Skip to main content

Database Abstraction Library

Project description

PyPI PyPI - Python Version PyPI - Downloads

The Python SQL Toolkit and Object Relational Mapper

Introduction

SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives application developers the full power and flexibility of SQL. SQLAlchemy provides a full suite of well known enterprise-level persistence patterns, designed for efficient and high-performing database access, adapted into a simple and Pythonic domain language.

Major SQLAlchemy features include:

  • An industrial strength ORM, built from the core on the identity map, unit of work, and data mapper patterns. These patterns allow transparent persistence of objects using a declarative configuration system. Domain models can be constructed and manipulated naturally, and changes are synchronized with the current transaction automatically.

  • A relationally-oriented query system, exposing the full range of SQL’s capabilities explicitly, including joins, subqueries, correlation, and most everything else, in terms of the object model. Writing queries with the ORM uses the same techniques of relational composition you use when writing SQL. While you can drop into literal SQL at any time, it’s virtually never needed.

  • A comprehensive and flexible system of eager loading for related collections and objects. Collections are cached within a session, and can be loaded on individual access, all at once using joins, or by query per collection across the full result set.

  • A Core SQL construction system and DBAPI interaction layer. The SQLAlchemy Core is separate from the ORM and is a full database abstraction layer in its own right, and includes an extensible Python-based SQL expression language, schema metadata, connection pooling, type coercion, and custom types.

  • All primary and foreign key constraints are assumed to be composite and natural. Surrogate integer primary keys are of course still the norm, but SQLAlchemy never assumes or hardcodes to this model.

  • Database introspection and generation. Database schemas can be “reflected” in one step into Python structures representing database metadata; those same structures can then generate CREATE statements right back out - all within the Core, independent of the ORM.

SQLAlchemy’s philosophy:

  • SQL databases behave less and less like object collections the more size and performance start to matter; object collections behave less and less like tables and rows the more abstraction starts to matter. SQLAlchemy aims to accommodate both of these principles.

  • An ORM doesn’t need to hide the “R”. A relational database provides rich, set-based functionality that should be fully exposed. SQLAlchemy’s ORM provides an open-ended set of patterns that allow a developer to construct a custom mediation layer between a domain model and a relational schema, turning the so-called “object relational impedance” issue into a distant memory.

  • The developer, in all cases, makes all decisions regarding the design, structure, and naming conventions of both the object model as well as the relational schema. SQLAlchemy only provides the means to automate the execution of these decisions.

  • With SQLAlchemy, there’s no such thing as “the ORM generated a bad query” - you retain full control over the structure of queries, including how joins are organized, how subqueries and correlation is used, what columns are requested. Everything SQLAlchemy does is ultimately the result of a developer- initiated decision.

  • Don’t use an ORM if the problem doesn’t need one. SQLAlchemy consists of a Core and separate ORM component. The Core offers a full SQL expression language that allows Pythonic construction of SQL constructs that render directly to SQL strings for a target database, returning result sets that are essentially enhanced DBAPI cursors.

  • Transactions should be the norm. With SQLAlchemy’s ORM, nothing goes to permanent storage until commit() is called. SQLAlchemy encourages applications to create a consistent means of delineating the start and end of a series of operations.

  • Never render a literal value in a SQL statement. Bound parameters are used to the greatest degree possible, allowing query optimizers to cache query plans effectively and making SQL injection attacks a non-issue.

Documentation

Latest documentation is at:

http://www.sqlalchemy.org/docs/

Installation / Requirements

Full documentation for installation is at Installation.

Getting Help / Development / Bug reporting

Please refer to the SQLAlchemy Community Guide.

Code of Conduct

Above all, SQLAlchemy places great emphasis on polite, thoughtful, and constructive communication between users and developers. Please see our current Code of Conduct at Code of Conduct.

License

SQLAlchemy is distributed under the MIT license.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SQLAlchemy-1.4.16.tar.gz (7.6 MB view details)

Uploaded Source

Built Distributions

SQLAlchemy-1.4.16-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

SQLAlchemy-1.4.16-cp39-cp39-win32.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86

SQLAlchemy-1.4.16-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.16-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.16-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.16-cp39-cp39-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

SQLAlchemy-1.4.16-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

SQLAlchemy-1.4.16-cp38-cp38-win32.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86

SQLAlchemy-1.4.16-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.16-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.16-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.16-cp38-cp38-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

SQLAlchemy-1.4.16-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

SQLAlchemy-1.4.16-cp37-cp37m-win32.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86

SQLAlchemy-1.4.16-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.16-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.16-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.16-cp37-cp37m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

SQLAlchemy-1.4.16-cp36-cp36m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86-64

SQLAlchemy-1.4.16-cp36-cp36m-win32.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86

SQLAlchemy-1.4.16-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.16-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.16-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.16-cp36-cp36m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

SQLAlchemy-1.4.16-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.16-cp27-cp27m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86-64

SQLAlchemy-1.4.16-cp27-cp27m-win32.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86

SQLAlchemy-1.4.16-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.16-cp27-cp27m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m macOS 10.14+ x86-64

File details

Details for the file SQLAlchemy-1.4.16.tar.gz.

File metadata

  • Download URL: SQLAlchemy-1.4.16.tar.gz
  • Upload date:
  • Size: 7.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.5

File hashes

Hashes for SQLAlchemy-1.4.16.tar.gz
Algorithm Hash digest
SHA256 ed53c2fb5d3981f3e718894b1978c3b33c4786c7f6a355300409ebbeb24bd497
MD5 8c5b31c8d444e95605d9b030c40b42d1
BLAKE2b-256 b51839565d3f07544f9e984455d9a1f50267c245f2c58ae3884114122dd905f0

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.16-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.16-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.16-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 abc05736bfe2a52d5b9d1c513517a4ddc92cfb8ba20a6c0de5e408e05c4bc8cb
MD5 7c807f319b23aa040c8a0cdd0b16afe9
BLAKE2b-256 d2e9dfa7b0d549bcefaeac28b2183b576b26953a0a76285c2d4fe0d8d2fe8131

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.16-cp39-cp39-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.16-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.16-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 8f23c62e90effe0b6c05826e758321cd0174041a0f37141bcc48c374bd8cc071
MD5 ca7f293b4470235adcb14f267e886830
BLAKE2b-256 74fb0b18ed311690b55e521be6d71543b94c741a4a862a72e4747cc2bdcb8e10

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.16-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.16-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fe748f0248e547bbd7966e4361bfd8fd1036e9ad78c5418bc2f0099542155b0e
MD5 68126d3952e69aa370694c652fb31852
BLAKE2b-256 69ccaf0df9e3558d1e4a1136d1a2846ac65f0c4c84fe197ba022f56c4e2f8162

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.16-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.16-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7913dafa5a65bd32cb28ea5bab95ba8a079bf80e49ff7eb63e316abdfd37c208
MD5 d5d4b32dc9f70825f4220bdbd23357ae
BLAKE2b-256 647755fcb2f97d7125c7f818d8b5110439dfe44e0c7ff5844c8ce6028c6547ee

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.16-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.16-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0476cd081c13320ac807e91877a96c2be5db2d2c47128f053c1301041ad92c08
MD5 2f7febc6035d699a3ade0159f257e8dc
BLAKE2b-256 d771d32a73d09da20dd2c5c16b1b895721e506bd6f8da94b0979a691811c3f94

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.16-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.16-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.16-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3278fa86a879ecc97e6eeb4ab071ab1934356a6308460a23576c82b6c1663ef8
MD5 a0ad985c55ff63c7e8f26393fe31a585
BLAKE2b-256 a370dfbee3b300931c22b63c21f312fc2b7af0d66ed6ce55bc01e26c410d3797

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.16-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.16-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.16-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ae4c5e4b449cbd89936511ff9fdbd77e54cc6ffb29367aaa9713917824180804
MD5 af64897d578c0e1b5f2641de30e36231
BLAKE2b-256 3ad8af345a97b4545281e47ce1ef944697300ba207a11c17ad1c3b1c9edab7c2

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.16-cp38-cp38-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.16-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.16-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 8901adc9be23f54695474cd3e32bdaa1fbb3002f70ff99fec5be4dad79c77d73
MD5 b5b04fcc6420a10e8f3af05aa25f4c26
BLAKE2b-256 fc4fcd228d33afc497155e33c7c6b13cce53df935fbed71676a2678dfaf87f07

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.16-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.16-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0abefec13b77e61670ac8a3c1f6cde07997549397a0460843184e5442b406627
MD5 7b27fc1837bdfc52d8b13d184fba034f
BLAKE2b-256 eb935fdbb540b22f3cea2a28c4e953d5abde28397e6f85eaeb587c51da68b2a1

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.16-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.16-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 382cca567b52ef45f892e5025703c0ef06c1da3f55031d9292246cb99087b9e2
MD5 f7eec76ea05838a046a9f48f376266bc
BLAKE2b-256 e40036c35be2b69f53bd9d1a9036dd694920b2ed29cc456226a7d80e22e420d7

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.16-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.16-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 95f47ebbb0bebc72ced4952419782cb24661148a9e23dd7c128be3896ab89d09
MD5 daa1618c7b73776118ded2e0fb000992
BLAKE2b-256 e6b8822b888c1c820a064324aa627c4fe6b97e4aaed8c9c11bd64bbc59bc6214

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.16-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.16-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.16-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 441bdd999f7b32cef5f9a4aaabd6fe17e1924ba3d70b9bd2d18281b46a89f81c
MD5 0427a196a8279013065d94060f471201
BLAKE2b-256 7b98ec7de87ddca319b1c175cf6a58a73e0b268717806ad90968d4f9b1653a53

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.16-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.16-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.16-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 6ce95bf8060bef9724935a6dd15a09cbdc40ab61fb07b24e5501f9ff2815ad3b
MD5 a3c72bc993157fec6dcf3df7426be004
BLAKE2b-256 76e05408365671fe1e747c7ba3144afc4bcd4da0ead7e719835ccae5849a83bd

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.16-cp37-cp37m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.16-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.16-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 4475dab2fa5a3e39dbc5a566477438ed82bbf23c57bbfb86bf44e6f99c1e8d1a
MD5 61018014ba91ca748e2d20802dc79ea7
BLAKE2b-256 1ffef117bf01238895a98a4480ab5465c8b1311f6ac0755d664f13bd008b6f1f

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.16-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.16-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b44982a267f390bf231ef605a53d9c23f2234b452a50384ae3a343f1a55fcc09
MD5 f85142ce967d5170e0dde0e86578a305
BLAKE2b-256 bf43f8d0c94fb0f87a9ba7e8b556654080fd9925d749698429b4c03a4628d3d2

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.16-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.16-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bd4756d965febbba22d76180cc995a38e0a9ef9fc34c6602dd8cd5ac38618ff1
MD5 7a47b7925d29eec63773fa6bec49eb63
BLAKE2b-256 6a3fa32c554444631ce57bddfb30cbf0778ae333a4d0eb0927feaba32100f0bb

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.16-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.16-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3c7672bcdf02b4ec86d89e869dd68a9feb1efa4a40f3fffcf811cdf864de010f
MD5 43414bad99b505491fdea12e38428fa4
BLAKE2b-256 d3c58c48ba3769d01f01f3538afe2f06bb6d61628a628f92e493c43a8da9016f

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.16-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.16-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.16-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b2d7ce2e0891593a57e929c79ab6ce92d2b9ac8f999f35ce316947d4b2cacea0
MD5 e6f25d696f72731169d345e8d6453d99
BLAKE2b-256 327104ceda608705df252ce284e6481f663b4bca966926515f0b90f9eaab4156

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.16-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.16-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.16-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ae15080cb0c6b610e8d2d79a4f4f6b6b531724b0a0e48e0b678410392a70741a
MD5 31aa495af2e7cf66ef9608ee268c7cf2
BLAKE2b-256 7e9a9f8b997774ac9be5185abd026b974d478c4e78d04e13307f38b7d7f755f6

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.16-cp36-cp36m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.16-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.16-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 e53a1a92e44c09cddff90878e70486ecc720be42da9400b9bed06dd3992506c3
MD5 de44834ea7bf66241bf55d369992e948
BLAKE2b-256 5f82bcf11e4c216d25fa6a71abf7ac7d44c68ec031740185fb59256625d93b1e

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.16-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.16-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f833763e7b88a19ca35e477c991e090f5fd85345ade05e65912f489ec1af7759
MD5 30494f68a18493cd46388dbdbfe1f6ef
BLAKE2b-256 16006b946c71928c669589dfcb236b20c63594234028fd3f9eea5ce4aee9295a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.16-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.16-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 538e8563f0600cf3903f8ec6142e9a89a471934025cfba7c3794dadd7a4ca1bd
MD5 a57807ae593f07af81f760a7c3288c1d
BLAKE2b-256 ba9663cff48177fa0daa79b8b7153eb427c222c492a7083e0f15d21506b0341e

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.16-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.16-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 da182262d9e184eed5c683cbc9a5d8bba58edb7da20a16a1e369c152d9a72dc2
MD5 e31ce176dc327e6567e898de78c38bf7
BLAKE2b-256 da0e43a538544d3d7991a3e5f2358d56065831bce736c40dfb4cf7cde2f2059c

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.16-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.16-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.16-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 941ab547f475eedfba7f34698a470dda37551702fada24d9c4ffc62f63aab675
MD5 dffd9a9568b8a35a92b2625786c97d99
BLAKE2b-256 19fb08299395153f36cfbb6651a4e3aa4374e35609b17b11714a2a1ff1e4c73c

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.16-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.16-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 51dd0cc1319091f42006e011bd6f5055ae7fd476693196dd32a29f18eb7c916f
MD5 c8b54b6508c5e54e4c9e3111e7390589
BLAKE2b-256 f4a7afc123783c755f3f9c2e6059def8d52552916932b3e7b1bd2f526a8cbd31

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.16-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.16-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.16-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 6d13fe63c66c45b6b282539d574fe4c0f60b9f53ac5d0cbc960fece39e79a621
MD5 e1d82989b81dce730e71833a5ee69fb2
BLAKE2b-256 74532ebe960f2f6ea57ec550d2be35a3765f48938d5ef8e3519a1e4cf68c0243

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.16-cp27-cp27m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.16-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.16-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 7abaa394c56feef74610beaaf8fe3487a97a7990b54d9ebafec4a2bb1f5648c5
MD5 ed17b74ccfe76ebbf63e394a5ad0705d
BLAKE2b-256 67992f74cf3f0e19426fe67fdc1aa35e1c81cf6d85dfd0d07176fcbd50d93d52

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.16-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.16-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d0aa3dc5da463ccacd586f54e3db65197bdeb8fee8b42b4567445de367d43979
MD5 ed3995949ce2d54dd34d48c079cb4344
BLAKE2b-256 d5b19dc99b55be80e56b465a83575b9f4df69b7d25735f3427f7aee1ea663014

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.16-cp27-cp27m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.16-cp27-cp27m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.16-cp27-cp27m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 aa9eb734b924791a89ecd458177092e4bd3767543f75d41075165beb45ae3c99
MD5 fcf62b92b435f44c992c98d193b4ea2d
BLAKE2b-256 b3072fb1e85f137f10b9e0bbf4776aca69b003f2d9ee52a47d3ed29d1402bcd8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page