Skip to main content

Database Abstraction Library

Project description

PyPI PyPI - Python Version PyPI - Downloads

The Python SQL Toolkit and Object Relational Mapper

Introduction

SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives application developers the full power and flexibility of SQL. SQLAlchemy provides a full suite of well known enterprise-level persistence patterns, designed for efficient and high-performing database access, adapted into a simple and Pythonic domain language.

Major SQLAlchemy features include:

  • An industrial strength ORM, built from the core on the identity map, unit of work, and data mapper patterns. These patterns allow transparent persistence of objects using a declarative configuration system. Domain models can be constructed and manipulated naturally, and changes are synchronized with the current transaction automatically.

  • A relationally-oriented query system, exposing the full range of SQL’s capabilities explicitly, including joins, subqueries, correlation, and most everything else, in terms of the object model. Writing queries with the ORM uses the same techniques of relational composition you use when writing SQL. While you can drop into literal SQL at any time, it’s virtually never needed.

  • A comprehensive and flexible system of eager loading for related collections and objects. Collections are cached within a session, and can be loaded on individual access, all at once using joins, or by query per collection across the full result set.

  • A Core SQL construction system and DBAPI interaction layer. The SQLAlchemy Core is separate from the ORM and is a full database abstraction layer in its own right, and includes an extensible Python-based SQL expression language, schema metadata, connection pooling, type coercion, and custom types.

  • All primary and foreign key constraints are assumed to be composite and natural. Surrogate integer primary keys are of course still the norm, but SQLAlchemy never assumes or hardcodes to this model.

  • Database introspection and generation. Database schemas can be “reflected” in one step into Python structures representing database metadata; those same structures can then generate CREATE statements right back out - all within the Core, independent of the ORM.

SQLAlchemy’s philosophy:

  • SQL databases behave less and less like object collections the more size and performance start to matter; object collections behave less and less like tables and rows the more abstraction starts to matter. SQLAlchemy aims to accommodate both of these principles.

  • An ORM doesn’t need to hide the “R”. A relational database provides rich, set-based functionality that should be fully exposed. SQLAlchemy’s ORM provides an open-ended set of patterns that allow a developer to construct a custom mediation layer between a domain model and a relational schema, turning the so-called “object relational impedance” issue into a distant memory.

  • The developer, in all cases, makes all decisions regarding the design, structure, and naming conventions of both the object model as well as the relational schema. SQLAlchemy only provides the means to automate the execution of these decisions.

  • With SQLAlchemy, there’s no such thing as “the ORM generated a bad query” - you retain full control over the structure of queries, including how joins are organized, how subqueries and correlation is used, what columns are requested. Everything SQLAlchemy does is ultimately the result of a developer- initiated decision.

  • Don’t use an ORM if the problem doesn’t need one. SQLAlchemy consists of a Core and separate ORM component. The Core offers a full SQL expression language that allows Pythonic construction of SQL constructs that render directly to SQL strings for a target database, returning result sets that are essentially enhanced DBAPI cursors.

  • Transactions should be the norm. With SQLAlchemy’s ORM, nothing goes to permanent storage until commit() is called. SQLAlchemy encourages applications to create a consistent means of delineating the start and end of a series of operations.

  • Never render a literal value in a SQL statement. Bound parameters are used to the greatest degree possible, allowing query optimizers to cache query plans effectively and making SQL injection attacks a non-issue.

Documentation

Latest documentation is at:

https://www.sqlalchemy.org/docs/

Installation / Requirements

Full documentation for installation is at Installation.

Getting Help / Development / Bug reporting

Please refer to the SQLAlchemy Community Guide.

Code of Conduct

Above all, SQLAlchemy places great emphasis on polite, thoughtful, and constructive communication between users and developers. Please see our current Code of Conduct at Code of Conduct.

License

SQLAlchemy is distributed under the MIT license.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SQLAlchemy-1.4.29.tar.gz (8.0 MB view details)

Uploaded Source

Built Distributions

SQLAlchemy-1.4.29-cp310-cp310-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

SQLAlchemy-1.4.29-cp310-cp310-win32.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86

SQLAlchemy-1.4.29-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.29-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.29-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.29-cp310-cp310-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

SQLAlchemy-1.4.29-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

SQLAlchemy-1.4.29-cp39-cp39-win32.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86

SQLAlchemy-1.4.29-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.29-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.29-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.29-cp39-cp39-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

SQLAlchemy-1.4.29-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

SQLAlchemy-1.4.29-cp38-cp38-win32.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86

SQLAlchemy-1.4.29-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.29-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.29-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.29-cp38-cp38-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

SQLAlchemy-1.4.29-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

SQLAlchemy-1.4.29-cp37-cp37m-win32.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86

SQLAlchemy-1.4.29-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.29-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.29-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.29-cp37-cp37m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

SQLAlchemy-1.4.29-cp36-cp36m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86-64

SQLAlchemy-1.4.29-cp36-cp36m-win32.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86

SQLAlchemy-1.4.29-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.29-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.29-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.29-cp36-cp36m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

SQLAlchemy-1.4.29-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.29-cp27-cp27m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86-64

SQLAlchemy-1.4.29-cp27-cp27m-win32.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86

SQLAlchemy-1.4.29-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.29-cp27-cp27m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m macOS 10.14+ x86-64

File details

Details for the file SQLAlchemy-1.4.29.tar.gz.

File metadata

  • Download URL: SQLAlchemy-1.4.29.tar.gz
  • Upload date:
  • Size: 8.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for SQLAlchemy-1.4.29.tar.gz
Algorithm Hash digest
SHA256 fa2bad14e1474ba649cfc969c1d2ec915dd3e79677f346bbfe08e93ef9020b39
MD5 aa73152d266fcb71d89a362bb25cf6d5
BLAKE2b-256 807cab3470159bab67fcb28bc4038c55751d6b333a59b70af8943a95e470f8ab

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.29-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.29-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 debaf09a823061f88a8dee04949814cf7e82fb394c5bca22c780cb03172ca23b
MD5 b4f5d03e30c5f3349d5830c0fa386658
BLAKE2b-256 bdfa5a95129d3273cb03ea8eae6ed26a674281575e58475093b0bcdbdbb37c5b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp310-cp310-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.29-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.29-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 027f356c727db24f3c75828c7feb426f87ce1241242d08958e454bd025810660
MD5 329f8d314ae3d5b3fa55dd42834c936e
BLAKE2b-256 d695ae466742864764838fcfe5445fae26b184b35b32bbe519837b36999d318b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.29-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 eb8c993706e86178ce15a6b86a335a2064f52254b640e7f53365e716423d33f4
MD5 5a285d63050576c5a13e86030f02c061
BLAKE2b-256 1c7e6dfb72d01128105d204cadfa7e92b27c5a9cceef11d23ada2f2bad8b1f5f

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.29-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 56d9d62021946263d4478c9ca012fbd1805f10994cb615c88e7bfd1ae14604d8
MD5 c84ac67474fe4d0147a8cb9ac096220b
BLAKE2b-256 e57de27810cbb43594493169c1ed14a5e099652f89ddcac41e9fcca286e169a1

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.29-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 804e22d5b6165a4f3f019dd9c94bec5687de985a9c54286b93ded9f7846b8c82
MD5 9a173fcfc1a785d1fc1edd68bedf79ed
BLAKE2b-256 1c6468f316594f0dca98495dbe741643b35235d3bb193d678473661ec08bf347

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.29-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.29-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 78abc507d17753ed434b6cc0c0693126279723d5656d9775bfcac966a99a899b
MD5 4c20a5a88887b9e9d7db7616f26d933f
BLAKE2b-256 c382a50863d854d08cf60a31fb13b08dbefe9007414db68a48c8ac5e99723c1a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.29-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.29-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 08cfd35eecaba79be930c9bfd2e1f0c67a7e1314355d83a378f9a512b1cf7587
MD5 ee438e4e6b5674c624c4dc9e6ad6ee24
BLAKE2b-256 6efd683d333fed613d3a47b870e7cc8c75e85e12a5126fc384083d4e8e3c047d

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp39-cp39-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.29-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.29-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 37b46bfc4af3dc226acb6fa28ecd2e1fd223433dc5e15a2bad62bf0a0cbb4e8b
MD5 bdffaecf155b3c5d413b616b91e9204e
BLAKE2b-256 8890ea6926a2fb5fed25dd292429a8669182f1c554c529852bd1146b9187efc0

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.29-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c5de7adfb91d351f44062b8dedf29f49d4af7cb765be65816e79223a4e31062b
MD5 37cbdde4935b86d752125d426d3d0a7e
BLAKE2b-256 1f905731eade124db7f805ade57184de83ed53d506aad5aa7777f019a4f10181

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.29-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7dd0502cb091660ad0d89c5e95a29825f37cde2a5249957838e975871fbffaad
MD5 eed2bc75acd2206640f3d1e1633daf8b
BLAKE2b-256 15383f681d0ded47ee806fb3f6018948aeb780cd4eb1e2ea3aee76ea4fecbb7c

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.29-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 fbc6e63e481fa323036f305ada96a3362e1d60dd2bfa026cac10c3553e6880e9
MD5 61a78680cee4084e854fb914ff195542
BLAKE2b-256 15dd977e42edd3e8fb38d9f555eda3e98cab80768498e8d1d63e029debe99542

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.29-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.29-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e027bdf0a4cf6bd0a3ad3b998643ea374d7991bd117b90bf9982e41ceb742941
MD5 56c89f5ea45e35c1ec0837cf12362241
BLAKE2b-256 05174aed247aabf44682d12b8ae37ab654c2788f0305cabd6ca5f60a316e469f

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.29-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.29-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 878daecb6405e786b07f97e1c77a9cfbbbec17432e8a90c487967e32cfdecb33
MD5 de20cab0e111b4f195da48740cfd924a
BLAKE2b-256 eec0ea1a59dbf8dd63bbea7cc2e89d304e01a4c313d6ff9bd7a98f3594b387af

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp38-cp38-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.29-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.29-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 ad618d687d26d4cbfa9c6fa6141d59e05bcdfc60cb6e1f1d3baa18d8c62fef5f
MD5 ee7b3bf798ee5efa30c156d3b8e0ebcf
BLAKE2b-256 ee6e844b60a4358b614db8f76de13f7568a3bb00a243297c20a880cb1b124b87

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.29-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dd49d21d1f03c81fbec9080ecdc4486d5ddda67e7fbb75ebf48294465c022cdc
MD5 f70b5e2f697e2a35db41680c1413f7d5
BLAKE2b-256 6bc041c44b5587998b3c01d944a667061c921a0c1ab15762b1b26a6cb9aefc37

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.29-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0072f9887aabe66db23f818bbe950cfa1b6127c5cb769b00bcc07935b3adb0ad
MD5 4c25eae400bfc73b93db94e997d5ce55
BLAKE2b-256 a8335c64de0dabc38619212b986a51178009b3e7e9ba07e0da12bb6d4e14e2ea

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.29-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e5f6959466a42b6569774c257e55f9cd85200d5b0ba09f0f5d8b5845349c5822
MD5 8b325e193f5a96520a3c0e5bb97ec64b
BLAKE2b-256 47c748dc6a6027c1534fd47dcbc2e1d533ecb6de0c7acc1a9e3935ad83f621e6

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.29-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.29-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f3909194751bb6cb7c5511dd18bcf77e6e3f0b31604ed4004dffa9461f71e737
MD5 f2ec69dd70e379e42253ae2dd1e133b7
BLAKE2b-256 d162adb45205fac7da4ebf58cfeff10a6f6ba74ace49c380128a73dab32b089f

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.29-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.29-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 621854dbb4d2413c759a5571564170de45ef37299df52e78e62b42e2880192e1
MD5 b11483364edff6e4eb218b7d6f7f3198
BLAKE2b-256 5574a3f79e7ed1af6f669f4e630cecc8d672b201fe8cfe5a39c8bd47f4209bf7

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp37-cp37m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.29-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.29-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 f74d6c05d2d163464adbdfbc1ab85048cc15462ff7d134b8aed22bd521e1faa5
MD5 2999a6c36c5fd9a56987fb87bbf1932b
BLAKE2b-256 8221f309380ff8e5c438fd698b7390d6edb986dc3ba40d9bcc9a2f8bf06d8aa2

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.29-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 eeaebceb24b46e884c4ad3c04f37feb178b81f6ce720af19bfa2592ca32fdef7
MD5 2c63f3c3651835772d5a2b54cbb6fd0e
BLAKE2b-256 29fd4b0fd32a9576190840840f0f40b24b34ae8ff74dc7a70d196aa756c091bb

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.29-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5a717c2e70fd1bb477161c4cc85258e41d978584fbe5522613618195f7e87d9b
MD5 a64b8e5ee99b4714efc998ca82e2f337
BLAKE2b-256 27017b74fb4a1cdb416d6529f07b8b55b7e0883dfbb7c3a88313b1d9c9597240

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.29-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e89347d3bd2ef873832b47e85f4bbd810a5e626c5e749d90a07638da100eb1c8
MD5 0038204a0b60fae08bcfcaf5bc3c2b64
BLAKE2b-256 12357c208a1513594e407321c9cabc8a30db9beede5592ebdf35be5a5655de42

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.29-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.29-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5e9cd33459afa69c88fa648e803d1f1245e3caa60bfe8b80a9595e5edd3bda9c
MD5 4fd86b0fb572d0dca9ed10fed37cba28
BLAKE2b-256 09c808c47e1e13437ee5d7a273eca7bdc2274e91fe21ac7a61cc633d0be84723

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.29-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.29-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 e9cc6d844e24c307c3272677982a9b33816aeb45e4977791c3bdd47637a8d810
MD5 1ed6a90a3694e1d525bbee0ccbeb5109
BLAKE2b-256 6246dea100da40961f53c123d4c1cbb252c20538727f4fb59dd4e60ea9641bf3

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp36-cp36m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.29-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.29-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 886359f734b95ad1ef443b13bb4518bcade4db4f9553c9ce33d6d04ebda8d44e
MD5 41ec55cb2d5a52264f9362fee691eb75
BLAKE2b-256 5bd9b47bf1fb575bfeaa2fa6bb9d7a21d1f345708ff70b9d664debd73d2fcb69

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.29-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e4ddd4f2e247128c58bb3dd4489922874afce157d2cff0b2295d67fcd0f22494
MD5 f79c41c3dd8ec4147f364c10b3ce3f1d
BLAKE2b-256 4b20f5d5ff1d7db0fa033581adb1e40e2eb334e2186e4b25a7b38c37fbeea721

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.29-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5919e647e1d4805867ea556ed4967c68b4d8b266059fa35020dbaed8ffdd60f3
MD5 7fbfcfb2664cd68c46dc3d87d00208e0
BLAKE2b-256 c006123b14f338cc3938ccad0072ab6f89adcb43606c99aa0a2a5801dcc3c0cd

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.29-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9ce960a1dc60524136cf6f75621588e2508a117e04a6e3eedb0968bd13b8c824
MD5 c6862084198355cfc1ae99bf527a3a32
BLAKE2b-256 0cdb53539abb87b2b4f3ad1b295c93f4b62d8144d101f12dac8d274050c3baea

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.29-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.29-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 dc27dcc6c72eb38be7f144e9c2c4372d35a3684d3a6dd43bd98c1238358ee17c
MD5 9ee36a16b99f8eb13d5fcfd28174f763
BLAKE2b-256 42ba67a27e77762e6c8cd8b57ceab7eea7d10f67df9642d0b4ed0631c7e7d29d

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.29-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 15b65887b6c324cad638c7671cb95985817b733242a7eb69edd7cdf6953be1e0
MD5 0c17fb0e7c67bbb55f02f3d5e6a9d749
BLAKE2b-256 738ea3d9d1070d55c46c7fda50ef64fbc9aa1a6c2d86a5ccb57a5cb54d7a7ac8

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.29-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.29-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 ceac84dd9abbbe115e8be0c817bed85d9fa639b4d294e7817f9e61162d5f766c
MD5 b8dfb99a10d4dc86820f049d92b89177
BLAKE2b-256 bc1fa837086d974d00c8353bb105da6ec5868a7a54fa8864a4f03aa0d266f325

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp27-cp27m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.29-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.29-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 101d2e100ba9182c9039699588e0b2d833c54b3bad46c67c192159876c9f27ea
MD5 3365ef452a534e09426ca7eefbbed024
BLAKE2b-256 ad537c9e5d3665078f6acab1079155808a2e5c2a2748f28cc993502d1c908329

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.29-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0fc4eec2f46b40bdd42112b3be3fbbf88e194bcf02950fbb88bcdc1b32f07dc7
MD5 b1a877503fb782680a3e55fe3b5360c0
BLAKE2b-256 ad923dc655f6727421669529a3fc99c37005f0b77e5ad88a7078a9099cf686aa

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.29-cp27-cp27m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.29-cp27-cp27m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.29-cp27-cp27m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 da64423c05256f4ab8c0058b90202053b201cbe3a081f3a43eb590cd554395ab
MD5 5f2768cd419325e55f4cdc6ccc83f600
BLAKE2b-256 78a9b04e9767260d5e84d6619e3c95899b12f79074d350e8905e1eb5c404a471

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page