17e2c52d791a9e6932d65dbf8b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp310-cp310-win_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 6a83128d505cac76ea560bb9afcb3f6986e14e50a6f467db9a31faef4bd9b347
MD5 40a78f65d6deab35af8a55002688ea73
BLAKE2b-256 583349c2a2653933ffd370962097ac123586b3b3f11e2e4d1b6dcc5e22eb7b84

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c56d2efdfaa1c642029f3a7a5bb76085c5531f7a530777be98232d2ce142553c
MD5 8fed07072733b4846a68360797877a64
BLAKE2b-256 1600a61fdc1b3a1dd8df84732792af7827d75b9afa2077885c3567366346755c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.9.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 1b1f74997b6d94d66375479fa55f70b1c18e4d865d7afcd13f0785bfd40a9d3c
MD5 80fb96ed49bd53b6dee21af06238fd16
BLAKE2b-256 7765ef65738c6d8f1b942cf7dd2c030eda21fafc41ab20f3ba479ec37173e7f0

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0bb28ab5300cf974c7eb68ea21125c493e74b35b1129e629533468b2064ae0a2
MD5 081c1caabe9efcdb005a43b3b858b5a6
BLAKE2b-256 0ad4867e918affe9e788fd12857e62565b558f82f1a525a59bf637bde33bf0de

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp310-cp310-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp310-cp310-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 2d267d4c982ab7d177e994ab1f31b98ff3814f6791b90d35dda38307b9e7c989
MD5 dc3d8250d2bf975aaa2eefe07ea1d31d
BLAKE2b-256 a6ed86064e1ce0e5cc8ed51e11916284a0de3163016cd75c5c894e74335371ea

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp310-cp310-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp310-cp310-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 7988363b3a415c5194ce1a68d380629247f8713e669ad81db7548eb156c4f365
MD5 e566bbc059d694886894fae220009bfc
BLAKE2b-256 f2f225f0421e3f7557d128818623a4a2930b815c7fb5da35aeae8f9890ee345b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e721842e6b601ebbeb8cc5e12c75bbdd1d9e9561ea932f2f844c418c31256e82
MD5 f3a30a8b58845e33a3acbfb722e903bc
BLAKE2b-256 da970395e9cf571c159439f6cba2b6724311a034695b6836c104eff1c33cf9af

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 08d8b49b3a4fb8572e480e73fcddc750da9cbb8696752ee12cca4bf8c8220d52
MD5 44564ba9b4fef7605000791eab8e577a
BLAKE2b-256 f80c7135b9118faccec11704d441b3ed589eda99015848e9859e4be2f5423b21

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0dcb95fde22f98e6d0480db8d6038c45fe2d18a338690e6f9bba9b82323f3469
MD5 146b1271376a682317a064fd87e224c9
BLAKE2b-256 d70a96b93ddd15ab1c39e04a20027580607e46850c743d1e6cbb014f393e9491

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 b33c6d4b3a1190bc0b6c158c3981535f9434e8ed9ffa40cf5586d66c1819fb4b
MD5 819093b8aabcf85872e78f3c5f7aff02
BLAKE2b-256 4db5d02541baa282c1762afef117b8667d96c9439b4526bd9eb13a7f55287b56

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 3083512e9bf6ed2bb3d25883922974f55e21ae7f8e9f4e298634691ae1aee583
MD5 289ff4a5972e198a60673cd033da2dc3
BLAKE2b-256 da25a4404e6066bfd37a2f46967b3f05663e4d2bb7a33baf542456370b2b518c

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b11e602987bcb4ea22b44178851f27406fca59b0836298d0beb009b504dba266
MD5 844e704f3de91139f0967a22434a1d1f
BLAKE2b-256 2c932234aa2dd6991648999cd245c28859561edd85b6d4b508dc3630179ef9df

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e3f2d1ea7cd57dfcd34821e38b4924c80a31bcf8067201b1ab07386996a9faee
MD5 384dee08be5314031ee23b33c113b317
BLAKE2b-256 ce9e9a0eb95e14baf12b760b29ce82bfc25d8cf0d009c9ceb39e82b6f986950b

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 488f74126904db6b1bea545c2f3567ea882099f4c13f46012fe8f4b990c683df
MD5 8243a267a72becaf01a8e7c53c966482
BLAKE2b-256 2cf2312832a50999bb349d8818cc1835cf57d55d0d518da02058347475ee6dd6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 55e2c5076f38fc1dbaacb95fa026a3e409eee6ea5ac4016d44fb30e4cad42b20
MD5 0d1d89c0870630b8a79502ac5e2cbad7
BLAKE2b-256 c98a13aaaa9a3b123d773bfa06e897363396bd020cd0e7af69f53df8cf7ed9d8

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 bd375c4830fee11d502dd93ecadef63c137ae88e1aaa29cc15031fa66d1e0abb
MD5 a2c91fb7aa614bfb661f68342cd6dbdb
BLAKE2b-256 dc70afeb811084694a5eb8ca50a2a353b44dd8f42cb9c4b90ca62588240be266

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: rapidfuzz-3.9.0-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 863.9 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.0-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 fc4e26f592b51f97acf0a3f8dfed95e4d830c6a8fbf359361035df836381ab81
MD5 98de2f12b4879812029c643b99b29478
BLAKE2b-256 acb96e1a9d3b46335f8473742da5e638a7282b35f839b763bc74daa366b4e254

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.9.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3733aede16ea112728ffeafeb29ccc62e095ed8ec816822fa2a82e92e2c08696
MD5 8ee76f68e3d07decb3a19e3ce62a1ff1
BLAKE2b-256 2f703a0e2ad49861b39776b29d5014e4e086a22c804f5b3479b691462b221a0f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.9.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 3904d0084ab51f82e9f353031554965524f535522a48ec75c30b223eb5a0a488
MD5 22a14b197580abe3d90b98b707fdd2c6
BLAKE2b-256 58b671b504ff164b67427896cc8e8776266c64d7f2297959c428b1ddd1df487a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ff8982fc3bd49d55a91569fc8a3feba0de4cef0b391ff9091be546e9df075b81
MD5 6a31c3e0f56f2a326aa7a98a3f53834c
BLAKE2b-256 4d393d5424c663ccb19bfdc647fbcba3c322ce975a8646e567a1c52be40c1d0e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp39-cp39-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp39-cp39-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 413ac49bae291d7e226a5c9be65c71b2630b3346bce39268d02cb3290232e4b7
MD5 894048a3aca7ad794d190a0c11c93b90
BLAKE2b-256 61c52e1dbba4f2342119495ce383ad71e905ba1299d99320e21e3e2ac9da66b2

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp39-cp39-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp39-cp39-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 ce897b5dafb7fb7587a95fe4d449c1ea0b6d9ac4462fbafefdbbeef6eee4cf6a
MD5 47c7686ae0505d4867658b719b25300d
BLAKE2b-256 33619b1097ce2e74e4a61527cda0c6f26dae968d253d3d32a4b04983023d4362

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a365886c42177b2beab475a50ba311b59b04f233ceaebc4c341f6f91a86a78e2
MD5 250d805a47ff25b82f41a1cf9645c9d3
BLAKE2b-256 43adffcba825b1817b3908393610b3165c1e87919bad4cba68235df3f9f5e48e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 3c42a238bf9dd48f4ccec4c6934ac718225b00bb3a438a008c219e7ccb3894c7
MD5 6d1dca75ebce2bb01de6c0fca32c79c2
BLAKE2b-256 e6bec1a371d80cc3fbfd484124ba33f996d6f9916f124772d8f9dd7327c1fb8f

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0c5b8f9a7b177af6ce7c6ad5b95588b4b73e37917711aafa33b2e79ee80fe709
MD5 891a180e633c0ccf51b413ad7da31109
BLAKE2b-256 76687e3960598f0eed4f92876f58d066ad73155e519522e4ca6e0bdc4d6721bc

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 68da1b70458fea5290ec9a169fcffe0c17ff7e5bb3c3257e63d7021a50601a8e
MD5 918d31daec596634cf634498c772a3fe
BLAKE2b-256 b6f54f2e8e71d6b85a11de6c0312d7e117964bfff8a292f97cfda9657177eabc

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 5c396562d304e974b4b0d5cd3afc4f92c113ea46a36e6bc62e45333d6aa8837e
MD5 ffcb78168875fd3b2fd494e5d1257020
BLAKE2b-256 08abf01f86bf1a5f23a4ec305c66d862c717693407e58f6e27c41fbd6a4733a1

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6a7f273906b3c7cc6d63a76e088200805947aa0bc1ada42c6a0e582e19c390d7
MD5 5052d60f3dcf3953db41dbb7b02e9c0c
BLAKE2b-256 4a0131c2faf0248d3515ffd1da7d88377179417969d9112f37414b3fc3ef0a43

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 48105991ff6e4a51c7f754df500baa070270ed3d41784ee0d097549bc9fcb16d
MD5 d611bc371e07290218e58b078cb5b0c0
BLAKE2b-256 481e41046a8d215f516e396ba9eb51b5906364022de729f5745da2758d169de6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3a16c48c6df8fb633efbbdea744361025d01d79bca988f884a620e63e782fe5b
MD5 d09c2d530e144e7b1f9ffb4a9a051fda
BLAKE2b-256 bded304d310c967b76c5f42ae0676f7fc273c462b6d4d17c44fb60973310f0ca

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 47b7c0840afa724db3b1a070bc6ed5beab73b4e659b1d395023617fc51bf68a2
MD5 db3161a3e5a3793f82335ab81152b2d6
BLAKE2b-256 3c281ea39153402c46e0b6e1eb894fbab86b4912d440d411bad921bcf0d3cf51

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 65d9250a4b0bf86320097306084bc3ca479c8f5491927c170d018787793ebe95
MD5 b3f05437ab6b290e32c4cdc39d9d8dcb
BLAKE2b-256 42e51b1f0a1434b2b18699ca618a00cc906fac8a34836c51addc36294c95da2d

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-3.9.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9d6478957fb35c7844ad08f2442b62ba76c1857a56370781a707eefa4f4981e1
MD5 dd8acc4e6d96296b087d90aefbe48132
BLAKE2b-256 e6d90806526f242c4329c9a8205739ff3f030965d0dcb2b4dae9ad00e89a4250

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-3.9.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for rapidfuzz-3.9.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 e65b8f7921bf60cbb207c132842a6b45eefef48c4c3b510eb16087d6c08c70af
MD5 9ec9a796c47de69d61f2b6a011434a37
BLAKE2b-256 a67b6a82916fdb76ee890f25830a40179d08d073cf0d07eca6057f3ec4991c19

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7c09f4e87e82a164c9db769474bc61f8c8b677f2aeb0234b8abac73d2ecf9799
MD5 e82f2bffe3e70c7365efc9fb34e05379
BLAKE2b-256 fac38a2040cde0d082ec98ace612537979ecfec3ac06c8dfaa620a3e98506128

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp38-cp38-musllinux_1_1_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp38-cp38-musllinux_1_1_s390x.whl
Algorithm Hash digest
SHA256 9bc0f7e6256a9c668482c41c8a3de5d0aa12e8ca346dcc427b97c7edb82cba48
MD5 4271a0502b4f2b987068ed9d6be7d789
BLAKE2b-256 586d5a2eba524b819a9f1d1fc7401bd533b3b57f8bd008419a0a61b686f79472

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp38-cp38-musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp38-cp38-musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 cd2e6e97daf17ebb3254285cf8dd86c60d56d6cf35c67f0f9a557ef26bd66290
MD5 f22adb92cee6d796d181d6e169d4208e
BLAKE2b-256 6ebd7a5a5dd590456ce96f62fbdcd92f8661be5d6da45c8200f39e7b20350af6

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 6c1ed63345d1581c39d4446b1a8c8f550709656ce2a3c88c47850b258167f3c2
MD5 9f2eca912feba18f103851bd4821edee
BLAKE2b-256 b457ba956d4daccd65aa608a5861d748fdbee4ba82f9d05a3324dfa1f38472b4

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 9a06a99f1335fe43464d7121bc6540de7cd9c9475ac2025babb373fe7f27846b
MD5 b6d0097a247436ab04afd6a96f786dd7
BLAKE2b-256 d973daf524a4fffbfbf016d3b4329ce7f0bec4cdca195517f5739483eb817a49

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4514980a5d204c076dd5b756960f6b1b7598f030009456e6109d76c4c331d03c
MD5 cd8690e6a26de792987b6218b75bb017
BLAKE2b-256 33afa5f3aeefebfdff59fb74f7b463b0ee436ad1698cecc3f921aaf3693419af

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 4eea3bf72c4fe68e957526ffd6bcbb403a21baa6b3344aaae2d3252313df6199
MD5 b60de7b74f71b042977443c045762ae0
BLAKE2b-256 1b00b80109a6eb47aa20d0d5f06885d80705e55d7308d6b394e602e7e19ec67a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 dcb523243e988c849cf81220164ec3bbed378a699e595a8914fffe80596dc49f
MD5 7b80755724d65102db3dae6d843dbf97
BLAKE2b-256 78eadc6f8eb9cfab0a127f869e170cbcd2d295ce0eca361988f1abd98a029863

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 11a7ec4676242c8a430509cff42ce98bca2fbe30188a63d0f60fdcbfd7e84970
MD5 5bd6a1375ef44b35a6b181c2a27e834d
BLAKE2b-256 467736fa854f8c546d9d9b3798cefa2cc3b571a37ae7097307639b9495341f67

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3f4a2468432a1db491af6f547fad8f6d55fa03e57265c2f20e5eaceb68c7907e
MD5 62b2be977c08ecf84c52df5e7b920c59
BLAKE2b-256 bc2ebda12fa27754252dc1fea78c6d8d29ef09d1b190efc0a0a3b3c0a3c6966a

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 30f7609da871510583f87484a10820b26555a473a90ab356cdda2f3b4456256c
MD5 5f6ed9d3bb786e333cc7b06b4dbf30c9
BLAKE2b-256 4c8974cbefb994455913d1033b9553f8952b3aa42ca5b8ba81059c8018a44d7e

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1d536f8beb8dd82d6efb20fe9f82c2cfab9ffa0384b5d184327e393a4edde91d
MD5 50a22b0d0551f111b36d729253497760
BLAKE2b-256 1829bbba6d75b445aea0ed35a4613e8961f5317c44516ed3016370d60548be18

See more details on using hashes here.

File details

Details for the file rapidfuzz-3.9.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for rapidfuzz-3.9.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 544b0bf9d17170720809918e9ccd0d482d4a3a6eca35630d8e1459f737f71755
MD5 89e4b924fa227ce5eea1786de635b77b
BLAKE2b-256 e5fdeabc508b3afecc1af85560405e87ebe00d542f1116814f7a7c9f98c573a0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page