Skip to main content

Database Abstraction Library

Project description

PyPI PyPI - Python Version PyPI - Downloads

The Python SQL Toolkit and Object Relational Mapper

Introduction

SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives application developers the full power and flexibility of SQL. SQLAlchemy provides a full suite of well known enterprise-level persistence patterns, designed for efficient and high-performing database access, adapted into a simple and Pythonic domain language.

Major SQLAlchemy features include:

  • An industrial strength ORM, built from the core on the identity map, unit of work, and data mapper patterns. These patterns allow transparent persistence of objects using a declarative configuration system. Domain models can be constructed and manipulated naturally, and changes are synchronized with the current transaction automatically.

  • A relationally-oriented query system, exposing the full range of SQL’s capabilities explicitly, including joins, subqueries, correlation, and most everything else, in terms of the object model. Writing queries with the ORM uses the same techniques of relational composition you use when writing SQL. While you can drop into literal SQL at any time, it’s virtually never needed.

  • A comprehensive and flexible system of eager loading for related collections and objects. Collections are cached within a session, and can be loaded on individual access, all at once using joins, or by query per collection across the full result set.

  • A Core SQL construction system and DBAPI interaction layer. The SQLAlchemy Core is separate from the ORM and is a full database abstraction layer in its own right, and includes an extensible Python-based SQL expression language, schema metadata, connection pooling, type coercion, and custom types.

  • All primary and foreign key constraints are assumed to be composite and natural. Surrogate integer primary keys are of course still the norm, but SQLAlchemy never assumes or hardcodes to this model.

  • Database introspection and generation. Database schemas can be “reflected” in one step into Python structures representing database metadata; those same structures can then generate CREATE statements right back out - all within the Core, independent of the ORM.

SQLAlchemy’s philosophy:

  • SQL databases behave less and less like object collections the more size and performance start to matter; object collections behave less and less like tables and rows the more abstraction starts to matter. SQLAlchemy aims to accommodate both of these principles.

  • An ORM doesn’t need to hide the “R”. A relational database provides rich, set-based functionality that should be fully exposed. SQLAlchemy’s ORM provides an open-ended set of patterns that allow a developer to construct a custom mediation layer between a domain model and a relational schema, turning the so-called “object relational impedance” issue into a distant memory.

  • The developer, in all cases, makes all decisions regarding the design, structure, and naming conventions of both the object model as well as the relational schema. SQLAlchemy only provides the means to automate the execution of these decisions.

  • With SQLAlchemy, there’s no such thing as “the ORM generated a bad query” - you retain full control over the structure of queries, including how joins are organized, how subqueries and correlation is used, what columns are requested. Everything SQLAlchemy does is ultimately the result of a developer- initiated decision.

  • Don’t use an ORM if the problem doesn’t need one. SQLAlchemy consists of a Core and separate ORM component. The Core offers a full SQL expression language that allows Pythonic construction of SQL constructs that render directly to SQL strings for a target database, returning result sets that are essentially enhanced DBAPI cursors.

  • Transactions should be the norm. With SQLAlchemy’s ORM, nothing goes to permanent storage until commit() is called. SQLAlchemy encourages applications to create a consistent means of delineating the start and end of a series of operations.

  • Never render a literal value in a SQL statement. Bound parameters are used to the greatest degree possible, allowing query optimizers to cache query plans effectively and making SQL injection attacks a non-issue.

Documentation

Latest documentation is at:

https://www.sqlalchemy.org/docs/

Installation / Requirements

Full documentation for installation is at Installation.

Getting Help / Development / Bug reporting

Please refer to the SQLAlchemy Community Guide.

Code of Conduct

Above all, SQLAlchemy places great emphasis on polite, thoughtful, and constructive communication between users and developers. Please see our current Code of Conduct at Code of Conduct.

License

SQLAlchemy is distributed under the MIT license.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SQLAlchemy-1.4.22.tar.gz (7.7 MB view details)

Uploaded Source

Built Distributions

SQLAlchemy-1.4.22-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

SQLAlchemy-1.4.22-cp39-cp39-win32.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86

SQLAlchemy-1.4.22-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.22-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.22-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.22-cp39-cp39-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

SQLAlchemy-1.4.22-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

SQLAlchemy-1.4.22-cp38-cp38-win32.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86

SQLAlchemy-1.4.22-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.22-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.22-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.22-cp38-cp38-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

SQLAlchemy-1.4.22-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

SQLAlchemy-1.4.22-cp37-cp37m-win32.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86

SQLAlchemy-1.4.22-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.22-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.22-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.22-cp37-cp37m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

SQLAlchemy-1.4.22-cp36-cp36m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86-64

SQLAlchemy-1.4.22-cp36-cp36m-win32.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86

SQLAlchemy-1.4.22-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.22-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.22-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.22-cp36-cp36m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

SQLAlchemy-1.4.22-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.22-cp27-cp27m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86-64

SQLAlchemy-1.4.22-cp27-cp27m-win32.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86

SQLAlchemy-1.4.22-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.22-cp27-cp27m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m macOS 10.14+ x86-64

File details

Details for the file SQLAlchemy-1.4.22.tar.gz.

File metadata

  • Download URL: SQLAlchemy-1.4.22.tar.gz
  • Upload date:
  • Size: 7.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.6

File hashes

Hashes for SQLAlchemy-1.4.22.tar.gz
Algorithm Hash digest
SHA256 ec1be26cdccd60d180359a527d5980d959a26269a2c7b1b327a1eea0cab37ed8
MD5 236e7d5d31cbd000a60aab39bc2dd07a
BLAKE2b-256 98cb88d6c5f72a15180e2c0c4c04fd42d038e52287ad97ac21fa9503d20ddb82

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.22-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.22-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.22-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1fdae7d980a2fa617d119d0dc13ecb5c23cc63a8b04ffcb5298f2c59d86851e9
MD5 4d49aeb6b722e88c32f5d70b714caa0b
BLAKE2b-256 b49aa146d1286fa7e60614714d112de866e613e2501d78ba776f0b62f8c5135a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.22-cp39-cp39-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.22-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.22-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 b48148ceedfb55f764562e04c00539bb9ea72bf07820ca15a594a9a049ff6b0e
MD5 f6326e8ce61eba348b3efee6e363cdaf
BLAKE2b-256 d0643da2ac3bb656140e6318785ed66771b2f83aed73cf3bee781488e5ce3a0a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.22-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.22-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5102b9face693e8b2db3b2539c7e1a5d9a5b4dc0d79967670626ffd2f710d6e6
MD5 ee6fadcaeca02bddc8c687df7fbf3290
BLAKE2b-256 01baf7290f3d9e2f1af94633212e545b0a8b0fbe0a9d16c4f14948f060a97ef4

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.22-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.22-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 36a089dc604032d41343d86290ce85d4e6886012eea73faa88001260abf5ff81
MD5 7da51657575b188ddcca901fcd40882d
BLAKE2b-256 4aabc3dfbfa29c481a1e089266825b0e131ae49554f4bc4bf485532787d604d5

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.22-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.22-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c9373ef67a127799027091fa53449125351a8c943ddaa97bec4e99271dbb21f4
MD5 3a8559482a59c99d8d0b0d7df9cf8f9e
BLAKE2b-256 663e788f3b03caad483b5217e6bb88fbd711c191d97382491288da92e12a3b19

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.22-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.22-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.11

File hashes

Hashes for SQLAlchemy-1.4.22-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 39b5d36ab71f73c068cdcf70c38075511de73616e6c7fdd112d6268c2704d9f5
MD5 e8dd7c5c15a5b53881c17f5c628c547e
BLAKE2b-256 1cdecda789339cc9e63f6deb3918704e10ffc55ec448f8662cedbfb9c9e1ad3f

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.22-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.22-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.22-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 12bac5fa1a6ea870bdccb96fe01610641dd44ebe001ed91ef7fcd980e9702db5
MD5 e51f2bed38f8ee1260da46c90ae3a8af
BLAKE2b-256 4671db85ab633d42d7d89c6b739dd576a1892cb741aa6847c5f4c6901518d7f1

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.22-cp38-cp38-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.22-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.22-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 26daa429f039e29b1e523bf763bfab17490556b974c77b5ca7acb545b9230e9a
MD5 c96f752bdf96f073ae5503f8b5c83a38
BLAKE2b-256 d34d3d3f796e52608ca901d75f51df5b4680bda85ac118b78cea92029c0e3c71

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.22-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.22-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4014978de28163cd8027434916a92d0f5bb1a3a38dff5e8bf8bff4d9372a9117
MD5 61c7ffe7123825ac3a836f8dde17edd7
BLAKE2b-256 1a104d43909546e5c04a9f8b7c4f2ffbf8de1d1856ce16a83b58d6b13f226af7

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.22-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.22-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d09a760b0a045b4d799102ae7965b5491ccf102123f14b2a8cc6c01d1021a2d9
MD5 f9b580ca8f282276edcd5b542740d0db
BLAKE2b-256 bfd4b70d4014c896ee061b4734a0716b19b66f1ad80900713bb4985c7798428c

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.22-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.22-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f814d80844969b0d22ea63663da4de5ca1c434cfbae226188901e5d368792c17
MD5 bf469f77a5c7c252651cdfc1d885e46a
BLAKE2b-256 d72ad9d919b2bbd3cc68b611bd624ee6856776d16b4f1122dd323e57ba90d7f9

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.22-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.22-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.11

File hashes

Hashes for SQLAlchemy-1.4.22-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 fd2102a8f8a659522719ed73865dff3d3cc76eb0833039dc473e0ad3041d04be
MD5 fcd201a624e6366e687dea529e89e1bd
BLAKE2b-256 6153790b57b6dd66b2b34952abebb2f47a2a6423f6697418543f3b827b5109e4

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.22-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.22-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.22-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 891927a49b2363a4199763a9d436d97b0b42c65922a4ea09025600b81a00d17e
MD5 738c24907149bbb350d4bc6aeded825b
BLAKE2b-256 d29cd73a8d94400e152002f1060fb27968b3afdf42ed3291e309f8cbb29ef833

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.22-cp37-cp37m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.22-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.22-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 68393d3fd31469845b6ba11f5b4209edbea0b58506be0e077aafbf9aa2e21e11
MD5 0cb2aecdd4d3e0c440a4139c998e6cfa
BLAKE2b-256 6a4fe8afa4163f192b8a3e41ae9618d658939f9b98a6b39163e517e5a84686f0

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.22-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.22-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9fcbb4b4756b250ed19adc5e28c005b8ed56fdb5c21efa24c6822c0575b4964d
MD5 7076292b57328eb76cf374ed33e61e82
BLAKE2b-256 bb305c248314d86dfbe1d60bb73a59cdffb954757237d8864c9982e30d1466b0

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.22-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.22-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f028ef6a1d828bc754852a022b2160e036202ac8658a6c7d34875aafd14a9a15
MD5 a04d837603274f39af7edcd5eaabe674
BLAKE2b-256 35d45bd88c8cb3fa2f3e09d7cde934e4765144a959533c9ceade7f50aa2cafde

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.22-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.22-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 09dbb4bc01a734ccddbf188deb2a69aede4b3c153a72b6d5c6900be7fb2945b1
MD5 2515f4f93fe50f324c2710bebfbf2686
BLAKE2b-256 8a5a2041d6b4332aa967c4d827e60c9522da4c05e60594dfd4e267a3bbb82c33

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.22-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.22-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.11

File hashes

Hashes for SQLAlchemy-1.4.22-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 756f5d2f5b92d27450167247fb574b09c4cd192a3f8c2e493b3e518a204ee543
MD5 684ecd9634078746e4bd16a78fac82b5
BLAKE2b-256 4a4cbe58c9861e8af08485949b59303636b7a1a43501d49de985b56bba655402

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.22-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.22-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.22-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 bc34a007e604091ca3a4a057525efc4cefd2b7fe970f44d20b9cfa109ab1bddb
MD5 1915efa71992d7cb8f1972c929557e37
BLAKE2b-256 150f383e660e56369f9705eb52e46f493d1a77b141157f89ed9f5c3e45a3c3b2

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.22-cp36-cp36m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.22-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.22-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 a5e14cb0c0a4ac095395f24575a0e7ab5d1be27f5f9347f1762f21505e3ba9f1
MD5 c00941d8f55906f43a6386fc1375daa1
BLAKE2b-256 93507a0c177a09fe08a28b7eb5f0fd8a6fb07af1247841e48309d7b1e8c3ddb9

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.22-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.22-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 eedd76f135461cf237534a6dc0d1e0f6bb88a1dc193678fab48a11d223462da5
MD5 b92963bc4b7389f96c3e300d3d912be2
BLAKE2b-256 99b713762eacb2302a3ed6baf88a04880167326bd77fb660dcfbdf0ca9310374

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.22-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.22-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 44d23ea797a5e0be71bc5454b9ae99158ea0edc79e2393c6e9a2354de88329c0
MD5 973f402fe211a540d2815e3001700124
BLAKE2b-256 291293bfe5e37d6f27d153e98908ade4d151d0e0a33299e48185a28138d2cde9

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.22-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.22-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6a16c7c4452293da5143afa3056680db2d187b380b3ef4d470d4e29885720de3
MD5 9a19d0a46a08bfba6dd50bbddacfe93c
BLAKE2b-256 d90d3343ebfbf40a68e859b88653a34539209402ccab2a9925ed32d38c801942

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.22-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.22-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.11

File hashes

Hashes for SQLAlchemy-1.4.22-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9bfe882d5a1bbde0245dca0bd48da0976bd6634cf2041d2fdf0417c5463e40e5
MD5 4438140a79d1dede69e036c289216ff2
BLAKE2b-256 6d3293fd73f12ffbef404045babe975c33656019858d0cffb6ea6102fe8ed218

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.22-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.22-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b7fb937c720847879c7402fe300cfdb2aeff22349fa4ea3651bca4e2d6555939
MD5 4b782327ec4bc7ce313b33569fa33c0f
BLAKE2b-256 229411c641925bb0ff369b69f0a7f1a425bc1dc69c2439a832ee780866cc3444

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.22-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.22-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.22-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 5908ea6c652a050d768580d01219c98c071e71910ab8e7b42c02af4010608397
MD5 ddf05fcabcc7db9ae7aee05ad3b1a4bd
BLAKE2b-256 12bd7d65c687b9388c9ed90fd0364405cf38191008d1a437253197a421a865de

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.22-cp27-cp27m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.22-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.22-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 a00d9c6d3a8afe1d1681cd8a5266d2f0ed684b0b44bada2ca82403b9e8b25d39
MD5 1f7bf356112eced44487cb3d9610a61d
BLAKE2b-256 e0e6b0b0aadbd78fd81107cd2c60342823c8794f89a392500745c2b492e3cb84

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.22-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.22-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5d856cc50fd26fc8dd04892ed5a5a3d7eeb914fea2c2e484183e2d84c14926e0
MD5 da629db0ef2a18f1ca253195646c8a5b
BLAKE2b-256 8405d351740e5dd4732794d507f062dd5bc99051dfd275d0314e1aee671b4dda

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.22-cp27-cp27m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.22-cp27-cp27m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.11

File hashes

Hashes for SQLAlchemy-1.4.22-cp27-cp27m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 488608953385d6c127d2dcbc4b11f8d7f2f30b89f6bd27c01b042253d985cc2f
MD5 3bcedb7f3ad73539f3846b05b7d2fe2e
BLAKE2b-256 7b9a73cb93563b915991ca7578681bc95f1ae91d76e49f1856398f108f8af2f2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page