Skip to main content

Database Abstraction Library

Project description

PyPI PyPI - Python Version PyPI - Downloads

The Python SQL Toolkit and Object Relational Mapper

Introduction

SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives application developers the full power and flexibility of SQL. SQLAlchemy provides a full suite of well known enterprise-level persistence patterns, designed for efficient and high-performing database access, adapted into a simple and Pythonic domain language.

Major SQLAlchemy features include:

  • An industrial strength ORM, built from the core on the identity map, unit of work, and data mapper patterns. These patterns allow transparent persistence of objects using a declarative configuration system. Domain models can be constructed and manipulated naturally, and changes are synchronized with the current transaction automatically.

  • A relationally-oriented query system, exposing the full range of SQL’s capabilities explicitly, including joins, subqueries, correlation, and most everything else, in terms of the object model. Writing queries with the ORM uses the same techniques of relational composition you use when writing SQL. While you can drop into literal SQL at any time, it’s virtually never needed.

  • A comprehensive and flexible system of eager loading for related collections and objects. Collections are cached within a session, and can be loaded on individual access, all at once using joins, or by query per collection across the full result set.

  • A Core SQL construction system and DBAPI interaction layer. The SQLAlchemy Core is separate from the ORM and is a full database abstraction layer in its own right, and includes an extensible Python-based SQL expression language, schema metadata, connection pooling, type coercion, and custom types.

  • All primary and foreign key constraints are assumed to be composite and natural. Surrogate integer primary keys are of course still the norm, but SQLAlchemy never assumes or hardcodes to this model.

  • Database introspection and generation. Database schemas can be “reflected” in one step into Python structures representing database metadata; those same structures can then generate CREATE statements right back out - all within the Core, independent of the ORM.

SQLAlchemy’s philosophy:

  • SQL databases behave less and less like object collections the more size and performance start to matter; object collections behave less and less like tables and rows the more abstraction starts to matter. SQLAlchemy aims to accommodate both of these principles.

  • An ORM doesn’t need to hide the “R”. A relational database provides rich, set-based functionality that should be fully exposed. SQLAlchemy’s ORM provides an open-ended set of patterns that allow a developer to construct a custom mediation layer between a domain model and a relational schema, turning the so-called “object relational impedance” issue into a distant memory.

  • The developer, in all cases, makes all decisions regarding the design, structure, and naming conventions of both the object model as well as the relational schema. SQLAlchemy only provides the means to automate the execution of these decisions.

  • With SQLAlchemy, there’s no such thing as “the ORM generated a bad query” - you retain full control over the structure of queries, including how joins are organized, how subqueries and correlation is used, what columns are requested. Everything SQLAlchemy does is ultimately the result of a developer- initiated decision.

  • Don’t use an ORM if the problem doesn’t need one. SQLAlchemy consists of a Core and separate ORM component. The Core offers a full SQL expression language that allows Pythonic construction of SQL constructs that render directly to SQL strings for a target database, returning result sets that are essentially enhanced DBAPI cursors.

  • Transactions should be the norm. With SQLAlchemy’s ORM, nothing goes to permanent storage until commit() is called. SQLAlchemy encourages applications to create a consistent means of delineating the start and end of a series of operations.

  • Never render a literal value in a SQL statement. Bound parameters are used to the greatest degree possible, allowing query optimizers to cache query plans effectively and making SQL injection attacks a non-issue.

Documentation

Latest documentation is at:

https://www.sqlalchemy.org/docs/

Installation / Requirements

Full documentation for installation is at Installation.

Getting Help / Development / Bug reporting

Please refer to the SQLAlchemy Community Guide.

Code of Conduct

Above all, SQLAlchemy places great emphasis on polite, thoughtful, and constructive communication between users and developers. Please see our current Code of Conduct at Code of Conduct.

License

SQLAlchemy is distributed under the MIT license.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SQLAlchemy-1.4.23.tar.gz (7.7 MB view details)

Uploaded Source

Built Distributions

SQLAlchemy-1.4.23-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

SQLAlchemy-1.4.23-cp39-cp39-win32.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86

SQLAlchemy-1.4.23-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.23-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.23-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.23-cp39-cp39-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

SQLAlchemy-1.4.23-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

SQLAlchemy-1.4.23-cp38-cp38-win32.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86

SQLAlchemy-1.4.23-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.23-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.23-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.23-cp38-cp38-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

SQLAlchemy-1.4.23-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

SQLAlchemy-1.4.23-cp37-cp37m-win32.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86

SQLAlchemy-1.4.23-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.23-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.23-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.23-cp37-cp37m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

SQLAlchemy-1.4.23-cp36-cp36m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86-64

SQLAlchemy-1.4.23-cp36-cp36m-win32.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86

SQLAlchemy-1.4.23-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.23-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.23-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.23-cp36-cp36m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

SQLAlchemy-1.4.23-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.23-cp27-cp27m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86-64

SQLAlchemy-1.4.23-cp27-cp27m-win32.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86

SQLAlchemy-1.4.23-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.23-cp27-cp27m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m macOS 10.14+ x86-64

File details

Details for the file SQLAlchemy-1.4.23.tar.gz.

File metadata

  • Download URL: SQLAlchemy-1.4.23.tar.gz
  • Upload date:
  • Size: 7.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.6

File hashes

Hashes for SQLAlchemy-1.4.23.tar.gz
Algorithm Hash digest
SHA256 76ff246881f528089bf19385131b966197bb494653990396d2ce138e2a447583
MD5 d13b2b57ed78810d13d3f807c4bee9b7
BLAKE2b-256 adc761ff52be84f5ac86c72672ceac941981f1685b4ef90391d405a1f89677d0

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.23-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.23-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.23-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0aa746d1173587743960ff17b89b540e313aacfe6c1e9c81aa48393182c36d4f
MD5 23bfe981c4a7bb15c874cc475fd974f7
BLAKE2b-256 d9b5d8af5a547f51f1486d7dee8a02946a7dda46738494355ae53fd0ece7914c

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.23-cp39-cp39-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.23-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.23-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 e0ce4a2e48fe0a9ea3a5160411a4c5135da5255ed9ac9c15f15f2bcf58c34194
MD5 54d6444b8e2bb52e25f3145fe98328a8
BLAKE2b-256 970315daa7a0b17d83562c77cb1aeeae0a0b6d2a864a387e27ef1ccf4a4bf4ea

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.23-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.23-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 07b9099a95dd2b2620498544300eda590741ac54915c6b20809b6de7e3c58090
MD5 56902ab6eca5863b81b6b7f75c17bc27
BLAKE2b-256 7081f30df45e0d2c32d1d6f1a56aa5a2c1b9e5332daa460414d18c98d63e4c89

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.23-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.23-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 448612570aa1437a5d1b94ada161805778fe80aba5b9a08a403e8ae4e071ded6
MD5 b370bfb7523e08002f5d6419755be491
BLAKE2b-256 5cabf1d6bb48aafbdabc7ef4c9d9455e2ccef382bbbfe1f5c26995b9c05d1b59

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.23-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.23-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 37f2bd1b8e32c5999280f846701712347fc0ee7370e016ede2283c71712e127a
MD5 6359853882bf548451dea4a724fe30de
BLAKE2b-256 e0df7468e69f7a8977dc39b8ed7881cda4f08f8e292c81bbf0f7a02d9b8fb314

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.23-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.23-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.8.11

File hashes

Hashes for SQLAlchemy-1.4.23-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4803a481d4c14ce6ad53dc35458c57821863e9a079695c27603d38355e61fb7f
MD5 051cbe42bcb49d7a3bf8f07c5dd765d8
BLAKE2b-256 1e6e835537cecdc4afcad58383486df89cff278f7ae6729f055a5a6af240efea

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.23-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.23-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.23-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2bca9a6e30ee425cc321d988a152a5fe1be519648e7541ac45c36cd4f569421f
MD5 4f144f31774fd3a22c5b6f53d197ceef
BLAKE2b-256 27d2d2815d72c7101ea12963c06ad013c3553487b67342fe05f4f308476c0448

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.23-cp38-cp38-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.23-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.23-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 bd41f8063a9cd11b76d6d7d6af8139ab3c087f5dbbe5a50c02cb8ece7da34d67
MD5 e7c54d317baeb236ee96979e738d7875
BLAKE2b-256 713ef4562e4857e861edee1fde33950f547a4d244f670a7d8a560aa5058a11f9

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.23-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.23-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1c15191f2430a30082f540ec6f331214746fc974cfdf136d7a1471d1c61d68ff
MD5 4acd58ee1c6360c033665a9ba0eed3a1
BLAKE2b-256 999f1ace891f8fafc1ab1983d2ffddfc3a063f269c0684831051335df5dbedfb

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.23-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.23-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 370f4688ce47f0dc1e677a020a4d46252a31a2818fd67f5c256417faefc938af
MD5 d6b8d829f86caa5a3eff133a22972c44
BLAKE2b-256 3886209b810ec1d6a041eb60985ff3a3c671633bcc5665b93ed8467d7bd11987

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.23-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.23-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 cd0e85dd2067159848c7672acd517f0c38b7b98867a347411ea01b432003f8d9
MD5 13bcace34438352394d1a1af86b858c3
BLAKE2b-256 d06b32b93b001ca2274ca0097a1f81be27fc69a805761049719531ac182427fe

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.23-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.23-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.8.11

File hashes

Hashes for SQLAlchemy-1.4.23-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6a8dbf3d46e889d864a57ee880c4ad3a928db5aa95e3d359cbe0da2f122e50c4
MD5 c6f1d65c247d9768b309c63fe419fcca
BLAKE2b-256 07318afeb4ff95c340442bf322cd79a440b2a3ca6e590d29d7eca64cdcb830ea

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.23-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.23-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.23-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 cd68c5f9d13ffc8f4d6802cceee786678c5b1c668c97bc07b9f4a60883f36cd1
MD5 8049723bf2af50d245fa5c0c5ad8bde7
BLAKE2b-256 18b3556fa0651a24065ea353da03382ce7f1e79f3e99151be5dca9a0bb1ca2b5

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.23-cp37-cp37m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.23-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.23-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 059c5f41e8630f51741a234e6ba2a034228c11b3b54a15478e61d8b55fa8bd9d
MD5 dfbb6c16d508525d93dfb9c849e9ffb6
BLAKE2b-256 7c865a3298b3503d1ec2a3166218ea28c8622a078f0d40e645d785a4f1ef05fd

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.23-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.23-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 355024cf061ed04271900414eb4a22671520241d2216ddb691bdd8a992172389
MD5 afe87ce7cef1818b7847709c2eccfe79
BLAKE2b-256 6a7cc4c9e25304224bad34570f6d0a8075f65f87afaa39124746970d0abed922

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.23-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.23-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0aa312f9906ecebe133d7f44168c3cae4c76f27a25192fa7682f3fad505543c9
MD5 527b71276e3a9aaaefa810c7f6b2f787
BLAKE2b-256 1b38f5ae71fc256ccf7f8657c9a4c896884c856bdaa145f279100073fc59644b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.23-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.23-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 82c03325111eab88d64e0ff48b6fe15c75d23787429fa1d84c0995872e702787
MD5 3673db4feee8ce1b1a0f192503ee84e3
BLAKE2b-256 524bca233dbc4f196e0fd6e3554e459fb2b8df8fa25fb8f6fb7253299a49718e

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.23-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.23-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.8.11

File hashes

Hashes for SQLAlchemy-1.4.23-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 512f52a8872e8d63d898e4e158eda17e2ee40b8d2496b3b409422e71016db0bd
MD5 3e0d53bb259abd58e3e4a1f0f710a01a
BLAKE2b-256 7b9944b6d858d75b9807baee5ce9ca651c853e8dc107e783d9f38a5ebd9f66bd

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.23-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.23-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.23-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 e9d4f4552aa5e0d1417fc64a2ce1cdf56a30bab346ba6b0dd5e838eb56db4d29
MD5 e441c08afb747ce6a30fce6848d27660
BLAKE2b-256 2de62cf86fb92e8bdca4383f5ec31187985fbfc403e7a3dafadbe1ca6c6285a3

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.23-cp36-cp36m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.23-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.23-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 43fc207be06e50158e4dae4cc4f27ce80afbdbfa7c490b3b22feb64f6d9775a0
MD5 6e81aa882b3204bfe825662a0332a625
BLAKE2b-256 7bd1f9fbbbe7a6274e9f0e3b492655b197810644f63f6c30801a6fbde2c657db

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.23-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.23-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3a0d3b3d51c83a66f5b72c57e1aad061406e4c390bd42cf1fda94effe82fac81
MD5 fabe5dd324fafc186b1a1a346444c23c
BLAKE2b-256 f23a5102987d91c73c1df7aa8a92d654a639019b84f585ff22d0d2c3c53be579

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.23-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.23-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9b128a78581faea7a5ee626ad4471353eee051e4e94616dfeff4742b6e5ba262
MD5 cc96378a8b226930b44ed5cea39b2ce7
BLAKE2b-256 52457e65d6049d3a1bc47aca74ab0f61f6a772c92f31c4805eefced0e7fa83af

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.23-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.23-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a8395c4db3e1450eef2b68069abf500cc48af4b442a0d98b5d3c9535fe40cde8
MD5 335b2ab3a06b6d6d3f7eb3edd6002ed7
BLAKE2b-256 14f557292e00bf89bcf31d1e54d33713e3bad1189c22a605bfb99223fd1cf5a2

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.23-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.23-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.8.11

File hashes

Hashes for SQLAlchemy-1.4.23-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 be185b3daf651c6c0639987a916bf41e97b60e68f860f27c9cb6574385f5cbb4
MD5 0949767a9ed1b445c7ac9db0f448bb2b
BLAKE2b-256 5bbb7c3b6e74e4d1c0e06b960211846a2578801e498185529cfe3bd828cc76a2

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.23-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.23-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 967307ea52985985224a79342527c36ec2d1daa257a39748dd90e001a4be4d90
MD5 a32e7b5da944a8895f146cb0cf82bd58
BLAKE2b-256 0eb0a87cb758a68f530b0ade744b5a2be1676ef67800b88cba8a22fe8837afe3

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.23-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.23-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.23-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 ae07895b55c7d58a7dd47438f437ac219c0f09d24c2e7d69fdebc1ea75350f00
MD5 130980c1897742f170990ee240c8d29f
BLAKE2b-256 b518c9590b4cfd8c31f029e660189872d556af226ccc0d3cb2e595bd2aad7ae9

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.23-cp27-cp27m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.23-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.23-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 cec1a4c6ddf5f82191301a25504f0e675eccd86635f0d5e4c69e0661691931c5
MD5 3e5baff532c022e9c76bbbee32f002a9
BLAKE2b-256 275745936c964a779a14ab5c5fd7e0591a26dd038eb36e15473789e51fd65080

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.23-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.23-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d9667260125688c71ccf9af321c37e9fb71c2693575af8210f763bfbbee847c7
MD5 f829548df171e3d2badbf43d2916e044
BLAKE2b-256 20f12beb1510dd60062a9db2d065ee1a60844d8e370d2d250b460b5c7c6ed8f5

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.23-cp27-cp27m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.23-cp27-cp27m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.8.11

File hashes

Hashes for SQLAlchemy-1.4.23-cp27-cp27m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 25e9b2e5ca088879ce3740d9ccd4d58cb9061d49566a0b5e12166f403d6f4da0
MD5 7a7d36d615ab305c5360576bc57f73b5
BLAKE2b-256 8bf27365af7899583d469e35db6d7e09da814588b0169849e7745a987ce3f348

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page