Skip to main content

Database Abstraction Library

Project description

PyPI PyPI - Python Version PyPI - Downloads

The Python SQL Toolkit and Object Relational Mapper

Introduction

SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives application developers the full power and flexibility of SQL. SQLAlchemy provides a full suite of well known enterprise-level persistence patterns, designed for efficient and high-performing database access, adapted into a simple and Pythonic domain language.

Major SQLAlchemy features include:

  • An industrial strength ORM, built from the core on the identity map, unit of work, and data mapper patterns. These patterns allow transparent persistence of objects using a declarative configuration system. Domain models can be constructed and manipulated naturally, and changes are synchronized with the current transaction automatically.

  • A relationally-oriented query system, exposing the full range of SQL’s capabilities explicitly, including joins, subqueries, correlation, and most everything else, in terms of the object model. Writing queries with the ORM uses the same techniques of relational composition you use when writing SQL. While you can drop into literal SQL at any time, it’s virtually never needed.

  • A comprehensive and flexible system of eager loading for related collections and objects. Collections are cached within a session, and can be loaded on individual access, all at once using joins, or by query per collection across the full result set.

  • A Core SQL construction system and DBAPI interaction layer. The SQLAlchemy Core is separate from the ORM and is a full database abstraction layer in its own right, and includes an extensible Python-based SQL expression language, schema metadata, connection pooling, type coercion, and custom types.

  • All primary and foreign key constraints are assumed to be composite and natural. Surrogate integer primary keys are of course still the norm, but SQLAlchemy never assumes or hardcodes to this model.

  • Database introspection and generation. Database schemas can be “reflected” in one step into Python structures representing database metadata; those same structures can then generate CREATE statements right back out - all within the Core, independent of the ORM.

SQLAlchemy’s philosophy:

  • SQL databases behave less and less like object collections the more size and performance start to matter; object collections behave less and less like tables and rows the more abstraction starts to matter. SQLAlchemy aims to accommodate both of these principles.

  • An ORM doesn’t need to hide the “R”. A relational database provides rich, set-based functionality that should be fully exposed. SQLAlchemy’s ORM provides an open-ended set of patterns that allow a developer to construct a custom mediation layer between a domain model and a relational schema, turning the so-called “object relational impedance” issue into a distant memory.

  • The developer, in all cases, makes all decisions regarding the design, structure, and naming conventions of both the object model as well as the relational schema. SQLAlchemy only provides the means to automate the execution of these decisions.

  • With SQLAlchemy, there’s no such thing as “the ORM generated a bad query” - you retain full control over the structure of queries, including how joins are organized, how subqueries and correlation is used, what columns are requested. Everything SQLAlchemy does is ultimately the result of a developer- initiated decision.

  • Don’t use an ORM if the problem doesn’t need one. SQLAlchemy consists of a Core and separate ORM component. The Core offers a full SQL expression language that allows Pythonic construction of SQL constructs that render directly to SQL strings for a target database, returning result sets that are essentially enhanced DBAPI cursors.

  • Transactions should be the norm. With SQLAlchemy’s ORM, nothing goes to permanent storage until commit() is called. SQLAlchemy encourages applications to create a consistent means of delineating the start and end of a series of operations.

  • Never render a literal value in a SQL statement. Bound parameters are used to the greatest degree possible, allowing query optimizers to cache query plans effectively and making SQL injection attacks a non-issue.

Documentation

Latest documentation is at:

https://www.sqlalchemy.org/docs/

Installation / Requirements

Full documentation for installation is at Installation.

Getting Help / Development / Bug reporting

Please refer to the SQLAlchemy Community Guide.

Code of Conduct

Above all, SQLAlchemy places great emphasis on polite, thoughtful, and constructive communication between users and developers. Please see our current Code of Conduct at Code of Conduct.

License

SQLAlchemy is distributed under the MIT license.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SQLAlchemy-1.4.27.tar.gz (7.9 MB view details)

Uploaded Source

Built Distributions

SQLAlchemy-1.4.27-cp310-cp310-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

SQLAlchemy-1.4.27-cp310-cp310-win32.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86

SQLAlchemy-1.4.27-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.27-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.27-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.27-cp310-cp310-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

SQLAlchemy-1.4.27-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

SQLAlchemy-1.4.27-cp39-cp39-win32.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86

SQLAlchemy-1.4.27-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.27-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.27-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.27-cp39-cp39-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

SQLAlchemy-1.4.27-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

SQLAlchemy-1.4.27-cp38-cp38-win32.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86

SQLAlchemy-1.4.27-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.27-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.27-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.27-cp38-cp38-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

SQLAlchemy-1.4.27-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

SQLAlchemy-1.4.27-cp37-cp37m-win32.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86

SQLAlchemy-1.4.27-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.27-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.27-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.27-cp37-cp37m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

SQLAlchemy-1.4.27-cp36-cp36m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86-64

SQLAlchemy-1.4.27-cp36-cp36m-win32.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86

SQLAlchemy-1.4.27-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.27-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.27-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.27-cp36-cp36m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

SQLAlchemy-1.4.27-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.27-cp27-cp27m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86-64

SQLAlchemy-1.4.27-cp27-cp27m-win32.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86

SQLAlchemy-1.4.27-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.27-cp27-cp27m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m macOS 10.14+ x86-64

File details

Details for the file SQLAlchemy-1.4.27.tar.gz.

File metadata

  • Download URL: SQLAlchemy-1.4.27.tar.gz
  • Upload date:
  • Size: 7.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for SQLAlchemy-1.4.27.tar.gz
Algorithm Hash digest
SHA256 d768359daeb3a86644f3854c6659e4496a3e6bba2b4651ecc87ce7ad415b320c
MD5 1d699f2241286b0a9b98c26d978be9a8
BLAKE2b-256 16d65ca70d8ab5bc99087524fbf0b7e3cd8c19ce61ad7df27c522141a0670413

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.27-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.27-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9134e5810262203388b203c2022bbcbf1a22e89861eef9340e772a73dd9076fa
MD5 1ac42b32aff4eea341dfbaaae0ee70b9
BLAKE2b-256 50242adebb0e4cbf47dff87df56fd2b37f1347c6b3e24c07b4c2c9207548ba06

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp310-cp310-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.27-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.27-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 aadc6d1e58e14010ae4764d1ba1fd0928dbb9423b27a382ea3a1444f903f4084
MD5 d835cc6932dfd01225f8d6e631a8de4b
BLAKE2b-256 2802bf71190a436c75725e05c6e4f342f70b3749410317811bf288f4bc475530

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.27-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a5881644fc51af7b232ab8d64f75c0f32295dfe88c2ee188023795cdbd4cf99b
MD5 a6af01651478f61ae2c8448ffe214e01
BLAKE2b-256 8782a6fcd46b596edc62ca76233576153d37eed646725d97895c2655e95e1c90

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.27-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c7d0a1b1258efff7d7f2e6cfa56df580d09ba29d35a1e3f604f867e1f685feb2
MD5 93ab674c0aa45aabea0b5d68cfd15f27
BLAKE2b-256 7d6e0b40c7127d66ebab8ca4347c65df74cf786da33fb0eba4a169fc894a9f6c

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.27-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 24828c5e74882cf41516740c0b150702bee4c6817d87d5c3d3bafef2e6896f80
MD5 ad8c3ce58ac46287f74d12c279e434d7
BLAKE2b-256 4fa7ff53b48fac5f7e54835eb224c338dc0ba067cd00c5e0d4dac815c70f1821

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.27-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.27-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d81c84c9d2523b3ea20f8e3aceea68615768a7464c0f9a9899600ce6592ec570
MD5 9959cf5af3d8db4244a846d75c0149cd
BLAKE2b-256 348b91193995f410cfc5243811950d9c3f0466da84f9738dcb8bb96636fc79b2

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.27-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.27-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8dbe5f639e6d035778ebf700be6d573f82a13662c3c2c3aa0f1dba303b942806
MD5 f8bbdc3d431f0e25632a2af43f09213b
BLAKE2b-256 f1e7708d24090eb2ad99514f2adb051ed7c5ebf20245b3b90f0152af9dbd153b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp39-cp39-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.27-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.27-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 5beeff18b4e894f6cb73c8daf2c0d8768844ef40d97032bb187d75b1ec8de24b
MD5 bc6adb0fdff46da0f111cce3a691c0a9
BLAKE2b-256 6533ce4c8d599ea2de5529ccd40b7b4518c82cdcb9d533a516846773f8ec97a4

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.27-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4ac8306e04275d382d6393e557047b0a9d7ddf9f7ca5da9b3edbd9323ea75bd9
MD5 74619a94283ab0663590f9174d9615da
BLAKE2b-256 32dc9f79d0f60ff6de565b7e11325c22327d13651499e444a98e56425d02fd84

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.27-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b02eee1577976acb4053f83d32b7826424f8b9f70809fa756529a52c6537eda4
MD5 e45b8a99642d00ca6f9371a878afa2c5
BLAKE2b-256 586978ab0e1e9e2a2e6d7bb101854bf5869447ac2a382aafefbc98f585719379

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.27-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8327e468b1775c0dfabc3d01f39f440585bf4d398508fcbbe2f0d931c502337d
MD5 815a89b65b2f1c30d5b6d5e7921b69b5
BLAKE2b-256 496bd9083aa92acd6b5e31e4af990a19f99c0f406135a6e4c66ef438472369b8

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.27-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.27-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 bac949be7579fed824887eed6672f44b7c4318abbfb2004b2c6968818b535a2f
MD5 7d69d2743e476721e1ffa827550dce4b
BLAKE2b-256 1cdd7323b322bb1721d49c6affc946a9c68bd19b0c19ff209ae316cd26a06c1b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.27-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.27-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c035184af4e58e154b0977eea52131edd096e0754a88f7d5a847e7ccb3510772
MD5 54ba066ab4e0994c7a6b3db976ee44eb
BLAKE2b-256 c6be05c23d190ce50cc620fb1ea3c7022dbe3fcaf544b49ccd42b42b58ea8891

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp38-cp38-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.27-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.27-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 4d1d707b752137e6bf45720648e1b828d5e4881d690df79cca07f7217ea06365
MD5 f111ec2099a0c7cd5fda1e78b949c74f
BLAKE2b-256 790ae418684032764cfdebbd678da9b64098abf99d9fae1221691f1bc332d842

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.27-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9369f927f4d19b58322cfea8a51710a3f7c47a0e7f3398d94a4632760ecd74f6
MD5 af458f062ebdbc048e72ffd510f4830c
BLAKE2b-256 c5445207f6306934dc8c1eb4c8ee3e5c48129615fc681167233d05d534c758a0

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.27-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 771eca9872b47a629010665ff92de1c248a6979b8d1603daced37773d6f6e365
MD5 b160bdc329df5ddcf5d67a46e9b5a50d
BLAKE2b-256 11b6cc34cd26b29268f435b9df4706474569cccd437e50d744fc6554bfc00900

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.27-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6510f4a5029643301bdfe56b61e806093af2101d347d485c42a5535847d2c699
MD5 82f5f2177015eb710ee1992b22d77131
BLAKE2b-256 f9e48591af6ec2e7fbd5cd5a52142fc7a16c1dfd16f71614eaae586332665bbb

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.27-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.27-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 cc49fb8ff103900c20e4a9c53766c82a7ebbc183377fb357a8298bad216e9cdd
MD5 426d0ed04e64642e1fc6cb1df97801a0
BLAKE2b-256 ed880f702ab25bc0ef13894f3fa196f0254f60195b8a9e60c587ae55706d3e8e

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.27-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.27-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 015511c52c650eebf1059ed8a21674d9d4ae567ebfd80fc73f8252faccd71864
MD5 fe08dfd0be8e6d46a39d22c65e16af20
BLAKE2b-256 b02695d895e4105184ddcfd07528b6633246806dabf5a0bfa6aee77d9edde712

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp37-cp37m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.27-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.27-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 a81e40dfa50ed3c472494adadba097640bfcf43db160ed783132045eb2093cb1
MD5 a3dc93cc29a11ad68d5000ecdf3b2c14
BLAKE2b-256 c79635e091e94f71e210d2ba38809f28925820e0edecda2f3b758e63cc89a0b8

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.27-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fd421a14edf73cfe01e8f51ed8966294ee3b3db8da921cacc88e497fd6e977af
MD5 ecaa2cddf6d55135b48d947578f6f9eb
BLAKE2b-256 65dea6e0d95f42e12a4aa33145aae03c2f3d8522b1bf7eee4e6e09e01fbb2927

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.27-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 78943451ab3ffd0e27876f9cea2b883317518b418f06b90dadf19394534637e9
MD5 bd1168bb5e03f09d94fb149d62dbf7a5
BLAKE2b-256 cfa50e48b4f088dec0a7104c69e42114c39ba832e98fed6e474747caf40d2c58

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.27-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 10230364479429437f1b819a8839f1edc5744c018bfeb8d01320930f97695bc9
MD5 9d148f549aba728e416d4267eeada9b8
BLAKE2b-256 1dcaee90bb9761a19b6aa38f3df8510fea202fbca48d1314b1c09f9d50655654

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.27-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.27-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 52f23a76544ed29573c0f3ee41f0ca1aedbab3a453102b60b540cc6fa55448ad
MD5 a7748f125a58bed32bd3d9667f670338
BLAKE2b-256 1094cc3f6cdf4018bfe5e5a5bb46e3484482897f69be27d80d6c0f410f3b83e8

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.27-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.27-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ad8ec6b69d03e395db48df8991aa15fce3cd23e378b73e01d46a26a6efd5c26d
MD5 921e283156e3f74df1dac16b89d47c73
BLAKE2b-256 318e37fa54c8a6a26b0c198f2ac7561a07a2692869d453a79783505a19fc3168

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp36-cp36m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.27-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.27-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 2146ef996181e3d4dd20eaf1d7325eb62d6c8aa4dc1677c1872ddfa8561a47d9
MD5 df59897af3d2e631ffd28ecab363f5ce
BLAKE2b-256 9a903a0d59729ec5cf20757ed354b7278472700900a94d2a60dfa8157c57232c

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.27-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2717ceae35e71de1f58b0d1ee7e773d3aab5c403c6e79e8d262277c7f7f95269
MD5 c49d8527858da0d089b3fe0855773555
BLAKE2b-256 afa4ea0746d47bf0b1b8b449f6c3271b6bbbf2348f13002d3c934dd49c2b054d

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.27-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 987fe2f84ceaf744fa0e48805152abe485a9d7002c9923b18a4b2529c7bff218
MD5 00b6076b6e274e01cfabaf5b4d4b9a78
BLAKE2b-256 16b71d33bff5c978566740474cc03c1f32e3b4800e4bf8f8e15b924b24f0c0d6

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.27-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2e93624d186ea7a738ada47314701c8830e0e4b021a6bce7fbe6f39b87ee1516
MD5 7708dc5c196ecbd160df58d184fff46c
BLAKE2b-256 bfa7d7c0f4d372bc73520f40453eb6e18bd712aac24a4fa78ca0d321b231acb8

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.27-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.27-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 fa52534076394af7315306a8701b726a6521b591d95e8f4e5121c82f94790e8d
MD5 a61cc25cac7a937df9b1a92182c391d3
BLAKE2b-256 98ff62979cce17975885284243e9219ecd4badd11d91e44cea1e4ae41b328b09

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.27-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 486f7916ef77213103467924ef25f5ea1055ae901f385fe4d707604095fdf6a9
MD5 287d98ab192427200dbd6b090e1ea0fd
BLAKE2b-256 75cfc9684578faf6a44e66879618d5f2a64ea939c3775b98fefb960662a53419

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.27-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.27-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 435b1980c1333ffe3ab386ad28d7b209590b0fa83ea8544d853e7a22f957331b
MD5 dfcb37b1f6554e96e6973676b7cabc65
BLAKE2b-256 58009580b85160f57bc9ec25c84ea143900b6d800ed7d894389d0d97f68afe4e

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp27-cp27m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.27-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.27-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 0438bccc16349db2d5203598be6073175ce16d4e53b592d6e6cef880c197333e
MD5 50d76fa23cd61c0db9fca288b62e89f3
BLAKE2b-256 b103adcb67573503d28775cf05f06ebfde29f11cabe030a016c387c789a55975

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.27-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ec1c908fa721f2c5684900cc8ff75555b1a5a2ae4f5a5694eb0e37a5263cea44
MD5 b5505d9c8f68d84f0dfddf0ece33844f
BLAKE2b-256 f6b3a5e7894e2e28ab9d88f8072415ee475ab889f6115c1859154f3de6183176

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.27-cp27-cp27m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.27-cp27-cp27m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.27-cp27-cp27m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6afa9e4e63f066e0fd90a21db7e95e988d96127f52bfb298a0e9bec6999357a9
MD5 7d7ada887883fd1fa70d16454511275f
BLAKE2b-256 d81f5dd501f2934fddd3f6cf4cec58ff062a03d457f95788200dbe94f04c600c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page