Skip to main content

Database Abstraction Library

Project description

PyPI PyPI - Python Version PyPI - Downloads

The Python SQL Toolkit and Object Relational Mapper

Introduction

SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives application developers the full power and flexibility of SQL. SQLAlchemy provides a full suite of well known enterprise-level persistence patterns, designed for efficient and high-performing database access, adapted into a simple and Pythonic domain language.

Major SQLAlchemy features include:

  • An industrial strength ORM, built from the core on the identity map, unit of work, and data mapper patterns. These patterns allow transparent persistence of objects using a declarative configuration system. Domain models can be constructed and manipulated naturally, and changes are synchronized with the current transaction automatically.

  • A relationally-oriented query system, exposing the full range of SQL’s capabilities explicitly, including joins, subqueries, correlation, and most everything else, in terms of the object model. Writing queries with the ORM uses the same techniques of relational composition you use when writing SQL. While you can drop into literal SQL at any time, it’s virtually never needed.

  • A comprehensive and flexible system of eager loading for related collections and objects. Collections are cached within a session, and can be loaded on individual access, all at once using joins, or by query per collection across the full result set.

  • A Core SQL construction system and DBAPI interaction layer. The SQLAlchemy Core is separate from the ORM and is a full database abstraction layer in its own right, and includes an extensible Python-based SQL expression language, schema metadata, connection pooling, type coercion, and custom types.

  • All primary and foreign key constraints are assumed to be composite and natural. Surrogate integer primary keys are of course still the norm, but SQLAlchemy never assumes or hardcodes to this model.

  • Database introspection and generation. Database schemas can be “reflected” in one step into Python structures representing database metadata; those same structures can then generate CREATE statements right back out - all within the Core, independent of the ORM.

SQLAlchemy’s philosophy:

  • SQL databases behave less and less like object collections the more size and performance start to matter; object collections behave less and less like tables and rows the more abstraction starts to matter. SQLAlchemy aims to accommodate both of these principles.

  • An ORM doesn’t need to hide the “R”. A relational database provides rich, set-based functionality that should be fully exposed. SQLAlchemy’s ORM provides an open-ended set of patterns that allow a developer to construct a custom mediation layer between a domain model and a relational schema, turning the so-called “object relational impedance” issue into a distant memory.

  • The developer, in all cases, makes all decisions regarding the design, structure, and naming conventions of both the object model as well as the relational schema. SQLAlchemy only provides the means to automate the execution of these decisions.

  • With SQLAlchemy, there’s no such thing as “the ORM generated a bad query” - you retain full control over the structure of queries, including how joins are organized, how subqueries and correlation is used, what columns are requested. Everything SQLAlchemy does is ultimately the result of a developer- initiated decision.

  • Don’t use an ORM if the problem doesn’t need one. SQLAlchemy consists of a Core and separate ORM component. The Core offers a full SQL expression language that allows Pythonic construction of SQL constructs that render directly to SQL strings for a target database, returning result sets that are essentially enhanced DBAPI cursors.

  • Transactions should be the norm. With SQLAlchemy’s ORM, nothing goes to permanent storage until commit() is called. SQLAlchemy encourages applications to create a consistent means of delineating the start and end of a series of operations.

  • Never render a literal value in a SQL statement. Bound parameters are used to the greatest degree possible, allowing query optimizers to cache query plans effectively and making SQL injection attacks a non-issue.

Documentation

Latest documentation is at:

http://www.sqlalchemy.org/docs/

Installation / Requirements

Full documentation for installation is at Installation.

Getting Help / Development / Bug reporting

Please refer to the SQLAlchemy Community Guide.

Code of Conduct

Above all, SQLAlchemy places great emphasis on polite, thoughtful, and constructive communication between users and developers. Please see our current Code of Conduct at Code of Conduct.

License

SQLAlchemy is distributed under the MIT license.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SQLAlchemy-1.4.18.tar.gz (7.6 MB view details)

Uploaded Source

Built Distributions

SQLAlchemy-1.4.18-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

SQLAlchemy-1.4.18-cp39-cp39-win32.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86

SQLAlchemy-1.4.18-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.18-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.18-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.18-cp39-cp39-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

SQLAlchemy-1.4.18-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

SQLAlchemy-1.4.18-cp38-cp38-win32.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86

SQLAlchemy-1.4.18-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.18-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.18-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.18-cp38-cp38-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

SQLAlchemy-1.4.18-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

SQLAlchemy-1.4.18-cp37-cp37m-win32.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86

SQLAlchemy-1.4.18-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.18-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.18-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.18-cp37-cp37m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

SQLAlchemy-1.4.18-cp36-cp36m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86-64

SQLAlchemy-1.4.18-cp36-cp36m-win32.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86

SQLAlchemy-1.4.18-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.18-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.18-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.18-cp36-cp36m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

SQLAlchemy-1.4.18-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.18-cp27-cp27m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86-64

SQLAlchemy-1.4.18-cp27-cp27m-win32.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86

SQLAlchemy-1.4.18-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.18-cp27-cp27m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m macOS 10.14+ x86-64

File details

Details for the file SQLAlchemy-1.4.18.tar.gz.

File metadata

  • Download URL: SQLAlchemy-1.4.18.tar.gz
  • Upload date:
  • Size: 7.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.5

File hashes

Hashes for SQLAlchemy-1.4.18.tar.gz
Algorithm Hash digest
SHA256 d25210f5f1a6b7b6b357d8fa199fc1d5be828c67cc1af517600c02e5b2727e4c
MD5 fe5cd654fde96e647289d38aef43dcc6
BLAKE2b-256 605f2074710d4448bc0395c601b1ba306d0136b0c23c53442b7f2ca73548193c

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.18-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.18-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.18-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c824d14b52000597dfcced0a4e480fd8664b09fed606e746a2c67fe5fbe8dfd9
MD5 f2ab1d8ba8f665382140ab2fb002c372
BLAKE2b-256 672754e02109fe06423c3893ffeaabd5752a17913149e9ab857a05c6274c4c0c

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.18-cp39-cp39-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.18-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.18-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 0653d444d52f2b9a0cba1ea5cd0fc64e616ee3838ee86c1863781b2a8670fc0c
MD5 e0bea8e9c811956d5088f6a6495152db
BLAKE2b-256 65f2dfd32805b3c2089e9e51bbe416146676811d6f085413a4ed50c4f8feb79b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.18-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.18-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 284b6df04bc30e886998e0fdbd700ef9ffb83bcb484ffc54d4084959240dce91
MD5 ed8d3d89a893d11d20def05c9295cf22
BLAKE2b-256 f1387bc78c78b8d401bb9488552942afe9708b6171eb7cf0e01548179a9b4fa5

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.18-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.18-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2129d33b54da4d4771868a3639a07f461adc5887dbd9e0a80dbf560272245525
MD5 f8a9cc82c0c5328d3da8fad158a6f918
BLAKE2b-256 fe55f0eb303d5ae89f67459ef58e33e1f999f2e985e0261b81168bcf836f796d

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.18-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.18-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 146af9e67d0f821b28779d602372e65d019db01532d8f7101e91202d447c14ec
MD5 f9eebd842e7770839bb65dfce23d93b5
BLAKE2b-256 2a00030f49f4e1d8f5eee5991b2fa52752d777dd4c6e5d8da92b11e63b1dc913

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.18-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.18-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.18-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8924d552decf1a50d57dca4984ebd0778a55ca2cb1c0ef16df8c1fed405ff290
MD5 a02df44013aac997fd64053f11c05944
BLAKE2b-256 bbd383259a79424c5d0af3ef7f5785d8217bf63ae8cb323e125ca0c40b6646e3

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.18-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.18-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.18-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5c62fff70348e3f8e4392540d31f3b8c251dc8eb830173692e5d61896d4309d6
MD5 48b1d3a203c2234cd158a28ec494730d
BLAKE2b-256 5580564bccd3f9396e3437ddd7f549bdff1baf204148553ab87d553fff58ddd8

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.18-cp38-cp38-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.18-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.18-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 ee3428f6100ff2b07e7ecec6357d865a4d604c801760094883587ecdbf8a3533
MD5 15d6af2a27e4020fa65e515486711c45
BLAKE2b-256 0a3cfc21ab1e84b64af7b08377eea4516b8698c66d643430d2c854ecd71eed3f

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.18-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.18-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 70674f2ff315a74061da7af1225770578d23f4f6f74dd2e1964493abd8d804bc
MD5 4e9f1c5834b4a2855af6e04b44e7c4a5
BLAKE2b-256 6fdc040a4740cf2fcf14a27afcf66b4280e25e18ef9555b0ddd9a2b99b02d16e

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.18-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.18-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eba098a4962e1ab0d446c814ae67e30da82c446b382cf718306cc90d4e2ad85f
MD5 dd307d27182a89e6f9e391cad2fc4fa7
BLAKE2b-256 0a9d64101cf8ae8066bc2bdcd2e361879b60f8fb52e218f3c1e9308d6558162e

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.18-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.18-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4f375c52fed5f2ecd06be18756f121b3167a1fdc4543d877961fba04b1713214
MD5 0de6a7dacb5cc96bbbe794a4a462d7af
BLAKE2b-256 08789eb0d6c021870f3faeeb9fb87256372ffe8d50120cf52b6b9d188b392620

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.18-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.18-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.18-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9a62b06ad450386a2e671d0bcc5cd430690b77a5cd41c54ede4e4bf46d7a4978
MD5 31e8741d432f4fa23d8ce586acae5a13
BLAKE2b-256 96911de93d2be0f93157cac18015b2a4a8c66df828592141ddb5313174402f63

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.18-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.18-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.18-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3a6afb7a55374329601c8fcad277f0a47793386255764431c8f6a231a6947ee9
MD5 5f0666b08a8b5d1c425ea32a8654ee94
BLAKE2b-256 7f5fc9f86c45a603db078434989e0271ece640e24195f59fb1ff0317b328d820

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.18-cp37-cp37m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.18-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.18-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 45bbb935b305e381bcb542bf4d952232282ba76881e3458105e4733ba0976060
MD5 a01b7b04e0a73fb2645d7719c36af7da
BLAKE2b-256 fd12ffc47767386fb4b951544d1257083b7246308a7c54c93cb33abc5901aa04

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.18-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.18-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ffb18eb56546aa66640fef831e5d0fe1a8dfbf11cdf5b00803826a01dbbbf3b1
MD5 6e8617012a1ed118be7a5bedd64ca7d9
BLAKE2b-256 29512bf80884b84a5358c0bfc49df01343bc6f5226e218cd7a8e5108703185b7

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.18-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.18-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d4b2c23d20acf631456e645227cef014e7f84a111118d530cfa1d6053fd05a9
MD5 73715f203f2292297100c3cf9be7bdae
BLAKE2b-256 279cb57368c219fd7a9144aea3672e8bc16efbdacf6fe9f816173d7230c13e34

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.18-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.18-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 cc474d0c40cef94d9b68980155d686d5ad43a9ca0834a8729052d3585f289d57
MD5 ecbe6b47d4f07b3a60b24311df055421
BLAKE2b-256 bb2954b6f50414b22ccd711b9cfd7619d3e853dd26ade2f5f9b8dfd746f9f930

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.18-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.18-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.18-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e2aa39fdf5bff1c325a8648ac1957a0320c66763a3fa5f0f4a02457b2afcf372
MD5 ac5e37d54f59fc54d25cc0943070339a
BLAKE2b-256 284cceb04b41ab6029b79f7005d73b55bd2875ab439f43b838a92e595eac1c7c

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.18-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.18-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.18-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 77549e5ae996de50ad9f69f863c91daf04842b14233e133335b900b152bffb07
MD5 0c279751cbdfc9cd8c8da7fdf619c322
BLAKE2b-256 9301c2753fdf2711948fab2765adac28ab840bc4c309e154d238071b00bd04ca

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.18-cp36-cp36m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.18-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.18-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 664c6cc84a5d2bad2a4a3984d146b6201b850ba0a7125b2fcd29ca06cddac4b1
MD5 c6e144edc59c751b34d933ec86d1d1f4
BLAKE2b-256 188e8b8bf8c36abaeacf639e16f894ad465ed9ae26dcf65b67769da2042e14c6

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.18-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.18-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f3357948fa439eb5c7241a8856738605d7ab9d9f276ca5c5cc3220455a5f8e6c
MD5 a2b82a57d80cce408b81f8e91d655a02
BLAKE2b-256 96b4f99bfcded99b93a92220a78cb3865260105007e7efa60cebd13ffc64110c

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.18-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.18-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 56958dd833145f1aa75f8987dfe0cf6f149e93aa31967b7004d4eb9cb579fefc
MD5 63d7935ea83a89cb5c3f46433edb3b68
BLAKE2b-256 05d925d7ec3e24355d7edff746ed4fc915cb032075625b6ed93a85770d1ca672

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.18-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.18-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 93394d68f02ecbf8c0a4355b6452793000ce0ee7aef79d2c85b491da25a88af7
MD5 237b585874dfdca986f907fcc34ea6b8
BLAKE2b-256 44376c49aa068173017ecc056fdcec50e312dcb1c9619a7e28f7cb3c97f158bd

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.18-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.18-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.18-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 60cfe1fb59a34569816907cb25bb256c9490824679c46777377bcc01f6813a81
MD5 7d5ceb0c484f7369e74ca251e583fd39
BLAKE2b-256 757b50e8dcddc58676e790a1c7d06f902ec00e2314d13dfba84b931d30aacf1e

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.18-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.18-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 495cce8174c670f1d885e2259d710b0120888db2169ea14fc32d1f72e7950642
MD5 30be87d3f908dc1a2b0a464cfc024408
BLAKE2b-256 7969892cb94832a0479280843cef3e66d26408140e21b9431cfd6acf228aac7a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.18-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.18-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.18-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 5b827d3d1d982b38d2bab551edf9893c4734b5db9b852b28d3bc809ea7e179f6
MD5 ca1af6dabdc8392fd026f242541bcb65
BLAKE2b-256 7e9cc35f2a3b85d6117392cd12fcfe8b142ed7ffde1e4c3ec991c94750e9526d

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.18-cp27-cp27m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.18-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.18-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 3690fc0fc671419debdae9b33df1434ac9253155fd76d0f66a01f7b459d56ee6
MD5 5fbe78e536e853a5fcc7ddcf4b71990a
BLAKE2b-256 e226d46f3af87801bf7c1d40b5ec6f131a70cd29fe82d46e6f0d43ea6a749265

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.18-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.18-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4cdc91bb3ee5b10e24ec59303131b791f3f82caa4dd8b36064d1918b0f4d0de4
MD5 1ce1e06c0bd2ff7fe4b03517482701ba
BLAKE2b-256 0ef39898c147e292bb08fce8bb23b2d9bfea72b519b6591f892a75f508525818

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.18-cp27-cp27m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.18-cp27-cp27m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.18-cp27-cp27m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d76abceeb6f7c564fdbc304b1ce17ec59664ca7ed0fe6dbc6fc6a960c91370e3
MD5 41f45a6ac4753bd6b63a3190a5173cd1
BLAKE2b-256 feb7ea5dab8fa371711e9aa552954c240f05d74c9bc74768783e0025797d12d2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page