Skip to main content

Database Abstraction Library

Project description

PyPI PyPI - Python Version PyPI - Downloads

The Python SQL Toolkit and Object Relational Mapper

Introduction

SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives application developers the full power and flexibility of SQL. SQLAlchemy provides a full suite of well known enterprise-level persistence patterns, designed for efficient and high-performing database access, adapted into a simple and Pythonic domain language.

Major SQLAlchemy features include:

  • An industrial strength ORM, built from the core on the identity map, unit of work, and data mapper patterns. These patterns allow transparent persistence of objects using a declarative configuration system. Domain models can be constructed and manipulated naturally, and changes are synchronized with the current transaction automatically.

  • A relationally-oriented query system, exposing the full range of SQL’s capabilities explicitly, including joins, subqueries, correlation, and most everything else, in terms of the object model. Writing queries with the ORM uses the same techniques of relational composition you use when writing SQL. While you can drop into literal SQL at any time, it’s virtually never needed.

  • A comprehensive and flexible system of eager loading for related collections and objects. Collections are cached within a session, and can be loaded on individual access, all at once using joins, or by query per collection across the full result set.

  • A Core SQL construction system and DBAPI interaction layer. The SQLAlchemy Core is separate from the ORM and is a full database abstraction layer in its own right, and includes an extensible Python-based SQL expression language, schema metadata, connection pooling, type coercion, and custom types.

  • All primary and foreign key constraints are assumed to be composite and natural. Surrogate integer primary keys are of course still the norm, but SQLAlchemy never assumes or hardcodes to this model.

  • Database introspection and generation. Database schemas can be “reflected” in one step into Python structures representing database metadata; those same structures can then generate CREATE statements right back out - all within the Core, independent of the ORM.

SQLAlchemy’s philosophy:

  • SQL databases behave less and less like object collections the more size and performance start to matter; object collections behave less and less like tables and rows the more abstraction starts to matter. SQLAlchemy aims to accommodate both of these principles.

  • An ORM doesn’t need to hide the “R”. A relational database provides rich, set-based functionality that should be fully exposed. SQLAlchemy’s ORM provides an open-ended set of patterns that allow a developer to construct a custom mediation layer between a domain model and a relational schema, turning the so-called “object relational impedance” issue into a distant memory.

  • The developer, in all cases, makes all decisions regarding the design, structure, and naming conventions of both the object model as well as the relational schema. SQLAlchemy only provides the means to automate the execution of these decisions.

  • With SQLAlchemy, there’s no such thing as “the ORM generated a bad query” - you retain full control over the structure of queries, including how joins are organized, how subqueries and correlation is used, what columns are requested. Everything SQLAlchemy does is ultimately the result of a developer- initiated decision.

  • Don’t use an ORM if the problem doesn’t need one. SQLAlchemy consists of a Core and separate ORM component. The Core offers a full SQL expression language that allows Pythonic construction of SQL constructs that render directly to SQL strings for a target database, returning result sets that are essentially enhanced DBAPI cursors.

  • Transactions should be the norm. With SQLAlchemy’s ORM, nothing goes to permanent storage until commit() is called. SQLAlchemy encourages applications to create a consistent means of delineating the start and end of a series of operations.

  • Never render a literal value in a SQL statement. Bound parameters are used to the greatest degree possible, allowing query optimizers to cache query plans effectively and making SQL injection attacks a non-issue.

Documentation

Latest documentation is at:

https://www.sqlalchemy.org/docs/

Installation / Requirements

Full documentation for installation is at Installation.

Getting Help / Development / Bug reporting

Please refer to the SQLAlchemy Community Guide.

Code of Conduct

Above all, SQLAlchemy places great emphasis on polite, thoughtful, and constructive communication between users and developers. Please see our current Code of Conduct at Code of Conduct.

License

SQLAlchemy is distributed under the MIT license.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SQLAlchemy-1.4.24.tar.gz (7.8 MB view details)

Uploaded Source

Built Distributions

SQLAlchemy-1.4.24-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

SQLAlchemy-1.4.24-cp39-cp39-win32.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86

SQLAlchemy-1.4.24-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.24-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.24-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.24-cp39-cp39-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

SQLAlchemy-1.4.24-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

SQLAlchemy-1.4.24-cp38-cp38-win32.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86

SQLAlchemy-1.4.24-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.24-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.24-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.24-cp38-cp38-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

SQLAlchemy-1.4.24-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

SQLAlchemy-1.4.24-cp37-cp37m-win32.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86

SQLAlchemy-1.4.24-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.24-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.24-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.24-cp37-cp37m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

SQLAlchemy-1.4.24-cp36-cp36m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86-64

SQLAlchemy-1.4.24-cp36-cp36m-win32.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86

SQLAlchemy-1.4.24-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.24-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.24-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.24-cp36-cp36m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

SQLAlchemy-1.4.24-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.24-cp27-cp27m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86-64

SQLAlchemy-1.4.24-cp27-cp27m-win32.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86

SQLAlchemy-1.4.24-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.24-cp27-cp27m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m macOS 10.14+ x86-64

File details

Details for the file SQLAlchemy-1.4.24.tar.gz.

File metadata

  • Download URL: SQLAlchemy-1.4.24.tar.gz
  • Upload date:
  • Size: 7.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.6

File hashes

Hashes for SQLAlchemy-1.4.24.tar.gz
Algorithm Hash digest
SHA256 5368ff1d334ee0956f6459f3ac7ac08da87ab00bc7ccda096d498bf68b49d1c1
MD5 3a790752decdbbb78720b570dec7f850
BLAKE2b-256 a32d0f9afadc9c8985ecfb32b20933f13f5138771c01f5b6ab0e812b92259a60

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.24-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.24-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.24-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 91ee87314037d0fd622edc0aab88867138acfe26e1697000a3bde571aaf9515d
MD5 d16d2f78033088895e403442be2eade2
BLAKE2b-256 13bbbfd5ae72ae3e4d7dcd6fefd7a082db40a056cab2688564797b0156039be9

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.24-cp39-cp39-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.24-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.24-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 112eceaf51b38acd7b3287ccc0100e8ffe48291e65c400cf8b2036f08894b4dd
MD5 e18a73b782632727936fa6a86e49b55d
BLAKE2b-256 4fb1092b13742ca843737fe72774564bf186612367c27812d4bab27bc4453790

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.24-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.24-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 738f3a8dcb2cd2c359a1ea7c6b8dab8d818e2dfd9441128fe687045f4c476c59
MD5 d2c981c281838e33c9f53fb417bc9d3d
BLAKE2b-256 4655daf61fcb9f6b6241dd7dfdcbda005e3d559e64dd89d3b146df1878949dec

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.24-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.24-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fb7b2eb3f02daa88a6c2dcd665511313cf5b51a0e18e8c4d95ce36bb09463615
MD5 161aea499876c8f6e6f1fc6fb9bc72d3
BLAKE2b-256 d70ca952d2f3457fad034a20fd1469247af3acfc476d06efefa363ae27d9ee0c

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.24-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.24-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9bb3346868f345d6ed97ddeb9ba5c82699173d62f3400b960f455a0e238165ef
MD5 f741a8e6cdb12149fed8debdabe43f1f
BLAKE2b-256 5a395b92e9d954fe58098036cb6fda408ae0cc9e2534d0b3937b7943ec4423b9

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.24-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.24-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.24-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 41b1515eb462565e61afed2d5e68643ce0dcb14d09f56a1e7b06144f20f41b60
MD5 4b57fcc4fad76092094756b87222cd56
BLAKE2b-256 ca959fac3b74845468dedc1d50b46b7a15ead23c491c6f05228cdfd57565bfcb

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.24-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.24-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.24-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0865579cfae8406ba2eae7ff84ef1dc85190121706e0305939c98c6128282efb
MD5 e4d64b9ad44503a6442e55ec7d6ed0dc
BLAKE2b-256 ca1f5f74b45522d362147e90c14caaaa3c122d5fdb56eb2ccf98f4a8832e34c8

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.24-cp38-cp38-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.24-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.24-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 63a442eea6dc801044096ad209a46117ccf63ade4fb05a81e4a5354719e0d77f
MD5 80c66815085c12b98586807f2c6911a7
BLAKE2b-256 5bc11af0ac4a280da4a1a6970e61fe4853509b317da66df1bfb5c56644096387

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.24-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.24-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 59536e16442b41adeda2bd0a22b49cd376c265b22a74fb65c4f389dcf54a11b5
MD5 f94a5cd9b7b2d277f01a3a983b7f4eaf
BLAKE2b-256 1c8411cbe7b48d55f7c4ea66300d0eb3c6034fbd81899d64131b76f736c9ae5d

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.24-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.24-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b7cfcefe265a28ac43eedc7f0c4c657511c5607aa4b50d1e5b039b29f04a780f
MD5 f94bd223e47bd1fc8767a94b951171dc
BLAKE2b-256 7e1eeff7b9f60f06a980a126f0c08ec0ecf0d2bd9cf9f67ffe0e4e4c55f5aa77

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.24-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.24-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a5252f9c564ffa8cfd02b6b48eba4aec166546a71e149ea38f1079229976e5fa
MD5 85ab55956f54ff27b937ae73755f29cd
BLAKE2b-256 41a93c09d8c87791054c5923c271a81fd88592c1dec2ec8f2d7da7ac0e45382c

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.24-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.24-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.24-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1c663510cd54fbb5fd20c98d00b013eaf2ec7552064811032e1fcfa3e980b0a4
MD5 77a1e773e231c62246165b0d7e8de4cc
BLAKE2b-256 76d785de97d4c34480d3bb5ff7ee2e1a7f2b4fb4d076b842a017086598b83587

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.24-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.24-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.24-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 2a3ab0813fe2df8fba5ce4b969f81f1895ae71d8afaf4d187e6a0da6b320a51f
MD5 ad0321069caa86aa8ac2273fcb7bd627
BLAKE2b-256 51441d4b0fb4a25ff1ac4cb0f0d2321412273c355a0dd5c0f1b12f6b8d78df9f

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.24-cp37-cp37m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.24-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.24-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 087eb1c405279d076bfc54d472bda31f72baef7f308cfce93daa199c3e9c344c
MD5 0634fdd768759566aab36f5786b3fac9
BLAKE2b-256 bb2f883f562f0ec14f9dea2a8700bae2bd92825a4be5fa1b1311b783d7d67e0f

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.24-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.24-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7c4335e19a6abc510a4755c628adb1db4b775835ad84e022fead2153fd0839f5
MD5 61eede1a64d7a0a54024b282a40150cc
BLAKE2b-256 3b7ab5ef6cf2432b8de47d1bf7d18a1fb3409a176f57edea324f19bdb08f85b3

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.24-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.24-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7e18d6da1d0a8093bc1f2f3fa25cfbb0db8f2022e5e0cc83f39056b7b259ee20
MD5 9e109244bfc5ec757ff8c2074e83621c
BLAKE2b-256 95778229e137d327c5f906da005e43e0f63865270a94e6f44abaf6151fb311dc

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.24-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.24-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c9da7bf322493158db09127f7c5e80ebda0ed2296b036fade424c5a45c44f59c
MD5 3b450bb642c14ddeb0ce40628978e8a7
BLAKE2b-256 b13fe6feefb1b283af0ae31f2cf0f35af84d90696edec87eabfa3a5ed30bd049

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.24-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.24-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.24-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3639e2dd1d592e4f4e2bcc857601699d3d9c6b162b72435bdd2da3cedcb8abd6
MD5 6f442602e3eb39cca51d6046949365a5
BLAKE2b-256 8c82b0b512d8a0a70b5ee8cabbfa83bcc3ef7f405a2202434e01d5d4f7832dd9

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.24-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.24-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.24-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 7d7d646c179ccd58b08110eade9e69399981bb4c9696123e34a159c9721e6449
MD5 68df1201e5d1d1ebb6e26df2b5e8c1ac
BLAKE2b-256 612687e45301534bf53b8ddb6dc8e279451f21962cf83a48b2b453dc612b511e

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.24-cp36-cp36m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.24-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.24-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 37f7ec52d422369d3d21f5ca5c10ff18da0c75a133acb6a2e78c2b059eb216cf
MD5 a2c74eda6c5ab931973cf2e2201c6555
BLAKE2b-256 b5985498e141006b86e5b06926a291b4254b85df83d10fda649713ddad4f171d

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.24-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.24-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d34650edaa2a9eccd86a08fb5a303144b0e58898d16f684617207d9ff0e6e447
MD5 378d7f2e436004641b84359f73f422f2
BLAKE2b-256 63f44a6d85f9d03d496cc135ab4bbfae2bf0ff75eaed7a38fa59a4e286b3ae57

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.24-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.24-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ca82199171dd6016381ea5b6fa22cd838389c2e03facd448bd9e15be2bb27a8d
MD5 1b32a80aaef780e7dde639c0d5a4b522
BLAKE2b-256 2646acfd045fab4e127a26aa03f55d3bb581ba981f9d5b5a4919e189dad2563d

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.24-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.24-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 599f3c2a16caa4a2ad1971d1f3d6b5a92bb861f70e81ed0088311c73752f2598
MD5 dd965079a804880feff495b97c400276
BLAKE2b-256 25124be5e38cc268c962c9dc97465501c3be7fd0c828e2c8a5f8d4bcdd328150

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.24-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.24-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.24-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b1e6945b29c630b4696f7b3e43210c3d6ca35709ee0a0ac2251c6ed5891b8dda
MD5 a2bf9ad4fb473780caf38dc0ea900b0a
BLAKE2b-256 d51e807e09343cdb6aed5d445987045063ec21eef5cb05d5b7a0c990a864040c

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.24-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.24-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0a9622a7d0a121f8cc8a6c202fe615d14002c8793f0c570ffee0e4ea3ce987a4
MD5 723c5eb730c52e97e2257d534283368a
BLAKE2b-256 955cdf743857e790bd8fbe012bc437a451869b628190f69b03252f1743fcee4e

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.24-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.24-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.24-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 c7d572b0771b7866d21413902080eb61334dabb9831d64caf0cf68cb07ba9370
MD5 f45a484d421f429a27e0751a03d72d9f
BLAKE2b-256 7df80dc2f3f85c557678080959a4e331e70c19618243514c3feee438e3865dfc

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.24-cp27-cp27m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.24-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.24-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 541e82e35ea9d9b57a55e0f1b639b508a5d8b3c167896bf205b3b3b7d9704329
MD5 d7a7972a5cdefa82ec34d09fcf986379
BLAKE2b-256 d5d754f33f08c5d19f623164e6c07fbb1f95300a84c2e14a7df9138cc0c3d444

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.24-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.24-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 cd6b08acc9f07d60eb866d30eb48db1f39cc04863407a5ff04736961fd1f2e52
MD5 c6dd3bcf5530d08710cfc1c64986497d
BLAKE2b-256 772b564145ecb7ea0249886226d109ee7190f266a2d981ca801c78bdeaa24fe1

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.24-cp27-cp27m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.24-cp27-cp27m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.24-cp27-cp27m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 eb4681927c1beeaa3c8d4d8eb3541d427eef5d54410d02924ecdc651e6688304
MD5 6397a274621a72fd3afd135a5ee33326
BLAKE2b-256 abf7ab4525361eab1cd868f9b915b813fb43b8de084d89f6eed4ae81f538e2c3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page