Skip to main content

Database Abstraction Library

Project description

PyPI PyPI - Python Version PyPI - Downloads

The Python SQL Toolkit and Object Relational Mapper

Introduction

SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives application developers the full power and flexibility of SQL. SQLAlchemy provides a full suite of well known enterprise-level persistence patterns, designed for efficient and high-performing database access, adapted into a simple and Pythonic domain language.

Major SQLAlchemy features include:

  • An industrial strength ORM, built from the core on the identity map, unit of work, and data mapper patterns. These patterns allow transparent persistence of objects using a declarative configuration system. Domain models can be constructed and manipulated naturally, and changes are synchronized with the current transaction automatically.

  • A relationally-oriented query system, exposing the full range of SQL’s capabilities explicitly, including joins, subqueries, correlation, and most everything else, in terms of the object model. Writing queries with the ORM uses the same techniques of relational composition you use when writing SQL. While you can drop into literal SQL at any time, it’s virtually never needed.

  • A comprehensive and flexible system of eager loading for related collections and objects. Collections are cached within a session, and can be loaded on individual access, all at once using joins, or by query per collection across the full result set.

  • A Core SQL construction system and DBAPI interaction layer. The SQLAlchemy Core is separate from the ORM and is a full database abstraction layer in its own right, and includes an extensible Python-based SQL expression language, schema metadata, connection pooling, type coercion, and custom types.

  • All primary and foreign key constraints are assumed to be composite and natural. Surrogate integer primary keys are of course still the norm, but SQLAlchemy never assumes or hardcodes to this model.

  • Database introspection and generation. Database schemas can be “reflected” in one step into Python structures representing database metadata; those same structures can then generate CREATE statements right back out - all within the Core, independent of the ORM.

SQLAlchemy’s philosophy:

  • SQL databases behave less and less like object collections the more size and performance start to matter; object collections behave less and less like tables and rows the more abstraction starts to matter. SQLAlchemy aims to accommodate both of these principles.

  • An ORM doesn’t need to hide the “R”. A relational database provides rich, set-based functionality that should be fully exposed. SQLAlchemy’s ORM provides an open-ended set of patterns that allow a developer to construct a custom mediation layer between a domain model and a relational schema, turning the so-called “object relational impedance” issue into a distant memory.

  • The developer, in all cases, makes all decisions regarding the design, structure, and naming conventions of both the object model as well as the relational schema. SQLAlchemy only provides the means to automate the execution of these decisions.

  • With SQLAlchemy, there’s no such thing as “the ORM generated a bad query” - you retain full control over the structure of queries, including how joins are organized, how subqueries and correlation is used, what columns are requested. Everything SQLAlchemy does is ultimately the result of a developer- initiated decision.

  • Don’t use an ORM if the problem doesn’t need one. SQLAlchemy consists of a Core and separate ORM component. The Core offers a full SQL expression language that allows Pythonic construction of SQL constructs that render directly to SQL strings for a target database, returning result sets that are essentially enhanced DBAPI cursors.

  • Transactions should be the norm. With SQLAlchemy’s ORM, nothing goes to permanent storage until commit() is called. SQLAlchemy encourages applications to create a consistent means of delineating the start and end of a series of operations.

  • Never render a literal value in a SQL statement. Bound parameters are used to the greatest degree possible, allowing query optimizers to cache query plans effectively and making SQL injection attacks a non-issue.

Documentation

Latest documentation is at:

https://www.sqlalchemy.org/docs/

Installation / Requirements

Full documentation for installation is at Installation.

Getting Help / Development / Bug reporting

Please refer to the SQLAlchemy Community Guide.

Code of Conduct

Above all, SQLAlchemy places great emphasis on polite, thoughtful, and constructive communication between users and developers. Please see our current Code of Conduct at Code of Conduct.

License

SQLAlchemy is distributed under the MIT license.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SQLAlchemy-1.4.30.tar.gz (8.0 MB view details)

Uploaded Source

Built Distributions

SQLAlchemy-1.4.30-cp310-cp310-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

SQLAlchemy-1.4.30-cp310-cp310-win32.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86

SQLAlchemy-1.4.30-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.30-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.30-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.30-cp310-cp310-macosx_10_15_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

SQLAlchemy-1.4.30-cp39-cp39-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

SQLAlchemy-1.4.30-cp39-cp39-win32.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86

SQLAlchemy-1.4.30-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.30-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.30-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.30-cp39-cp39-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

SQLAlchemy-1.4.30-cp38-cp38-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

SQLAlchemy-1.4.30-cp38-cp38-win32.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86

SQLAlchemy-1.4.30-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.30-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.30-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.30-cp38-cp38-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

SQLAlchemy-1.4.30-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

SQLAlchemy-1.4.30-cp37-cp37m-win32.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86

SQLAlchemy-1.4.30-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.30-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.30-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.30-cp37-cp37m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

SQLAlchemy-1.4.30-cp36-cp36m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86-64

SQLAlchemy-1.4.30-cp36-cp36m-win32.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86

SQLAlchemy-1.4.30-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.30-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.30-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.30-cp36-cp36m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

SQLAlchemy-1.4.30-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.30-cp27-cp27m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86-64

SQLAlchemy-1.4.30-cp27-cp27m-win32.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86

SQLAlchemy-1.4.30-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.30-cp27-cp27m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m macOS 10.14+ x86-64

File details

Details for the file SQLAlchemy-1.4.30.tar.gz.

File metadata

  • Download URL: SQLAlchemy-1.4.30.tar.gz
  • Upload date:
  • Size: 8.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for SQLAlchemy-1.4.30.tar.gz
Algorithm Hash digest
SHA256 531496dbb382a8f07fc0a58642f2a1916d80050de7c4b2b58f06c0f7587ab931
MD5 26886bb2829419a3d4da05e81f68be30
BLAKE2b-256 3a42923c4f9b9aa0c88a616f61f05ee5d2237ee782de86ae84d9bd5338ec8ff2

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.30-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.30-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f197936f4c9fececd981c52a6512c6fe578f68a7a0528007a38217a064acb307
MD5 e79c5221bc7d561181389b35d58e06fa
BLAKE2b-256 299422dc7cdab179516ed375ba96e897623f8cbb9a6aaba613be0a2bc6a18b2e

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp310-cp310-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.30-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.30-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 2fc48e19334e6375e98f796265acf176777ec46fdbf15909dc838a3ef782def0
MD5 497c04d61e2f14fefa4be668f0dfde91
BLAKE2b-256 64596f593df63eb25e8213ad8dc2a140c64b5039c8fd377f31e465e295732953

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.30-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a550ad2f4c3ab0163657f7b627f250eade5e49f13290eb65ff7c6a4d41c65f1b
MD5 e8d459b9de411319374cb8382aa941b3
BLAKE2b-256 22d36543e76d3adb7e88edf8731048e4dcd7bb1db5555b847265ed7eb7072bfb

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.30-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4fec76be7eb95c1a5adb671572ebb3b923c132f123ece7ae8b22db4fd2a0b3a6
MD5 113d854911d153637ab04966a503b910
BLAKE2b-256 f24f41883f23943b422103e2bac02be25597f2c2316a6410791d37af8a094ce1

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.30-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4ad608dfef839035d9ad60b7b21ff0e2e02a6886767ec81d437579d60c370849
MD5 ab1fa9e247adf6d2fe32f773ca20e039
BLAKE2b-256 42556f85ee0ce31077a0f8b39b85fca4babae9cd62733256082a70871e96fd46

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.30-cp310-cp310-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.30-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 0041aeaac0eb88bf9daef15069076223b60504fc127ea42cfe40d00aa8cbcb90
MD5 ce89b86a3e30d5acf5848b63c30f30fa
BLAKE2b-256 e474a9af3a6342a03e5897f41615700fe557f362112e51bc916b1c1d10507880

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.30-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.30-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ceacc31a470b29d1431a5f5dd1a7e42d75aba4e2c763d0618a1ae4ed3cf8a4e8
MD5 5a6712d96d64e1d3cabbaeef0036fb45
BLAKE2b-256 0ad97c5a58ff492390700c5b861e94ef5d5d76468e13609a2dbb77db208c0b08

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp39-cp39-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.30-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.30-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 4f4975740cc8b744903587e38d66d2e6da5fe7740f70dd2f57c458b0206d122e
MD5 d72ee6a850cf3912efd20c487dcebf90
BLAKE2b-256 0f055d1673bac6f3d3405674e269a6fad835effa9994106c9d66e2b6d3588a4b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.30-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c86e48796c3e718a811d62ffeea268f2df43649faa426ab63563c77a89dcce3a
MD5 0e1814c4e21083ed272fbf2388a1a9cb
BLAKE2b-256 5679060fb19d5382c2cfb009d918486e26e7b40a8e687c6d78f00dd00a3c9db2

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.30-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9f73429626cd57e703baa4c9b15fde4d0991e5396b5fedacdc23bc8c24a19300
MD5 a2227dc2e01e1c1f6c9c7eff7a7d304a
BLAKE2b-256 d9307aa539f20d5f51bbcddf0e4c50d9163c4eca37b9d40a1cc5d8ab19eb27a8

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.30-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 98a6393d296b82d49d240c629bbba4c57d2d1e4da07d0c04568c5ad1aa503cec
MD5 deb5449fa9c350ba4e7af875797d95a9
BLAKE2b-256 56ade13b13fa3bf571e8e477127b9d1b49501e91ad4716281755315a8613f649

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.30-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.30-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 10b92099e87712f9a9588b371a6c81114b347f33f24de93b33e494f674ae359a
MD5 ea63e95a1d6fd65315d04cc7735ade7f
BLAKE2b-256 4322e2641b3d2e2893e55a91fd66c5ca592331a808b6030018eee36525d8f1ce

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.30-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.30-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6610158f5d0b0f8cbef614ba0cf00506dc86ea3fb73625eedef9513a3acf9411
MD5 21ead363b9734b070841b12da83e4930
BLAKE2b-256 ab7bf282e19fc277f75df9743a7ebe89d7a3c331e0f33f642be9e584ae1c21f9

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp38-cp38-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.30-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.30-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 ac9b5b10e61e81b8b3338d8572595c119e6673470ea9721d06dd5b73c2a01a9b
MD5 cf76513e1d971a7f9fac70aafec86d8c
BLAKE2b-256 7643113498671784c62281d8a3a35f4ad7928981c1c9ae639b5a00fe6e035887

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.30-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6d2b8b515619c742d0262731d8670dcbe6e8c38a505b38c55c20163e3ed9708c
MD5 3a6de19d6567eef5149794d77e584ff0
BLAKE2b-256 acc3c41760b21caf7039fa365ae169cd9a420e97f8878b5ccda1a68ba4f484d1

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.30-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ec596fadc661eebbf7157cf3ac78ed93bdf7d476cb30a28398b36f9d46c4d063
MD5 d8f1e1a1e5f39847ff3def7fe2dc2578
BLAKE2b-256 b65509adff587f96b1239b269c94b5256923e39bd0bdf82d57605696975a5b65

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.30-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 74764b0cd9ee25d5e49f9f2ab67a525eb75612b374b56a43ecad59a88f82884d
MD5 11215dbdfe43a257b8a4ed682d8bccc2
BLAKE2b-256 b32722f2d2425e7bd5ce91f1eea0867802d3190e06bdb3cb5fac855371d86abc

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.30-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.30-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 35b636a244e33e5d4dec9f58e081f9345d272021549c2bfab8e43adce5d5c471
MD5 f32ef522e1989945429f8f94b389f0bc
BLAKE2b-256 d5ee896516d959bd98e96eff417aa312c9bf1f258983e1caa0213533d93fe373

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.30-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.30-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 cd098e4ef4590ba91552186964a2cfc87d67ae6426fa3dfae9da3a4d3c41c44b
MD5 56be9b4927ac3ecc1f4024892ce487a4
BLAKE2b-256 4bb3d3d1bb6d5f950564451a396bec933be4f9f9d5fb9a905fa7117b5abe8980

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp37-cp37m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.30-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.30-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 cab45b0e94759c5ba6d3e82f3fe6c00b55b81c1ce56eb52ecaf390cb02b25668
MD5 9570eadc76a02b9f1c9184d5705f5666
BLAKE2b-256 615002954ee7f4f30249159db1a2b91117536f9ce31ca535bc86120bca9afaab

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.30-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0ea8ddbd4b3639e14d2815f765681a8a40e9edabcb7839fb21235e495af513b4
MD5 2b9b1d622eda5fb43edf145f220c1d84
BLAKE2b-256 4a03cf302e6f98c1768193dc3236178dc8a147845f37a1fee73b0c48c2f2e97a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.30-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ba817eaa031b5c869b1ec097ee1ea54b58d4fd992a64e4c20e68f943dd304d09
MD5 48476414b317a5fa71aadd9517b8ee6c
BLAKE2b-256 e23a3c04ce0b8fd72601fa9230b529016bb3559ce0b7f1900f8e70dd053b6441

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.30-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a85c5c6547a2f5556b2d31bc2b5a1c14b91cba2075b942144a1dbb2e6a6f120a
MD5 dc87d4d9840d450c6c4565b0da12c718
BLAKE2b-256 48b3186136e958177d93ce65f7e876cf6feeb635dcac55e9d7f81d9587bf2a27

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.30-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.30-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b6329dedd314c92661a10ca536b272094e397734cff3d0eb18c5bd3343a2e518
MD5 c7ff7bbf686b9ac07b77b231dfb1431f
BLAKE2b-256 2c569cc7742f52ca8d76c4b0297b3d733b1be677636b97316f4a96370a5cb11c

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.30-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.30-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 9d41cc77aceb8e575d7629086f1d135a47529983744f693d8bdd51da0cc97f1c
MD5 46540bc49863e9a2c6ee7dfed7bf0477
BLAKE2b-256 d38b3993b92d357c21cbacf27d6e17d1ebadf05864e4e258164d111494c66bbb

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp36-cp36m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.30-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.30-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 0a2b21d52eafb4af5d09451d8012a162d0371b16b498e1114b93ba75f4c8a11f
MD5 127400911b7e74a9423c8c02b6fd6b01
BLAKE2b-256 939d678b4edba470b6a80a47b55954fd9ca750a8741aa033635e00919bb8aef8

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.30-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ec099f69fae6bbd01d39f5b7a7023e6376090b9975ced12e3c40ac26293a6424
MD5 6933938b4f184641871dc92dda6b439a
BLAKE2b-256 465c1b613db9e31cb5d51044d3ab68288854916f1c929cbb4d7a1f7f0e4589de

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.30-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ea77748546e770fcdee7e235bd727f4dcb434affef97d9392d2145b5b43efe8d
MD5 6eb373bf33caf3276e086014b614b994
BLAKE2b-256 916710ae4076c67f6190490308ae432d10508af1fd45d1f9c4c32760785a10b0

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.30-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6b728dfa3b6199b5f395513e22e35fc6293a899e0126793f6537acbdaae9dcbf
MD5 1521bc425cf13ab3534080bde8e6a724
BLAKE2b-256 155c4bf8d91fe0e0c76f8bc546e552ab8178f0d6ba05a3f5f8f9601a20b1d626

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.30-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.30-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9f220cd4d5529092de3370f7b8cef6d0e8e70872e37a6ab9093eb4e3ec41a1f3
MD5 f580ea478817b588c8890d7ec144486f
BLAKE2b-256 0c9a0d78f5375636715942d2f5c814e48595348b38f5820917762300655f17f8

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.30-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 920612b7a65342a411b2747558694d35c3f5b1afebc8e49d36bae07cb69e8a48
MD5 c12a5d97de3bf48868a013a0a3564f28
BLAKE2b-256 1d5baec65edacadf7e3714f7ecfd227ff7a2430ed7b9b29dcff62c483dfd3560

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.30-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.30-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 b3ec832a83ba648967d11df3b7c390750fdf8f2af8cf35bdb08c135fb8d53aa4
MD5 765ce5cd80b2c230c89c01a9c8c887bb
BLAKE2b-256 37a75c282c38b97309b8ba29699e77e689bda427aeac479c62d7327a9bdd5e93

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp27-cp27m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.30-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.30-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 ac1426ab58f4d850ef9e80fe4109a7ac6217532ee38741ba3eb88ca5286aa8b0
MD5 cb26ca9fba03ab82e9fce3401a207976
BLAKE2b-256 01c6dfe6611f778e83f4809b60d499617975ee31274502650efcb970ea9d3014

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.30-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 203f8d7ab8d934752cbc7ebc1239fcd8032f7b7c217e56d3359fcb4447f7806f
MD5 cd7a58b7e85835b13bd40ec510bd771b
BLAKE2b-256 a3b32b9b8be93e0bbe4717182fdba77ece207b9f4e5bae71c53fcf7dc54db1b4

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.30-cp27-cp27m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.30-cp27-cp27m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.30-cp27-cp27m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b651c131ae1c2a7fce6f5b35e311b2f6b32b1028b8dc6359ba3c0ffe6245fed1
MD5 54d0d6d871e4eec68eed89e8c76be121
BLAKE2b-256 398785cc80d00f0d235a13413c443ef1f116d43ea0af432d924f878e60c3b330

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page