Skip to main content

Database Abstraction Library

Project description

PyPI PyPI - Python Version PyPI - Downloads

The Python SQL Toolkit and Object Relational Mapper

Introduction

SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives application developers the full power and flexibility of SQL. SQLAlchemy provides a full suite of well known enterprise-level persistence patterns, designed for efficient and high-performing database access, adapted into a simple and Pythonic domain language.

Major SQLAlchemy features include:

  • An industrial strength ORM, built from the core on the identity map, unit of work, and data mapper patterns. These patterns allow transparent persistence of objects using a declarative configuration system. Domain models can be constructed and manipulated naturally, and changes are synchronized with the current transaction automatically.

  • A relationally-oriented query system, exposing the full range of SQL’s capabilities explicitly, including joins, subqueries, correlation, and most everything else, in terms of the object model. Writing queries with the ORM uses the same techniques of relational composition you use when writing SQL. While you can drop into literal SQL at any time, it’s virtually never needed.

  • A comprehensive and flexible system of eager loading for related collections and objects. Collections are cached within a session, and can be loaded on individual access, all at once using joins, or by query per collection across the full result set.

  • A Core SQL construction system and DBAPI interaction layer. The SQLAlchemy Core is separate from the ORM and is a full database abstraction layer in its own right, and includes an extensible Python-based SQL expression language, schema metadata, connection pooling, type coercion, and custom types.

  • All primary and foreign key constraints are assumed to be composite and natural. Surrogate integer primary keys are of course still the norm, but SQLAlchemy never assumes or hardcodes to this model.

  • Database introspection and generation. Database schemas can be “reflected” in one step into Python structures representing database metadata; those same structures can then generate CREATE statements right back out - all within the Core, independent of the ORM.

SQLAlchemy’s philosophy:

  • SQL databases behave less and less like object collections the more size and performance start to matter; object collections behave less and less like tables and rows the more abstraction starts to matter. SQLAlchemy aims to accommodate both of these principles.

  • An ORM doesn’t need to hide the “R”. A relational database provides rich, set-based functionality that should be fully exposed. SQLAlchemy’s ORM provides an open-ended set of patterns that allow a developer to construct a custom mediation layer between a domain model and a relational schema, turning the so-called “object relational impedance” issue into a distant memory.

  • The developer, in all cases, makes all decisions regarding the design, structure, and naming conventions of both the object model as well as the relational schema. SQLAlchemy only provides the means to automate the execution of these decisions.

  • With SQLAlchemy, there’s no such thing as “the ORM generated a bad query” - you retain full control over the structure of queries, including how joins are organized, how subqueries and correlation is used, what columns are requested. Everything SQLAlchemy does is ultimately the result of a developer- initiated decision.

  • Don’t use an ORM if the problem doesn’t need one. SQLAlchemy consists of a Core and separate ORM component. The Core offers a full SQL expression language that allows Pythonic construction of SQL constructs that render directly to SQL strings for a target database, returning result sets that are essentially enhanced DBAPI cursors.

  • Transactions should be the norm. With SQLAlchemy’s ORM, nothing goes to permanent storage until commit() is called. SQLAlchemy encourages applications to create a consistent means of delineating the start and end of a series of operations.

  • Never render a literal value in a SQL statement. Bound parameters are used to the greatest degree possible, allowing query optimizers to cache query plans effectively and making SQL injection attacks a non-issue.

Documentation

Latest documentation is at:

https://www.sqlalchemy.org/docs/

Installation / Requirements

Full documentation for installation is at Installation.

Getting Help / Development / Bug reporting

Please refer to the SQLAlchemy Community Guide.

Code of Conduct

Above all, SQLAlchemy places great emphasis on polite, thoughtful, and constructive communication between users and developers. Please see our current Code of Conduct at Code of Conduct.

License

SQLAlchemy is distributed under the MIT license.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SQLAlchemy-1.4.28.tar.gz (8.0 MB view details)

Uploaded Source

Built Distributions

SQLAlchemy-1.4.28-cp310-cp310-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

SQLAlchemy-1.4.28-cp310-cp310-win32.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86

SQLAlchemy-1.4.28-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.28-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.28-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.28-cp310-cp310-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

SQLAlchemy-1.4.28-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

SQLAlchemy-1.4.28-cp39-cp39-win32.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86

SQLAlchemy-1.4.28-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.28-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.28-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.28-cp39-cp39-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

SQLAlchemy-1.4.28-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

SQLAlchemy-1.4.28-cp38-cp38-win32.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86

SQLAlchemy-1.4.28-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.28-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.28-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.28-cp38-cp38-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

SQLAlchemy-1.4.28-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

SQLAlchemy-1.4.28-cp37-cp37m-win32.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86

SQLAlchemy-1.4.28-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.28-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.28-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.28-cp37-cp37m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

SQLAlchemy-1.4.28-cp36-cp36m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86-64

SQLAlchemy-1.4.28-cp36-cp36m-win32.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86

SQLAlchemy-1.4.28-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.28-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.28-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.28-cp36-cp36m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

SQLAlchemy-1.4.28-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.28-cp27-cp27m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86-64

SQLAlchemy-1.4.28-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.28-cp27-cp27m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m macOS 10.14+ x86-64

File details

Details for the file SQLAlchemy-1.4.28.tar.gz.

File metadata

  • Download URL: SQLAlchemy-1.4.28.tar.gz
  • Upload date:
  • Size: 8.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for SQLAlchemy-1.4.28.tar.gz
Algorithm Hash digest
SHA256 7fdb7b775fb0739d3e71461509f978beb788935bc0aa9e47df14837cb33e5226
MD5 36caf27cc3142476b6b8dd19069370d9
BLAKE2b-256 e273b98fe9e8b54cd331d951fde982797a62f579c442fdcd24eabafba64e170f

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.28-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.28-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 29d10796e5604ab7bc067eda7231a2d2411a51eda43082673641245a49d1c4bb
MD5 cd6550d2fde4540cbc26e1b2820e07be
BLAKE2b-256 713e242bb8eafe8adfba6bf893327295195d65b213fea441633939c6c0ff30b4

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp310-cp310-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.28-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.28-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 261fcb3ff8c59e17ec44f9e61713a44ceaa97ae816da978d5cd1dc2c36f32478
MD5 e8c78fc9b3189502a4fe60adad118204
BLAKE2b-256 8454e0478c77d46d671df0a2fdd61b27b46466815041165f420d3c9974a29afc

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.28-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f25c02991e22ddce134ef1093ef5a9d5de448fc87b91432e4f879826e93cd1c7
MD5 f8a6f981fe5929c8590863d04c9fe4ca
BLAKE2b-256 85461a37048c93a88111b3e3cabf29208780fdbbe96f511424437499b20f3d41

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.28-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5639800f1cfe751569af2242041b30a08a6c0b9e5d95ed674ec8082d381eff13
MD5 33d198b2d81a729bacd9f0e4b5f5ad2e
BLAKE2b-256 88d2c713b236b9ebcffc85e23797b75ddccaaec57b7df0048542c73cc842f027

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.28-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 387365c157e96eceacdd6c5468815ad05a523ba778680de4c8139a029e1fe044
MD5 7012306740c5f62c8017fad7ad986c3a
BLAKE2b-256 1940cc1b5163a38a4e97cd51de42c3f614071e7eb3fa4108a27eebae69421a0a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.28-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.28-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3b64f5d1c1d0e5f2ed4aa66f2b65ff6bdcdf4c5cc83b71c4bbf69695b09e9e19
MD5 ad3e169bd332a38e46718bfacc398a4e
BLAKE2b-256 3023d718fe009d15fde19f794601bd0e667991ea6807b64afc3fe998aeeb64bb

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.28-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.28-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 853de08e881dae0305647dd61b4429758f11d1bf02a9faf02793cad44bb2e0d5
MD5 82efccc37f3a367ef42b197086bdc412
BLAKE2b-256 c9a52b9ef4421c6e062fba331de2645d3a5075881c6f87394e744c8265731c1e

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp39-cp39-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.28-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.28-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 ca500f30619daf863ab1c66d57d53a0987361a8f3266454290198aabd18f2599
MD5 b334ac23ff684810c3655f7585c5f830
BLAKE2b-256 70defafdf74ca7cba75d12ede53b2f6be0bf1abd86dc3df7d118b93725f84a2a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.28-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 555d56b71f61b4c9fa55fe203fe6e1e561c9385fa97c5849783ae050a89113af
MD5 edf37d43a12736671ef3b9d07e959eae
BLAKE2b-256 e970d00ce07f83e5b69c42a0de692e6396da0aa7291b71a62c702bf4e97ad578

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.28-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2019b332cf4f9a513133fdf056dc4cecec7fbae7016ebc574d0f310103eed7ee
MD5 ef9011fa669a726c535e7d40979c103e
BLAKE2b-256 8a40de81014e1ddcef95a7fd6cf12f3e72e771fe5709a6b3f6129146fc69ba45

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.28-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c90b21360cf14d33c8a004f991aa336c7906a8db825d4ec38722c5ff1c47dada
MD5 1fab906aacb419fde642a0a81c7f489f
BLAKE2b-256 1f5d96c01523f06ecc74281566f408053151b99e746fb0f9925b014bf2e57457

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.28-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.28-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 dfa093bd8ecfceafff62078910178567323005e44fbe4d7933e6cbce4512cea2
MD5 32bc63794d4e335a761052a1c4e323de
BLAKE2b-256 55de63bb239d2100b89840a4a1df03a6f102b03f3a67d6b1aee98fc082a835c2

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.28-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.28-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 cf3a3c2f32d53a4166b2eb8de35f93bcb640e51c32033024af500017d8e8a8c9
MD5 0d333a5ba4ba3f1facef07b9739690ad
BLAKE2b-256 2c38b10e628fa835991db3cd2fb00cb7a47b793a82a4a68e9e7fde3a4e815619

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp38-cp38-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.28-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.28-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 b5541355b8d4970753d4f7292f73a320704b20406e06cd29b469d156f0a484d8
MD5 120d8d817254756052042e5450b82107
BLAKE2b-256 396f019c5fd6131d5f7a5e5490f196ac8d0a5beacbcc35473548c83d6b42a690

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.28-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bf2c1d64c4ee0f30e08e1844ff0acf3c1b6c4277c0e89ec3e8bf1722d245b108
MD5 b8c162587c91db06de4e9be0c057169e
BLAKE2b-256 501a09ea27a84eee556e9c5a8ed5eb4a9f38e1aef1696906925358015cff8e2a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.28-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b72744fed32ecf2bf786d2e2f6756c04126c323ba939f47177b9722775626889
MD5 57763ab06deef6b84e6ef9a0cb986ee2
BLAKE2b-256 ac64c1f12e88fb25edbea50871fcd9a8ccf5092c75c0ec172b78bb6da91ea55a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.28-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 525e962af8f25fc24ce019e6f237d49f8720d757a8a56c9b4caa2d91e2c66111
MD5 e0f5bf3cf065d448e920c43361b59147
BLAKE2b-256 0bb807dcc75d6bc228fd8cbe7724e83f4a76a12d1ccaee14d6357dbe4a9df958

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.28-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.28-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 dd041324328cece3ccdf70cfbd71b5ab968e564a22318ffd88b054f5eadeb9be
MD5 0ed91367f3c7461f4e5b16b7487cbf56
BLAKE2b-256 96b383c9af5b26c63d89d7658afe962b74e036e283d6c9874ea4a83d6e28a153

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.28-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.28-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4999b03daa6c9afb9a0bf9e3b8769128ef1880557dacfca86fa7562920c49f6b
MD5 eddceb8ab72d69541755c70cf8bd5485
BLAKE2b-256 4ef811dfd9de73c569bf78041f854154a3069eea164f9b4361db5e20b72112b0

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp37-cp37m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.28-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.28-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 ce4f2b34378561bc2e42635888fe86efe13d104ba1d95b5ca67b4d60d8e53e67
MD5 191728ebed2010b69604a0709d08b111
BLAKE2b-256 70439970d92b06fa9927ec7b0a54b98279cf62ad5174b26300956dcd1de55989

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.28-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 08e39d65b38d4c3f77c4c9bf090b0ba4ec5721a6e0a74b63d2a9781cdcacf142
MD5 f48a3559c9d064290b0d0962155bf159
BLAKE2b-256 ce1a2fc76c164747a7cc9f29ab36d751ccb62fd794c04844147c480ab4eb9c3c

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.28-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 daddcd6ba1706cc5fcc9cfaa913aa4bf331172dc7efd385fe3ee1feae3b513bc
MD5 c3ff6dc4fe74765ba5ae945240e7b9fd
BLAKE2b-256 4aa60ed09a9da78cf32695ef31f753785bdd8e0b69a89a72fbbae36efd8456fc

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.28-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c85ead1d17acc5e8b282c578394dba253728bcbcbeb66e4ef0e25f4bab53935a
MD5 ad4f1c6c18670d7bb9d6f70759739d41
BLAKE2b-256 402f0ca3f8a373adcc31ab1d0ab1d129cdcfd742d7d69c671003be18a27b662a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.28-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.28-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5d91dce14ac3347bce301062ca825e7fb7e15c133f3909f15989e94878b1082f
MD5 9187d602b722b1eee452a16325b052f6
BLAKE2b-256 0cae87d72dfa59ab67d152ef1e09d23b13d06937e182a2cf26b554a145e760e5

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.28-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.28-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 c3497cd63c5f90112b8882ea4dd694052166f779ce9055cd5c4305e0b76d72d9
MD5 56bc1f672bad6e4277fa35e0aa5997be
BLAKE2b-256 f4b5ecc102a43769710cc71141e8628ed3a8508daa3cceb37013c47cb92d4267

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp36-cp36m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.28-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.28-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 41a02030f8934b0de843341e7014192a0c16ee2726a06da154c81153fbe56b33
MD5 907dba4762eaf4f6d8fd12bebc9eedc2
BLAKE2b-256 46a71212780bffa05ff865c3df3cfc1e76558316b0d1719a3663510a4c42ac4a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.28-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 83ee7f6fa5faed23996c67044376d46815f65183ad6d744d94d68b18cdef060b
MD5 f21015a0135a4166b321b268ecb26b76
BLAKE2b-256 52e27824da0e56622d331ca039d78416505c129a831c2f0f998bf5f275ce1468

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.28-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 61965abc63c8b54038574698888e91a126753a4bdc0ec001397acb14501834e0
MD5 4cb522f630bd23dad3f69132f04338c9
BLAKE2b-256 9b1719fc7e70d248afef08e3e4415a31374290eba05a97a84e698a995a0481a3

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.28-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f667a947378bcb12a371ab38bed1b708f3a682d1ba30176422652082919285a2
MD5 c574de01b56c3fbb64dee0426d9e8a2c
BLAKE2b-256 a9d51a5d4bae982e964aac5f569c9d350bd731fd4accfb61b5fe919b9f98685a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.28-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.28-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4490b10f83cd56ca2cdcd94b140d89911ac331e42a727b79157963b1b04fdd0c
MD5 b0b70a0127a68bba9c6c039dda739770
BLAKE2b-256 1d8339ac00e77e5c26a119358f91dbdd4fb0f96cd6ec0062dba95949984018e2

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.28-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 bb2d8530b7cc94b7fd9341843c3e49b6db48ea22313a8db9df21c41615b5e7b1
MD5 e783fa5b4ca3600fa43b06eb50a4473e
BLAKE2b-256 1c3a6f34cf20ae97de6e7a6e119461d00dafbed7cbfc462b33fe28dc8027e6df

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.28-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.28-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 6dd6fa51cf08d9433d28802228d2204e175324f1a284c4492e4af2dd36a2d485
MD5 6b0daffe26f994a8ce733b332f857e05
BLAKE2b-256 83ddc67efebbc755e652cfe63cb8b15960f5f29caa0ff7adff262798b718cab7

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.28-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 38df997ffa9007e953ad574f2263f61b9b683fd63ae397480ea4960be9bda0fd
MD5 005a8e088a515a3da8ce2d243d11fe7b
BLAKE2b-256 7f77a83e99b761f6baff258114be88b1ed87d899da7210e806b2ce1b3ee4f210

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.28-cp27-cp27m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.28-cp27-cp27m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.28-cp27-cp27m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e659f256b7d402338563913bdeba53bf1eadd4c09e6f6dc93cc47938f7962a8f
MD5 3903f075a17e35c84b2d223497d2abf5
BLAKE2b-256 fb58f23d831a715a2ba0d46b2c9b7c826337dd2979ae26fba560afbfded17ffa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page