Skip to main content

Database Abstraction Library

Project description

PyPI PyPI - Python Version PyPI - Downloads

The Python SQL Toolkit and Object Relational Mapper

Introduction

SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives application developers the full power and flexibility of SQL. SQLAlchemy provides a full suite of well known enterprise-level persistence patterns, designed for efficient and high-performing database access, adapted into a simple and Pythonic domain language.

Major SQLAlchemy features include:

  • An industrial strength ORM, built from the core on the identity map, unit of work, and data mapper patterns. These patterns allow transparent persistence of objects using a declarative configuration system. Domain models can be constructed and manipulated naturally, and changes are synchronized with the current transaction automatically.

  • A relationally-oriented query system, exposing the full range of SQL’s capabilities explicitly, including joins, subqueries, correlation, and most everything else, in terms of the object model. Writing queries with the ORM uses the same techniques of relational composition you use when writing SQL. While you can drop into literal SQL at any time, it’s virtually never needed.

  • A comprehensive and flexible system of eager loading for related collections and objects. Collections are cached within a session, and can be loaded on individual access, all at once using joins, or by query per collection across the full result set.

  • A Core SQL construction system and DBAPI interaction layer. The SQLAlchemy Core is separate from the ORM and is a full database abstraction layer in its own right, and includes an extensible Python-based SQL expression language, schema metadata, connection pooling, type coercion, and custom types.

  • All primary and foreign key constraints are assumed to be composite and natural. Surrogate integer primary keys are of course still the norm, but SQLAlchemy never assumes or hardcodes to this model.

  • Database introspection and generation. Database schemas can be “reflected” in one step into Python structures representing database metadata; those same structures can then generate CREATE statements right back out - all within the Core, independent of the ORM.

SQLAlchemy’s philosophy:

  • SQL databases behave less and less like object collections the more size and performance start to matter; object collections behave less and less like tables and rows the more abstraction starts to matter. SQLAlchemy aims to accommodate both of these principles.

  • An ORM doesn’t need to hide the “R”. A relational database provides rich, set-based functionality that should be fully exposed. SQLAlchemy’s ORM provides an open-ended set of patterns that allow a developer to construct a custom mediation layer between a domain model and a relational schema, turning the so-called “object relational impedance” issue into a distant memory.

  • The developer, in all cases, makes all decisions regarding the design, structure, and naming conventions of both the object model as well as the relational schema. SQLAlchemy only provides the means to automate the execution of these decisions.

  • With SQLAlchemy, there’s no such thing as “the ORM generated a bad query” - you retain full control over the structure of queries, including how joins are organized, how subqueries and correlation is used, what columns are requested. Everything SQLAlchemy does is ultimately the result of a developer- initiated decision.

  • Don’t use an ORM if the problem doesn’t need one. SQLAlchemy consists of a Core and separate ORM component. The Core offers a full SQL expression language that allows Pythonic construction of SQL constructs that render directly to SQL strings for a target database, returning result sets that are essentially enhanced DBAPI cursors.

  • Transactions should be the norm. With SQLAlchemy’s ORM, nothing goes to permanent storage until commit() is called. SQLAlchemy encourages applications to create a consistent means of delineating the start and end of a series of operations.

  • Never render a literal value in a SQL statement. Bound parameters are used to the greatest degree possible, allowing query optimizers to cache query plans effectively and making SQL injection attacks a non-issue.

Documentation

Latest documentation is at:

http://www.sqlalchemy.org/docs/

Installation / Requirements

Full documentation for installation is at Installation.

Getting Help / Development / Bug reporting

Please refer to the SQLAlchemy Community Guide.

Code of Conduct

Above all, SQLAlchemy places great emphasis on polite, thoughtful, and constructive communication between users and developers. Please see our current Code of Conduct at Code of Conduct.

License

SQLAlchemy is distributed under the MIT license.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SQLAlchemy-1.4.20.tar.gz (7.7 MB view details)

Uploaded Source

Built Distributions

SQLAlchemy-1.4.20-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

SQLAlchemy-1.4.20-cp39-cp39-win32.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86

SQLAlchemy-1.4.20-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.20-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.20-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.20-cp39-cp39-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

SQLAlchemy-1.4.20-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

SQLAlchemy-1.4.20-cp38-cp38-win32.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86

SQLAlchemy-1.4.20-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.20-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.20-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.20-cp38-cp38-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

SQLAlchemy-1.4.20-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

SQLAlchemy-1.4.20-cp37-cp37m-win32.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86

SQLAlchemy-1.4.20-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.20-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.20-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.20-cp37-cp37m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

SQLAlchemy-1.4.20-cp36-cp36m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86-64

SQLAlchemy-1.4.20-cp36-cp36m-win32.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86

SQLAlchemy-1.4.20-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.20-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.20-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.20-cp36-cp36m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

SQLAlchemy-1.4.20-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.20-cp27-cp27m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86-64

SQLAlchemy-1.4.20-cp27-cp27m-win32.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86

SQLAlchemy-1.4.20-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.20-cp27-cp27m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m macOS 10.14+ x86-64

File details

Details for the file SQLAlchemy-1.4.20.tar.gz.

File metadata

  • Download URL: SQLAlchemy-1.4.20.tar.gz
  • Upload date:
  • Size: 7.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.5

File hashes

Hashes for SQLAlchemy-1.4.20.tar.gz
Algorithm Hash digest
SHA256 38ee3a266afef2978e82824650457f70c5d74ec0cadec1b10fe5ed6f038eb5d0
MD5 7de9ca456c199979a03e7d43b99c0742
BLAKE2b-256 b66bd802a9223430cc4f55d7993ede4cdafa683fb8a1260516c48bcd59729c74

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.20-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.20-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.20-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b86d83fefc8a8c394f3490c37e1953bc16c311a3d1d1cf91518793bfb9847fb4
MD5 6462a5cb80b38a0ef969f03fd7eb36a2
BLAKE2b-256 768bc07fa350111781eca49ab7056a867131ed264ffc095ab00e80452a1fd284

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.20-cp39-cp39-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.20-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.20-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 46b99eab618cdc1c871ea707b7c52edc23cfea6c750740cd242ba62b5c84de7f
MD5 5a1b62f0dc5d73f923edf189b1f37a9e
BLAKE2b-256 bba73382615b545e8447e7fed20efdbcc37dbd1165f176f85c647e5d0e07292b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.20-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.20-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 854a7b15750e617e16f8d65dbc004f065a7963544b253b923f16109557648777
MD5 dbc114bb4e229bfc5baf9b2094ee2b74
BLAKE2b-256 d30d3ab0f936e4e6e851bb204b41f22a8fe1f4218012da044756d1f75444ee71

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.20-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.20-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 86c079732328f1add097b0b8079cd532b5d28e207fac93e9d6ea5f487506deef
MD5 44d93dd44a3b5374bc43b9a8e21590da
BLAKE2b-256 036926525a4adc5e3dda482558d671cd23aabd0c2bc04762d2f0830425dd48aa

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.20-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.20-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ff38ecf89c69a531a7326c2dae71982edfe2f805f3c016cdc5bfd1a04ebf80cb
MD5 02848d6c20f1e73712afa52fd054c380
BLAKE2b-256 df583ea7e3b62656f60953039ea6a328b81fd37b516dfe7469df8a15daddb0d4

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.20-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.20-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.20-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 238d78b3110b7f7cffdb70bf9cda686e0d876a849bc78ba4d471aa7b1461f306
MD5 1c75bf7db16255ba684fbabefa6f67d8
BLAKE2b-256 c0ded087d4d42bf686eb68a12d75448e5818bc4d50080cdf53c4e8c1e1f47d6d

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.20-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.20-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.20-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6c8406c3d8c1c7d15da454de15d77f7bb48d14ede5db994f74226c348cf1050e
MD5 aafa904be11e1c0c6e29ff3e8fbc9fdc
BLAKE2b-256 68bb14b1ffcbb5db2c4ea341ca660c6cf9d9b5d607e3b7ddf310b151911aa74f

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.20-cp38-cp38-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.20-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.20-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 aad3234a41340e9cf6184e621694e2a7233ba3f8aef9b1e6de8cba431b45ebd2
MD5 357416cd1d675d5d4fa89494c99e2b97
BLAKE2b-256 814a39dc0fafb5c6638fe1978b6e6c682a8effbdfb9e1e0b1b57c53635a09217

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.20-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.20-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e0d48456e1aa4f0537f9c9af7be71e1f0659ff68bc1cd538ebc785f6b007bd0d
MD5 41b54e38ba273ed7c10dbc57e76198e8
BLAKE2b-256 170a41b01a15ec0d349ea23165762d0f42379947cb955a2876ace6e852b72ae6

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.20-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.20-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b502b5e2f08500cc4b8d29bfc4f51d805adcbc00f8d149e98fda8aae85ddb644
MD5 cb4615dc3d5f7e9cd08b6f1fea52074b
BLAKE2b-256 cdbe6de1dab8467bf8739e4b831f98e5f9ee64d7dbc807398ab11d851f4a904b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.20-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.20-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9675d5bc7e4f96a7bb2b54d14e9b269a5fb6e5d36ecc7d01f0f65bb9af3185f9
MD5 6436e054b0b3549276e8831e015049ed
BLAKE2b-256 1debcc71912a415e0c6bc85a9cd4b28ac8beefee49d6bc84d13562fa0b6055c2

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.20-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.20-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.20-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 25c0e0f3a7e8c19350086b3c0fe93c4def045cec053d749ef15da710c4d54c81
MD5 4fa5f4d6da3994e9e6a3047601088f21
BLAKE2b-256 61f921140f081a1c14f72e8383bbb9df7300b09fd295fd44beee59d9e77fa264

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.20-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.20-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.20-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f6fc526bd70898489d02bf52c8f0632ab377592ae954d0c0a5bb38d618dddaa9
MD5 699264cf0fc84832ee4799c3fa465e6b
BLAKE2b-256 78a9bccb2bb676ec81f5643f6f4831f5449000d037c727fe7f5ba0512ec15f56

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.20-cp37-cp37m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.20-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.20-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 2f60a2e599cf5cf5e5327ce60f2918b897e42ad9f405d10dd01e37869c0ce6fc
MD5 daa85702baefc5d4ec8a1c4685f50a4c
BLAKE2b-256 a5e1af90511fce5a74d472b8ec372eab0a7c2efc8a4c4be26560c0112e37c9c4

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.20-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.20-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 76fbc24311a3d039d6cd147d396719f606d96d1413f3816c028a48e29367f646
MD5 83970c600e9b0648a71df5ad46c51608
BLAKE2b-256 c9da49fd1ce231a6e84c2b5bbdf1f303d689ccb3440bf1be469adc1d9be2ee17

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.20-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.20-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fcd84e4d46a86291495d131a7824ba38d2e8278bda9425c50661a04633174319
MD5 fff79a4197210adea7f604932c2f16c0
BLAKE2b-256 325a74b59e4edec03acc141ef97859ab535c947a56709e090c2f3cca3e752c8a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.20-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.20-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f14acb0fd16d404fda9370f93aace682f284340c89c3442ac747c5466ac7e2b5
MD5 ee622cf05ad7d517001f1abe6cd5b677
BLAKE2b-256 9bbab03e3b8c60d7f59b662613c18248fa46457015243bc86762c35d0d9a2d3b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.20-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.20-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.20-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c0eb2cd3ad4967fcbdd9e066e8cd91fe2c23c671dbae9952f0b4d3d42832cc5f
MD5 982af699542cb12ad5b2e9d27abff452
BLAKE2b-256 309740500da483d66fe977cc28c2471f68147782a7550b1800df37e6321cc561

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.20-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.20-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.20-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 46361690f1e1c5385994a4caeb6e8126063ff593a5c635700bbc1245de793c1e
MD5 1b6d01004ea285f16bebb8016771fa75
BLAKE2b-256 08d2be60a9d97161ae915a8acdff0c9edabe3d5ef6f634df312f2a3db85186ce

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.20-cp36-cp36m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.20-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.20-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 ff8bebc7a9d297dff2003460e01db2c20c63818b45fb19170f388b1a72fe5a14
MD5 3d9156f7fcacd04fed0d3f62d1cef199
BLAKE2b-256 140437531ff3793b927dbe008c6fe0a15534f50e5db287b0d5a66209474b0ac2

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.20-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.20-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9eb25bcf9161e2fcbe9eebe8e829719b2334e849183f0e496bf4b83722bcccfa
MD5 c6fa45b745a844c84255ef75033498ac
BLAKE2b-256 1c2e96c6a364a2d55258076e963d4ff5045f2b996a5ce22010192541b2578221

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.20-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.20-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0f6d467b67a7e5048f1408e8ea60d6caa70be5b386d0eebbf1185ab49cb8c7e4
MD5 6eed7959e464383fcd340cfecc7309c7
BLAKE2b-256 6a41dcfd1ff49cf2810531b6eed6eaa5765e746caffcb71f640d5863ae93cadd

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.20-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.20-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8d860c62e3f51623ccd528d8fac44580501df557d4b467cc5581587fcf057719
MD5 277a1d5ca31c84f5533db0efd9d1930c
BLAKE2b-256 9e8c75a76e0d67265183900bebcc00d1d2a268a5e87dc26971a3ea806b586478

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.20-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.20-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.20-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 eaee5dd378f6f0d7c3ec49aeeb26564d55ac0ad73b9b4688bf29e66deabddf73
MD5 7b276170a61b91bfb3fd89bce2fc3b39
BLAKE2b-256 1dfffbc41263679839f1aa4bc954af2d5278c1d390c29899528a1d62b8ca9c32

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.20-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.20-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9841762d114018c49483c089fa2d47f7e612e57666323f615913d7d7f46e9606
MD5 81bf78e200a16ee12655a95bb40c7209
BLAKE2b-256 ff2d7510a164c0e503c4151e34c939718222b1203cc999bb21307c5b36e35bd9

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.20-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.20-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.20-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 6da83225a23eaf7b3f48f3d5f53c91b2cf00fbfa48b24a7a758160112dd3e123
MD5 eaf6cdbe42dfedc27fb3e11c47f23615
BLAKE2b-256 0862e4f35f735a5b43959a23da7549a9a1b3d917931d0b2aba98076e12a5210a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.20-cp27-cp27m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.20-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.20-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 7150e5b543b466f45f668b352f7abda27998cc8035f051d1b7e9524ca9eb2f5f
MD5 4d82ca6e7329bf391a1272b34f87811d
BLAKE2b-256 a0a8709f1c3ce9b828a79b8135568f002f27572652a55cc6bae226f00d2a9240

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.20-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.20-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4a67371752fd86d1d03a3b82d4e75404608f6f4d579b9676124079a22a40c79f
MD5 761b7f1a72a0bfbeee6dd370bfca0252
BLAKE2b-256 51de8e80a183238c25d18f74697cd3929511a1917a8f836206463a014fb671f1

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.20-cp27-cp27m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.20-cp27-cp27m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.20-cp27-cp27m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 525dd3c2205b11a2bc6d770bf1ec63bde0253fd754b4c19c399d27ddc9dad0d3
MD5 42b732c9e4ce5288a81df87a484b5495
BLAKE2b-256 5c35d171148162621531302ec5c6e96c8b0991aa0f3729b099415c61b6a22161

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page