Skip to main content

Database Abstraction Library

Project description

PyPI PyPI - Python Version PyPI - Downloads

The Python SQL Toolkit and Object Relational Mapper

Introduction

SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives application developers the full power and flexibility of SQL. SQLAlchemy provides a full suite of well known enterprise-level persistence patterns, designed for efficient and high-performing database access, adapted into a simple and Pythonic domain language.

Major SQLAlchemy features include:

  • An industrial strength ORM, built from the core on the identity map, unit of work, and data mapper patterns. These patterns allow transparent persistence of objects using a declarative configuration system. Domain models can be constructed and manipulated naturally, and changes are synchronized with the current transaction automatically.

  • A relationally-oriented query system, exposing the full range of SQL’s capabilities explicitly, including joins, subqueries, correlation, and most everything else, in terms of the object model. Writing queries with the ORM uses the same techniques of relational composition you use when writing SQL. While you can drop into literal SQL at any time, it’s virtually never needed.

  • A comprehensive and flexible system of eager loading for related collections and objects. Collections are cached within a session, and can be loaded on individual access, all at once using joins, or by query per collection across the full result set.

  • A Core SQL construction system and DBAPI interaction layer. The SQLAlchemy Core is separate from the ORM and is a full database abstraction layer in its own right, and includes an extensible Python-based SQL expression language, schema metadata, connection pooling, type coercion, and custom types.

  • All primary and foreign key constraints are assumed to be composite and natural. Surrogate integer primary keys are of course still the norm, but SQLAlchemy never assumes or hardcodes to this model.

  • Database introspection and generation. Database schemas can be “reflected” in one step into Python structures representing database metadata; those same structures can then generate CREATE statements right back out - all within the Core, independent of the ORM.

SQLAlchemy’s philosophy:

  • SQL databases behave less and less like object collections the more size and performance start to matter; object collections behave less and less like tables and rows the more abstraction starts to matter. SQLAlchemy aims to accommodate both of these principles.

  • An ORM doesn’t need to hide the “R”. A relational database provides rich, set-based functionality that should be fully exposed. SQLAlchemy’s ORM provides an open-ended set of patterns that allow a developer to construct a custom mediation layer between a domain model and a relational schema, turning the so-called “object relational impedance” issue into a distant memory.

  • The developer, in all cases, makes all decisions regarding the design, structure, and naming conventions of both the object model as well as the relational schema. SQLAlchemy only provides the means to automate the execution of these decisions.

  • With SQLAlchemy, there’s no such thing as “the ORM generated a bad query” - you retain full control over the structure of queries, including how joins are organized, how subqueries and correlation is used, what columns are requested. Everything SQLAlchemy does is ultimately the result of a developer- initiated decision.

  • Don’t use an ORM if the problem doesn’t need one. SQLAlchemy consists of a Core and separate ORM component. The Core offers a full SQL expression language that allows Pythonic construction of SQL constructs that render directly to SQL strings for a target database, returning result sets that are essentially enhanced DBAPI cursors.

  • Transactions should be the norm. With SQLAlchemy’s ORM, nothing goes to permanent storage until commit() is called. SQLAlchemy encourages applications to create a consistent means of delineating the start and end of a series of operations.

  • Never render a literal value in a SQL statement. Bound parameters are used to the greatest degree possible, allowing query optimizers to cache query plans effectively and making SQL injection attacks a non-issue.

Documentation

Latest documentation is at:

https://www.sqlalchemy.org/docs/

Installation / Requirements

Full documentation for installation is at Installation.

Getting Help / Development / Bug reporting

Please refer to the SQLAlchemy Community Guide.

Code of Conduct

Above all, SQLAlchemy places great emphasis on polite, thoughtful, and constructive communication between users and developers. Please see our current Code of Conduct at Code of Conduct.

License

SQLAlchemy is distributed under the MIT license.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SQLAlchemy-1.4.25.tar.gz (7.8 MB view details)

Uploaded Source

Built Distributions

SQLAlchemy-1.4.25-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

SQLAlchemy-1.4.25-cp39-cp39-win32.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86

SQLAlchemy-1.4.25-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.25-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.25-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.25-cp39-cp39-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

SQLAlchemy-1.4.25-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

SQLAlchemy-1.4.25-cp38-cp38-win32.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86

SQLAlchemy-1.4.25-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.25-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.25-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.25-cp38-cp38-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

SQLAlchemy-1.4.25-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

SQLAlchemy-1.4.25-cp37-cp37m-win32.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86

SQLAlchemy-1.4.25-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.25-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.25-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.25-cp37-cp37m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

SQLAlchemy-1.4.25-cp36-cp36m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86-64

SQLAlchemy-1.4.25-cp36-cp36m-win32.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86

SQLAlchemy-1.4.25-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.25-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.25-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.25-cp36-cp36m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

SQLAlchemy-1.4.25-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.25-cp27-cp27m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86-64

SQLAlchemy-1.4.25-cp27-cp27m-win32.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86

SQLAlchemy-1.4.25-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.25-cp27-cp27m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m macOS 10.14+ x86-64

File details

Details for the file SQLAlchemy-1.4.25.tar.gz.

File metadata

  • Download URL: SQLAlchemy-1.4.25.tar.gz
  • Upload date:
  • Size: 7.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.9.1 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.6

File hashes

Hashes for SQLAlchemy-1.4.25.tar.gz
Algorithm Hash digest
SHA256 1adf3d25e2e33afbcd48cfad8076f9378793be43e7fec3e4334306cac6bec138
MD5 8627c455ec19c38a18a921a84da343e4
BLAKE2b-256 692bf0ee898c3270d965300ec30b0bf06e062c4cc92f35d17ae6046f429c5067

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.25-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.25-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.25-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9ebe49c3960aa2219292ea2e5df6acdc425fc828f2f3d50b4cfae1692bcb5f02
MD5 a6b8cfa63fb39e5d005d30a6907eaee7
BLAKE2b-256 55b897fb7430f8ce9afb12a4270a5f2c4ae38485e61e484b204baad211fe5e8a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.25-cp39-cp39-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.25-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.25-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 6003771ea597346ab1e97f2f58405c6cacbf6a308af3d28a9201a643c0ac7bb3
MD5 923c2b6dcad9bf1067e299df4b3441ef
BLAKE2b-256 f28ff0332e1ba196d51355d2838a7385f42a699d6555a3bab40d559082c7d83a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.25-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.25-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e37621b37c73b034997b5116678862f38ee70e5a054821c7b19d0e55df270dec
MD5 75f3c2a2cd8e31ff5c87ba99d227ed89
BLAKE2b-256 a01768baf5779e22d3dab20cfc5e526cd573efcee971c5e64faa035b1cfdde25

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.25-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.25-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 90fe429285b171bcc252e21515703bdc2a4721008d1f13aa5b7150336f8a8493
MD5 264bbef925a2101481bdaaa49c5f5ad9
BLAKE2b-256 73e39088a315bf6397c0a489d97a99eeae9e21f43f3c5fed97d9589704ea67cc

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.25-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.25-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 91cd87d1de0111eaca11ccc3d31af441c753fa2bc22df72e5009cfb0a1af5b03
MD5 26a9012eb884f8657c3f295779197fe1
BLAKE2b-256 ed0c175a1a41ca4e7edee5f77b7dd4474a8026ff6b8b49d118785e9aaf747451

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.25-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.25-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.25-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1b38db2417b9f7005d6ceba7ce2a526bf10e3f6f635c0f163e6ed6a42b5b62b2
MD5 499a09c78e0c4c5480048434e80fde7f
BLAKE2b-256 d450040d73a4353e6c49a3972b0fdc8b1ea4ca6dc04a8fa1d6a11136911dec82

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.25-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.25-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.25-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9a1df8c93a0dd9cef0839917f0c6c49f46c75810cf8852be49884da4a7de3c59
MD5 abc95b486079afdb1852903d9b4c7540
BLAKE2b-256 e7cc00306f122621eb889610f6cc7fbd1b3abf11c4780640bbe5c031330fff18

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.25-cp38-cp38-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.25-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.25-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 c211e8ec81522ce87b0b39f0cf0712c998d4305a030459a0e115a2b3dc71598f
MD5 8656e2de186bb335bd0bd116628bef1d
BLAKE2b-256 f08c952c459c93b86806e97c550676e2082a92c3342817f971a5c584e39fea5e

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.25-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.25-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2ed67aae8cde4d32aacbdba4f7f38183d14443b714498eada5e5a7a37769c0b7
MD5 7c3a82297fc6b6dffc5f7dfb74de724b
BLAKE2b-256 733a164a119627c40c189a419c78b34af8036fd603625e3134beca200ec5bbca

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.25-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.25-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 26b0cd2d5c7ea96d3230cb20acac3d89de3b593339c1447b4d64bfcf4eac1110
MD5 7f2740e5cfc94c3101dfda2ce4dd1d27
BLAKE2b-256 63f55e6e97fc5aa2886d5d7cc78cee91294a0c228d3fc565bd086ef32843be7e

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.25-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.25-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1ebd69365717becaa1b618220a3df97f7c08aa68e759491de516d1c3667bba54
MD5 21a97b641a6d816cf5009a751567c059
BLAKE2b-256 e83ce321838eb88a6b05d3df1a3b7ac167a86a77ab6fe29d1e47a92b31acd6a9

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.25-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.25-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.25-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 33a1e86abad782e90976de36150d910748b58e02cd7d35680d441f9a76806c18
MD5 cd5eb9725c0811f38a14cdd8214d6da5
BLAKE2b-256 995a6fa62474affb5cdbc284a24951580a9e1f7754f80aabf536d223f6bba012

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.25-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.25-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.25-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 0b08a53e40b34205acfeb5328b832f44437956d673a6c09fce55c66ab0e54916
MD5 9a7eab77a2419901d59aeb769f55f2da
BLAKE2b-256 c7f1669ba1aa98e649fd0b67a5b4f8852f569e34f8384fb14415be3e4f4e5319

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.25-cp37-cp37m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.25-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.25-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 0566a6e90951590c0307c75f9176597c88ef4be2724958ca1d28e8ae05ec8822
MD5 1b31b7143f13c4e5bb14ddb0c3a8a3a8
BLAKE2b-256 e8c97becb9fecb83960fa3a40d8600e87ddee2b9dcd494e0c88d8b5b6e95fac1

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.25-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.25-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7b7778a205f956755e05721eebf9f11a6ac18b2409bff5db53ce5fe7ede79831
MD5 cb4b8c1c47b8060cca7624d16b217c71
BLAKE2b-256 af0c647e59181208009e6c50bc566af14c76c8d886a982775e5cebf1d17eb2a9

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.25-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.25-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e93978993a2ad0af43f132be3ea8805f56b2f2cd223403ec28d3e7d5c6d39ed1
MD5 2c6c9f581c479e279113dd1ed992ad40
BLAKE2b-256 5bdd02566ea99b7593678edbc7c82b2a246d7abdd8dcb89a03f5e96c8b9001fa

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.25-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.25-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 08d9396a2a38e672133266b31ed39b2b1f2b5ec712b5bff5e08033970563316a
MD5 d63c22df26dd44e5faac447fac4c705f
BLAKE2b-256 2d9a262724448327ee2ec3ae86e0fb056cf7d99435d19d7894c884fff745f520

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.25-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.25-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.25-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 dd4ed12a775f2cde4519f4267d3601990a97d8ecde5c944ab06bfd6e8e8ea177
MD5 8f78ffa23df504a6a0262c0e335de33f
BLAKE2b-256 733f9606720625c9f30166170f9b86b43ef0a9eecc6ec2e34bca7b6456114b50

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.25-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.25-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.25-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 6400b22e4e41cc27623a9a75630b7719579cd9a3a2027bcf16ad5aaa9a7806c0
MD5 2a1f4f17f45b5e662f59ae71a5d3b47b
BLAKE2b-256 6520182b21273303e8262954639718549c78927f3ef0c55f0059a49140f8456a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.25-cp36-cp36m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.25-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.25-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 6b602e3351f59f3999e9fb8b87e5b95cb2faab6a6ecdb482382ac6fdfbee5266
MD5 93efacc8c1a7a325a6c12cfb7d85309d
BLAKE2b-256 ee17e6b0f0e346c59704bdb21e6d16ddfa119852146530210ea5f66e52b6510a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.25-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.25-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a28fe28c359835f3be20c89efd517b35e8f97dbb2ca09c6cf0d9ac07f62d7ef6
MD5 908af19e38b51aed6f407f4a231a0869
BLAKE2b-256 3552853fc33683de4dcfbc8047c8d2a5215094889df90e71836abd8b45060770

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.25-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.25-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 842c49dd584aedd75c2ee05f6c950730c3ffcddd21c5824ed0f820808387e1e3
MD5 cf23ce55a341ada8e8570fce868cb978
BLAKE2b-256 203df1959e2577cc96a17efe33e834e8e12bf6edc95615ce679005e31db1d461

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.25-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.25-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 41a916d815a3a23cb7fff8d11ad0c9b93369ac074e91e428075e088fe57d5358
MD5 74d6cfb9ddbfd16205252e769af0b110
BLAKE2b-256 bad5aad4bb43b37db5a157ac5db0b74fa3562e0b896b4e39433472690a48d9d7

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.25-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.25-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.25-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a505ecc0642f52e7c65afb02cc6181377d833b7df0994ecde15943b18d0fa89c
MD5 24d4dece5a1938030f65c7cad3425c8b
BLAKE2b-256 f88f36280191f8f411e89f152ebce30cff6b782f4dff53914f61cc9f47200910

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.25-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.25-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7ad59e2e16578b6c1a2873e4888134112365605b08a6067dd91e899e026efa1c
MD5 c0024a7c40698c4dfc02b41cbb0f195f
BLAKE2b-256 d01a54867bd03ba72c71bb8d66419852cd8ab2141ec4a6b6bfe1029e2cfbb00b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.25-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.25-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.25-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 a79abdb404d9256afb8aeaa0d3a4bc7d3b6d8b66103d8b0f2f91febd3909976e
MD5 731317c24f75e252da081b7e1d2a60d2
BLAKE2b-256 f653e90132b17498f5649a57677d8f1eec70cd810081daad4a5050925a9ffd3c

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.25-cp27-cp27m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.25-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.25-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 16ef07e102d2d4f974ba9b0d4ac46345a411ad20ad988b3654d59ff08e553b1c
MD5 dd58402cc8908c27756b115cf595eb40
BLAKE2b-256 a2a56d9460d38b5bc893870bcd81f288acffad307f67aaf126ad413ddcbb4d5f

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.25-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.25-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 75cd5d48389a7635393ff5a9214b90695c06b3d74912109c3b00ce7392b69c6c
MD5 255dcbd8151251440e6deab7a0ab2589
BLAKE2b-256 33809fceb1b44a478a1e5adb7500423324d99e74622266290ac10f0425ec6c40

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.25-cp27-cp27m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.25-cp27-cp27m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.25-cp27-cp27m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a36ea43919e51b0de0c0bc52bcfdad7683f6ea9fb81b340cdabb9df0e045e0f7
MD5 1a5681c9ff027c69d3034f94efd1e68c
BLAKE2b-256 23945c7080259de215a76b0c919ce72a6aed0c59a84197317f3bbffd805ddd6c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page