Skip to main content

Database Abstraction Library

Project description

PyPI PyPI - Python Version PyPI - Downloads

The Python SQL Toolkit and Object Relational Mapper

Introduction

SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives application developers the full power and flexibility of SQL. SQLAlchemy provides a full suite of well known enterprise-level persistence patterns, designed for efficient and high-performing database access, adapted into a simple and Pythonic domain language.

Major SQLAlchemy features include:

  • An industrial strength ORM, built from the core on the identity map, unit of work, and data mapper patterns. These patterns allow transparent persistence of objects using a declarative configuration system. Domain models can be constructed and manipulated naturally, and changes are synchronized with the current transaction automatically.

  • A relationally-oriented query system, exposing the full range of SQL’s capabilities explicitly, including joins, subqueries, correlation, and most everything else, in terms of the object model. Writing queries with the ORM uses the same techniques of relational composition you use when writing SQL. While you can drop into literal SQL at any time, it’s virtually never needed.

  • A comprehensive and flexible system of eager loading for related collections and objects. Collections are cached within a session, and can be loaded on individual access, all at once using joins, or by query per collection across the full result set.

  • A Core SQL construction system and DBAPI interaction layer. The SQLAlchemy Core is separate from the ORM and is a full database abstraction layer in its own right, and includes an extensible Python-based SQL expression language, schema metadata, connection pooling, type coercion, and custom types.

  • All primary and foreign key constraints are assumed to be composite and natural. Surrogate integer primary keys are of course still the norm, but SQLAlchemy never assumes or hardcodes to this model.

  • Database introspection and generation. Database schemas can be “reflected” in one step into Python structures representing database metadata; those same structures can then generate CREATE statements right back out - all within the Core, independent of the ORM.

SQLAlchemy’s philosophy:

  • SQL databases behave less and less like object collections the more size and performance start to matter; object collections behave less and less like tables and rows the more abstraction starts to matter. SQLAlchemy aims to accommodate both of these principles.

  • An ORM doesn’t need to hide the “R”. A relational database provides rich, set-based functionality that should be fully exposed. SQLAlchemy’s ORM provides an open-ended set of patterns that allow a developer to construct a custom mediation layer between a domain model and a relational schema, turning the so-called “object relational impedance” issue into a distant memory.

  • The developer, in all cases, makes all decisions regarding the design, structure, and naming conventions of both the object model as well as the relational schema. SQLAlchemy only provides the means to automate the execution of these decisions.

  • With SQLAlchemy, there’s no such thing as “the ORM generated a bad query” - you retain full control over the structure of queries, including how joins are organized, how subqueries and correlation is used, what columns are requested. Everything SQLAlchemy does is ultimately the result of a developer- initiated decision.

  • Don’t use an ORM if the problem doesn’t need one. SQLAlchemy consists of a Core and separate ORM component. The Core offers a full SQL expression language that allows Pythonic construction of SQL constructs that render directly to SQL strings for a target database, returning result sets that are essentially enhanced DBAPI cursors.

  • Transactions should be the norm. With SQLAlchemy’s ORM, nothing goes to permanent storage until commit() is called. SQLAlchemy encourages applications to create a consistent means of delineating the start and end of a series of operations.

  • Never render a literal value in a SQL statement. Bound parameters are used to the greatest degree possible, allowing query optimizers to cache query plans effectively and making SQL injection attacks a non-issue.

Documentation

Latest documentation is at:

http://www.sqlalchemy.org/docs/

Installation / Requirements

Full documentation for installation is at Installation.

Getting Help / Development / Bug reporting

Please refer to the SQLAlchemy Community Guide.

Code of Conduct

Above all, SQLAlchemy places great emphasis on polite, thoughtful, and constructive communication between users and developers. Please see our current Code of Conduct at Code of Conduct.

License

SQLAlchemy is distributed under the MIT license.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SQLAlchemy-1.4.19.tar.gz (7.7 MB view details)

Uploaded Source

Built Distributions

SQLAlchemy-1.4.19-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

SQLAlchemy-1.4.19-cp39-cp39-win32.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86

SQLAlchemy-1.4.19-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.19-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.19-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.19-cp39-cp39-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

SQLAlchemy-1.4.19-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

SQLAlchemy-1.4.19-cp38-cp38-win32.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86

SQLAlchemy-1.4.19-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.19-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.19-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.19-cp38-cp38-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

SQLAlchemy-1.4.19-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

SQLAlchemy-1.4.19-cp37-cp37m-win32.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86

SQLAlchemy-1.4.19-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.19-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.19-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.19-cp37-cp37m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

SQLAlchemy-1.4.19-cp36-cp36m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86-64

SQLAlchemy-1.4.19-cp36-cp36m-win32.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86

SQLAlchemy-1.4.19-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.19-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.19-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.19-cp36-cp36m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

SQLAlchemy-1.4.19-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.19-cp27-cp27m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86-64

SQLAlchemy-1.4.19-cp27-cp27m-win32.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86

SQLAlchemy-1.4.19-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.19-cp27-cp27m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m macOS 10.14+ x86-64

File details

Details for the file SQLAlchemy-1.4.19.tar.gz.

File metadata

  • Download URL: SQLAlchemy-1.4.19.tar.gz
  • Upload date:
  • Size: 7.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.5

File hashes

Hashes for SQLAlchemy-1.4.19.tar.gz
Algorithm Hash digest
SHA256 89a5a13dcf33b7e47c7a9404a297c836965a247c7f076a0fe0910cae2bee5ce2
MD5 b395a169e37df08f4ccf35bc949ac98b
BLAKE2b-256 0c578ed7ecdf9c28a79c8d78633d12ca28272f641a1b361794f9ea58c5f82c73

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.19-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.19-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.19-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d7b21a4b62921cf6dca97e8f9dea1fbe2432aebbb09895a2bd4f527105af41a4
MD5 f9386aa86ef5a303a2466391055546e0
BLAKE2b-256 c55bd7d931b57aab8a85a8046fab308eecc0ceefb49f9667e80daf6417bd5c7c

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.19-cp39-cp39-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.19-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.19-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 fa05a77662c23226c9ec031638fd90ae767009e05cd092b948740f09d10645f0
MD5 c194891337edb3c86f2bd3bc1a06d9ef
BLAKE2b-256 8e826b8394bb02a62b34db6773077baac9bf2f884d2e6aee426a3f01dc4b8300

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.19-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.19-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6317701c06a829b066c794545512bb70b1a10a74574cfa5658a0aaf49f31aa93
MD5 b6959ce4ee4155dda716d24fbf00fab3
BLAKE2b-256 6c152dc8d60a56bc10667b953ca9b49f95f9997a9acc75ee77fbf221f1e1d7b2

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.19-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.19-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9014fd1d8aebcb4eb6bc69a382dd149200e1d5924412b1d08b4443f6c1ce526f
MD5 5353845343cac29c62a8cb721a7ec3a2
BLAKE2b-256 b3bf03f182b0557566356118f9ec46acba835bdc8a0771491947d4d7420975ec

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.19-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.19-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 95a9fd0a11f89a80d8815418eccba034f3fec8ea1f04c41b6b8decc5c95852e9
MD5 8d888d2caf841a7a04c4e50ecca8387d
BLAKE2b-256 618c51f40051c435b667b62684c1f28c30df8bcb308de6b4d56468029f1cdc81

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.19-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.19-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.19-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 93ba458b3c279581288a10a55df2aa6ac3509882228fcbad9d9d88069f899337
MD5 279171ca26a23b2db691fb0fdbdcf72f
BLAKE2b-256 960dd15f4a4439a81850e1de5689cefcd6541a45404d18f0036141662ba36b78

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.19-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.19-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.19-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 45b0f773e195d8d51e2fd67cb5b5fb32f5a1f5e7f0752016207091bed108909a
MD5 09d10b5f4c74f73b4eb5b51c55a43b90
BLAKE2b-256 de5cf562cca95b4a344ac4fb5197a7c1d5aef5b208d0fe62646a28beb6a6b4be

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.19-cp38-cp38-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.19-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.19-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 d04160462f874eaa4d88721a0d5ecca8ebf433616801efe779f252ef87b0e216
MD5 fa99e60fdb344f63f681f442257565a7
BLAKE2b-256 89a7848f1c5b38b57b70bacdc05a866a54b1ecf15a46ff21792b423dbddd77bf

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.19-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.19-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cefd44faca7c57534503261f6fab49bd47eb9c2945ee0bab09faaa8cb047c24f
MD5 b5770b6738f978236204300f2ab66b59
BLAKE2b-256 a59445b81c76eb9b6781b2e850555f06a06c0fa211ea55ece4bfe04560c923ac

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.19-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.19-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d3cf5f543d048a7c8da500133068c5c90c97a2c4bf0c027928a85028a519f33d
MD5 555fd118e59edddc8f7453059e07be04
BLAKE2b-256 44c73dcb4d155600cfd1d537d6b1ef21e6aae85dad860654e15398ab4147fceb

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.19-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.19-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9133635edcec1e7fbfc16eba5dc2b5b3b11818d25b7a57cfcbfa8d3b3e9594fd
MD5 576c56bf66395d0e4c0bcab04516940e
BLAKE2b-256 58e57be0d275398d63118e695b9956b4d4aff4af4503d75e30fd6fb7c929eee1

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.19-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.19-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.19-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 58d4f79d119010fdced6e7fd7e4b9f2230dbf55a8235d7c58b1c8207ef74791b
MD5 3d8ba9c079900205f820267bf6403f51
BLAKE2b-256 aeb1d205bbdf6309a1290202b69e7ac8b64dc080ac8aec75b2117728b4f62a32

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.19-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.19-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.19-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e2761b925fda550debfd5a8bc3cef9debc9a23c6a280429c4ec3a07c35c6b4b3
MD5 72500a8b3dc9ab71a7ad13cd0a7cea92
BLAKE2b-256 d19d6b042001cb373beacd7ddaa4e296e3ad00c95faa035fbc22405f168eb851

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.19-cp37-cp37m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.19-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.19-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 c6efc7477551ba9ce632d5c3b448b7de0277c86005eec190a1068fcc7115fd0e
MD5 5d31ffa4390b8ce225f7a3a5ebbdc1ff
BLAKE2b-256 81613ca864a681d0fb66a61fac93a1b2d062fbff67e3b77e05a686385b662217

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.19-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.19-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 57ba8a96b6d058c7dcf44de8ac0955b7a787f7177a0221dd4b8016e0191268f5
MD5 0f50089581bb1c926bdbd492e6afbdfb
BLAKE2b-256 55677088d0a4970c4162fe25616cc649a2966e478d37252530264da057bff62f

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.19-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.19-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5c92d9ebf4b38c22c0c9e4f203a80e101910a50dc555b4578816932015b97d7f
MD5 6da023612a59e2140b9ab12030f98ff3
BLAKE2b-256 6ea98fa84714d2e2810673cd8a49c89c11f0107528b6be631fe7dd43fc1d7ad4

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.19-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.19-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8f1e7f4de05c15d6b46af12f3cf0c2552f2940d201a49926703249a62402d851
MD5 b2d67b364710715f63ddac7b7e0c9d12
BLAKE2b-256 9186dcfc3de4900c25be63c7ab217dfd92a865ee76c8d6b216f717a9189aaed2

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.19-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.19-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.19-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8cba69545246d16c6d2a12ce45865947cbdd814bacddf2e532fdd4512e70728c
MD5 c01daaf4927d20a4a394c638405cf984
BLAKE2b-256 37fe0ae98ede41e7c23e06e9e0842bb02f83cf2a3d8b52d4cb0fef8aa37ab19b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.19-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.19-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.19-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 20f4bf1459548a74aade997cb045015e4d72f0fde1789b09b3bb380be28f6511
MD5 34c6e6512e17ebc9c76b6bfc6ffb0905
BLAKE2b-256 5f39bb99a19d7654fb58271c0c4e8b4ce79b89b7258af94cc4aeb74f03cc47de

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.19-cp36-cp36m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.19-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.19-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 96d3d4a7ead376d738775a1fa9786dc17a31975ec664cea284e53735c79a5686
MD5 ed26fa430c3acb8781c75418dfd6e216
BLAKE2b-256 56f7a309da5317d94cb0384904a2ec5b78f4162f60b86ca9b8ddf71661aa8129

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.19-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.19-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 311051c06f905774427b4a92dcb3924d6ee563dea3a88176da02fdfc572d0d1d
MD5 01c48026be0a76ed6d47b9b4ada66456
BLAKE2b-256 cd35c0b6f966cc068e131e3d809b51ec411f2dc9439199202e72b1848e1fb84f

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.19-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.19-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2ace9ab2af9d7d7b0e2ff2178809941c56ab8921e38128278192a73a8a1c08a2
MD5 1fe095582ddc6ef562d7f275aff8cc1e
BLAKE2b-256 4358d2e1e33daff4c6ae6105fb40844b9be54a0f03b79bf9a2bfc2d5f301762f

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.19-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.19-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a34a7fd3353ee61a1dca72fc0c3e38d4e56bdc2c343e712f60a8c70acd4ef5bf
MD5 a17fdbbbd4e2ba1a75fe03fac4f11332
BLAKE2b-256 8fcf2a7219d9188147c1ab3b6f82850544ce74c64750b154ad6570b9e0eeee12

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.19-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.19-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.19-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 64eab458619ef759f16f0f82242813d3289e829f8557fbc7c212ca4eadf96472
MD5 5d14ae822c670cec8a24811b17a29188
BLAKE2b-256 081ec7f8fe8309e09ce0d81b26b0ce798af861b464d617112fb6daa1a6f14d9b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.19-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.19-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0fb3f73e5009f5a4c9b24469939d3d57cc3ad8099a09c0cfefc47fe45ab7ffbe
MD5 4220b433a7f98afcef0ac8ba96a56caa
BLAKE2b-256 6df009a2b9b138e0307897c4061aa7f2bc350913633e36142952796d06382059

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.19-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.19-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.19-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 6fd1b745ade2020a1a7bf1e22536d8afe86287882c81ca5d860bdf231d5854e9
MD5 8c9ad4ab2f3f10228cfac5b118c00966
BLAKE2b-256 483ee64463e85f8bb94080e27b28b32f0aadd17bf8899c4cf10dea3c8272a1c7

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.19-cp27-cp27m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.19-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.19-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 9c0945c79cbe507b49524e31a4bb8700060bbccb60bb553df6432e176baff3d5
MD5 f09823699d4e37afa4c737976e425c48
BLAKE2b-256 245dcb9d83da0cadeb36c806948af4785cb5ebe0ae1b97e09073df6cd0292b87

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.19-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.19-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 942ca49b7ec7449d2473a6587825c55ad99534ddfc4eee249dd42be3cc1aa8c9
MD5 c86db03279b6dbe879e9a373b086ea04
BLAKE2b-256 54b1df943804388f9b00220ddd826627ab0e8403387da2331489b1bc66fca7e7

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.19-cp27-cp27m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.19-cp27-cp27m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.19-cp27-cp27m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ddbce8fe4d0190db21db602e38aaf4c158c540b49f1ef7475323ec682a9fbf2d
MD5 597eea7bb1d89ae37721ff35d37bed37
BLAKE2b-256 1c3d8889296c959f94ec078e0854e9bd0c0c5d821a103dbd60f2d77b76fbfd31

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page