Skip to main content

Database Abstraction Library

Project description

PyPI PyPI - Python Version PyPI - Downloads

The Python SQL Toolkit and Object Relational Mapper

Introduction

SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives application developers the full power and flexibility of SQL. SQLAlchemy provides a full suite of well known enterprise-level persistence patterns, designed for efficient and high-performing database access, adapted into a simple and Pythonic domain language.

Major SQLAlchemy features include:

  • An industrial strength ORM, built from the core on the identity map, unit of work, and data mapper patterns. These patterns allow transparent persistence of objects using a declarative configuration system. Domain models can be constructed and manipulated naturally, and changes are synchronized with the current transaction automatically.

  • A relationally-oriented query system, exposing the full range of SQL’s capabilities explicitly, including joins, subqueries, correlation, and most everything else, in terms of the object model. Writing queries with the ORM uses the same techniques of relational composition you use when writing SQL. While you can drop into literal SQL at any time, it’s virtually never needed.

  • A comprehensive and flexible system of eager loading for related collections and objects. Collections are cached within a session, and can be loaded on individual access, all at once using joins, or by query per collection across the full result set.

  • A Core SQL construction system and DBAPI interaction layer. The SQLAlchemy Core is separate from the ORM and is a full database abstraction layer in its own right, and includes an extensible Python-based SQL expression language, schema metadata, connection pooling, type coercion, and custom types.

  • All primary and foreign key constraints are assumed to be composite and natural. Surrogate integer primary keys are of course still the norm, but SQLAlchemy never assumes or hardcodes to this model.

  • Database introspection and generation. Database schemas can be “reflected” in one step into Python structures representing database metadata; those same structures can then generate CREATE statements right back out - all within the Core, independent of the ORM.

SQLAlchemy’s philosophy:

  • SQL databases behave less and less like object collections the more size and performance start to matter; object collections behave less and less like tables and rows the more abstraction starts to matter. SQLAlchemy aims to accommodate both of these principles.

  • An ORM doesn’t need to hide the “R”. A relational database provides rich, set-based functionality that should be fully exposed. SQLAlchemy’s ORM provides an open-ended set of patterns that allow a developer to construct a custom mediation layer between a domain model and a relational schema, turning the so-called “object relational impedance” issue into a distant memory.

  • The developer, in all cases, makes all decisions regarding the design, structure, and naming conventions of both the object model as well as the relational schema. SQLAlchemy only provides the means to automate the execution of these decisions.

  • With SQLAlchemy, there’s no such thing as “the ORM generated a bad query” - you retain full control over the structure of queries, including how joins are organized, how subqueries and correlation is used, what columns are requested. Everything SQLAlchemy does is ultimately the result of a developer- initiated decision.

  • Don’t use an ORM if the problem doesn’t need one. SQLAlchemy consists of a Core and separate ORM component. The Core offers a full SQL expression language that allows Pythonic construction of SQL constructs that render directly to SQL strings for a target database, returning result sets that are essentially enhanced DBAPI cursors.

  • Transactions should be the norm. With SQLAlchemy’s ORM, nothing goes to permanent storage until commit() is called. SQLAlchemy encourages applications to create a consistent means of delineating the start and end of a series of operations.

  • Never render a literal value in a SQL statement. Bound parameters are used to the greatest degree possible, allowing query optimizers to cache query plans effectively and making SQL injection attacks a non-issue.

Documentation

Latest documentation is at:

http://www.sqlalchemy.org/docs/

Installation / Requirements

Full documentation for installation is at Installation.

Getting Help / Development / Bug reporting

Please refer to the SQLAlchemy Community Guide.

Code of Conduct

Above all, SQLAlchemy places great emphasis on polite, thoughtful, and constructive communication between users and developers. Please see our current Code of Conduct at Code of Conduct.

License

SQLAlchemy is distributed under the MIT license.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SQLAlchemy-1.4.15.tar.gz (7.6 MB view details)

Uploaded Source

Built Distributions

SQLAlchemy-1.4.15-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

SQLAlchemy-1.4.15-cp39-cp39-win32.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86

SQLAlchemy-1.4.15-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.15-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.15-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.15-cp39-cp39-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

SQLAlchemy-1.4.15-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

SQLAlchemy-1.4.15-cp38-cp38-win32.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86

SQLAlchemy-1.4.15-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.15-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.15-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.15-cp38-cp38-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

SQLAlchemy-1.4.15-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

SQLAlchemy-1.4.15-cp37-cp37m-win32.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86

SQLAlchemy-1.4.15-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.15-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.15-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.15-cp37-cp37m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

SQLAlchemy-1.4.15-cp36-cp36m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86-64

SQLAlchemy-1.4.15-cp36-cp36m-win32.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86

SQLAlchemy-1.4.15-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.15-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.15-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.15-cp36-cp36m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

SQLAlchemy-1.4.15-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.15-cp27-cp27m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86-64

SQLAlchemy-1.4.15-cp27-cp27m-win32.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86

SQLAlchemy-1.4.15-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.15-cp27-cp27m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m macOS 10.14+ x86-64

File details

Details for the file SQLAlchemy-1.4.15.tar.gz.

File metadata

  • Download URL: SQLAlchemy-1.4.15.tar.gz
  • Upload date:
  • Size: 7.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for SQLAlchemy-1.4.15.tar.gz
Algorithm Hash digest
SHA256 0ff100c75cd175f35f4d24375a0b3d82461f5b1af5fc8d112ef0e5ceea8049e6
MD5 7da559fc61f55ecb25a5c36a8e2aab9c
BLAKE2b-256 dfb79c09a82fdb8a6a814ab51a874856abd28a280260ab5c13e532628fcddbe9

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.15-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.15-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.9

File hashes

Hashes for SQLAlchemy-1.4.15-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 17ce3009c69ac361d871bed3c9c30cf405d2739934d83322272bd455a697c874
MD5 a36722ed24c01f4b50a8bfb0e1700cc5
BLAKE2b-256 0a9db87307c72e6ac0eefe0bb47c9dfff0cecc2e1144664001280f7bc9dfb52c

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.15-cp39-cp39-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.15-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.9

File hashes

Hashes for SQLAlchemy-1.4.15-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 5642d64feeab65ae662c8e46eccc3db4a3100c9572dcfa29063751e2d1940e78
MD5 33acd751fe10b54a0b9ee636050a20a9
BLAKE2b-256 31747ffda4396dd9ad1b8ffce1a29c25946cd8d504cd9592647b3e08d765172d

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.15-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.15-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a31062468a184eb046eb09eadf296e3652d916793e32829082b3eda3367be5e8
MD5 c9365fc07048a1796063e82d043e307c
BLAKE2b-256 05596690d6c327d217d64a23c77ca1d947df015108728fdd15f6156a49fd6119

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.15-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.15-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c3fab43abe335a44aed3fbf98be619f021cbee2160718ecedc5fe4fa41296f7e
MD5 33c9bf93407dfdb8733575b9f12fa651
BLAKE2b-256 ff51329fda48d5dbe5655cf74ebe7f20d5da4a81cfbcc0788458fe05cd395a52

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.15-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.15-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6248934b6e1841a794d5d12e2d43e32c2a7c64a36a059c612d4d66b312b3604f
MD5 e04fbbc8d5e5ed84c34f607c153c7459
BLAKE2b-256 120b35aad7165789c0d264c30ef45b38341e812728846e27e253623df994489b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.15-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.15-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.9

File hashes

Hashes for SQLAlchemy-1.4.15-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 92dfb2ac7b44873901f87f3e0bb5c63469b76c5c3cabbf8124332e0dd1172410
MD5 de27795d9cb6d19e91d5c8ee959a0fb1
BLAKE2b-256 d66f97c2a44b1652a6e5257b34f59ed5dda4eb44011c6b733f96774f28235fb3

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.15-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.15-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.9

File hashes

Hashes for SQLAlchemy-1.4.15-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 75becbc5ac452dac28d8d5aeb0406ddd3a1d808726a5fd0d5b696fad0b71d951
MD5 17c48f9e1916e3f4b163548733f63085
BLAKE2b-256 6821535844143280ffedc8c319289c7dbba5f6ef3138940a6ca4eee3c4391cb8

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.15-cp38-cp38-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.15-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.9

File hashes

Hashes for SQLAlchemy-1.4.15-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 05ea2c275603b3fb5ce761d0ccabe47a376ed8a48f70e1d4c80a71f185224d3f
MD5 43ec54aaec232b84fdcf7e929d1e92a6
BLAKE2b-256 22272e07eebe3b661ff0753030dd4a3060b1032440ab3a4acf18278c4252c9b1

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.15-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.15-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 260a79673c1234a20d7a16ee3ac6711c3f1b81363ebb208921d512fdb9f6a12e
MD5 c12c6a1ccc640d82e08dce6f3e88c6f3
BLAKE2b-256 5d33c74964ffe351b7415e8f8394831febdc4f3012018b2dda9e99ff3f1c3b55

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.15-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.15-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 403e94a1862c6217e7bd71950191d58ad313ea976e7d128c9afb6b9934d2d6a2
MD5 ce9ad23d74db1dbbdd670275a23d6867
BLAKE2b-256 5da69b527b90558830876c205f45071367f12bc6609e29f40f1234ecef573f07

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.15-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.15-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7c2ff45be0eacf4ac290fe546064df257e8be899e3b191a39df3e41a2d9a0797
MD5 2fcc048d0e9cbeb9f4092fb49037f075
BLAKE2b-256 a82c43bcfd228f4ae59d4603efa46057c42c899a557a444a48bb7669079ff0be

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.15-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.15-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.9

File hashes

Hashes for SQLAlchemy-1.4.15-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 21e0d18dab96515670e96e53a7e7207ba5cee6cd56b312447f2772d61d37d9b8
MD5 a6af46133d333bd2d12cc6e70e10f3c7
BLAKE2b-256 00ef45cefb31640eaad796863500be6813640e852998cd1f54b1642dfb85b175

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.15-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.15-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.9

File hashes

Hashes for SQLAlchemy-1.4.15-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 70036b7fc86b8dc0c04e186107ee6371e8f9a8fb35980d483cc4d114b298b19f
MD5 c1cf8aa6af628a4d9f53a44371ec4e62
BLAKE2b-256 cace4295ad070c945d0eb33df4fa1c0302ef489675b1169ffb502108e827c8ce

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.15-cp37-cp37m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.15-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.9

File hashes

Hashes for SQLAlchemy-1.4.15-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 e3e627e0f57b6f101ecabe39b90261625deedc91ec659cd4226f522bd3dd0020
MD5 ebd4c4ca9e12c0378c8e6a73d0ce02f4
BLAKE2b-256 dbe362c3e2e51bf7ce5ff33ad9768298ea27025b8935101fbe7d8d15139b1beb

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.15-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.15-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8410319b084b708c4ee0bc0d82f4b01623883595b5d8333ec704788940cc7293
MD5 55fd411a7d5df7c038ef2b408540cf20
BLAKE2b-256 a874506ca0a854764447434a88be7ebedd3c38c358b222593f6b9a28f89c93f9

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.15-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.15-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ec88907048fbade9712de08e648203d95221cad5a3b8a459cc3724c1bffb9281
MD5 e99d28148110b700eea07cb1d8a35451
BLAKE2b-256 6edf7463a3ed61bb4e8a955101bd9a12c419abbb9848c634b6a4d70b2754335f

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.15-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.15-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c1151b26f8bc53a69dc82f782560568186625d7b70bece4914ca459be1f539e1
MD5 07d0b1753fd31c1372d03ebc0f0a57d2
BLAKE2b-256 aae3d4d75e8f04456d4b636a3dbcd20fd423878f789db3e8881dec89ea38f9b1

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.15-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.15-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.9

File hashes

Hashes for SQLAlchemy-1.4.15-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3845b3af8a412230cc91fd32103a74d558566fea96c1b8775abb7ec65c3ef5de
MD5 cb8e33e07c952610e2a6c29b2b02cb42
BLAKE2b-256 65fd5aea92dbf270442f74bf09bf16380fecada6e605d571398652ae1a9522a9

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.15-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.15-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.9

File hashes

Hashes for SQLAlchemy-1.4.15-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 4d3cc347db370cc0d14dd724a9f280f4b4a0447ad77a228dd20792c4736f0b0e
MD5 69cf341e18ad9eda57eaa750e4148cbb
BLAKE2b-256 ac8861755e95f2419df7614e98886c031551f49e241c1f4c89e4be0e8b6374a2

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.15-cp36-cp36m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.15-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.9

File hashes

Hashes for SQLAlchemy-1.4.15-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 6072231bdf976722ce92a8d1335e5b2d7ed0d7ee28667c00537b58cf7d68c41d
MD5 f7c460bd278294cfcc325f26fb097b84
BLAKE2b-256 394ec5292e798e91b0197256ad3bfe0f7cea4479ce6755a39526af2694be6985

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.15-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.15-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 10068984bf334dd0b03ea83550b45667be968789bd0033215d30053649b0dd1b
MD5 76a9288e00d7375ec056a17185b91146
BLAKE2b-256 d350fc9852a3e499c2368327a0a9db592dea3c32a28366427a1cd5b0b6dc53a3

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.15-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.15-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6521e3b2f58a9ec2ad84b24efa88e61b8d355a6e481b459dcb64cadd14ba74d7
MD5 001a7952956430c37c47440741f7275c
BLAKE2b-256 7583c213435bb70927f48e9cf3adf3784b50089b8113e31d351c2e230927b1f4

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.15-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.15-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 beb1a6560d65c46d52c6ac402a806b8d24a6f2ee3f96fbbd4cfa371db24c3b3a
MD5 dc9c53f3e8604b1b36e77bc301747a6a
BLAKE2b-256 6ca64b8ee00470c1ad6aec131647cab7151d0046a11223efd1e2a58eb018e3dc

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.15-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.15-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.9

File hashes

Hashes for SQLAlchemy-1.4.15-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a2c2965698807e53f1f4da1cc9d68f1c1dda9139ef5a96d18921be4e253d687e
MD5 914573ab7ab0023d9c1d7da433dddcea
BLAKE2b-256 d4bad82915f4a719a71bd6f42fa70b4f45af24e612f541c688d8750722b0adb0

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.15-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.15-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8a4d26fa3f00344f9b34402f8a52b58941ba0d4b0ca80d5b05be39ec35b2eb8e
MD5 5044ac0be27637aff175e5f0c2474832
BLAKE2b-256 15ae232c2350e609cc4018442fd54d288429c165f133a374d23d7a7f269f9ea0

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.15-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.15-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.9

File hashes

Hashes for SQLAlchemy-1.4.15-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 324fb6e1f41afd5bdf0a34cfd011999213dcd543b83efa9dcc868f9e64a9ff7f
MD5 5498a2bdd0950358d1f999ac9b010f0f
BLAKE2b-256 b399554d8e24414f3cbc320510882b3d043421aa0ac8c948bb8f090508be3241

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.15-cp27-cp27m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.15-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.9

File hashes

Hashes for SQLAlchemy-1.4.15-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 5ec8d34c8a9f467178b581a48ccef9163cb553015925e4665d7af495c3c958d9
MD5 7440e76cbf08898f26156a7a39c9aa19
BLAKE2b-256 776cd1c78e7c2a7cd2eb6e1bf67745e309fa7f052201148406f75706f0958b12

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.15-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.15-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c12b7dc8e37442eef74afc7f4f99eb4ec6d796215fc4499ca32c7ca48f353cb3
MD5 0d9e3d0a6f6ed9e2a4972f2295a811ea
BLAKE2b-256 7b05fd726e8c893c02b55ca031c85696cbfee94c1bf7495f443ec16b7c8224a2

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.15-cp27-cp27m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.15-cp27-cp27m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.9

File hashes

Hashes for SQLAlchemy-1.4.15-cp27-cp27m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 22141a05d0f60df57ae334b589dbd081213c257a80d448ff499a3b6efd1998d3
MD5 31c25a2968382a757e789e6f9ba2e64c
BLAKE2b-256 01f0dc769b5fd0037e641b2723ff9b8cc187b3ea751cff1d2fd9804d7d32107c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page