Skip to main content

Database Abstraction Library

Project description

PyPI PyPI - Python Version PyPI - Downloads

The Python SQL Toolkit and Object Relational Mapper

Introduction

SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives application developers the full power and flexibility of SQL. SQLAlchemy provides a full suite of well known enterprise-level persistence patterns, designed for efficient and high-performing database access, adapted into a simple and Pythonic domain language.

Major SQLAlchemy features include:

  • An industrial strength ORM, built from the core on the identity map, unit of work, and data mapper patterns. These patterns allow transparent persistence of objects using a declarative configuration system. Domain models can be constructed and manipulated naturally, and changes are synchronized with the current transaction automatically.

  • A relationally-oriented query system, exposing the full range of SQL’s capabilities explicitly, including joins, subqueries, correlation, and most everything else, in terms of the object model. Writing queries with the ORM uses the same techniques of relational composition you use when writing SQL. While you can drop into literal SQL at any time, it’s virtually never needed.

  • A comprehensive and flexible system of eager loading for related collections and objects. Collections are cached within a session, and can be loaded on individual access, all at once using joins, or by query per collection across the full result set.

  • A Core SQL construction system and DBAPI interaction layer. The SQLAlchemy Core is separate from the ORM and is a full database abstraction layer in its own right, and includes an extensible Python-based SQL expression language, schema metadata, connection pooling, type coercion, and custom types.

  • All primary and foreign key constraints are assumed to be composite and natural. Surrogate integer primary keys are of course still the norm, but SQLAlchemy never assumes or hardcodes to this model.

  • Database introspection and generation. Database schemas can be “reflected” in one step into Python structures representing database metadata; those same structures can then generate CREATE statements right back out - all within the Core, independent of the ORM.

SQLAlchemy’s philosophy:

  • SQL databases behave less and less like object collections the more size and performance start to matter; object collections behave less and less like tables and rows the more abstraction starts to matter. SQLAlchemy aims to accommodate both of these principles.

  • An ORM doesn’t need to hide the “R”. A relational database provides rich, set-based functionality that should be fully exposed. SQLAlchemy’s ORM provides an open-ended set of patterns that allow a developer to construct a custom mediation layer between a domain model and a relational schema, turning the so-called “object relational impedance” issue into a distant memory.

  • The developer, in all cases, makes all decisions regarding the design, structure, and naming conventions of both the object model as well as the relational schema. SQLAlchemy only provides the means to automate the execution of these decisions.

  • With SQLAlchemy, there’s no such thing as “the ORM generated a bad query” - you retain full control over the structure of queries, including how joins are organized, how subqueries and correlation is used, what columns are requested. Everything SQLAlchemy does is ultimately the result of a developer- initiated decision.

  • Don’t use an ORM if the problem doesn’t need one. SQLAlchemy consists of a Core and separate ORM component. The Core offers a full SQL expression language that allows Pythonic construction of SQL constructs that render directly to SQL strings for a target database, returning result sets that are essentially enhanced DBAPI cursors.

  • Transactions should be the norm. With SQLAlchemy’s ORM, nothing goes to permanent storage until commit() is called. SQLAlchemy encourages applications to create a consistent means of delineating the start and end of a series of operations.

  • Never render a literal value in a SQL statement. Bound parameters are used to the greatest degree possible, allowing query optimizers to cache query plans effectively and making SQL injection attacks a non-issue.

Documentation

Latest documentation is at:

https://www.sqlalchemy.org/docs/

Installation / Requirements

Full documentation for installation is at Installation.

Getting Help / Development / Bug reporting

Please refer to the SQLAlchemy Community Guide.

Code of Conduct

Above all, SQLAlchemy places great emphasis on polite, thoughtful, and constructive communication between users and developers. Please see our current Code of Conduct at Code of Conduct.

License

SQLAlchemy is distributed under the MIT license.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SQLAlchemy-1.4.31.tar.gz (8.0 MB view details)

Uploaded Source

Built Distributions

SQLAlchemy-1.4.31-cp310-cp310-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

SQLAlchemy-1.4.31-cp310-cp310-win32.whl (1.5 MB view details)

Uploaded CPython 3.10 Windows x86

SQLAlchemy-1.4.31-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.31-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.31-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.31-cp310-cp310-macosx_10_15_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

SQLAlchemy-1.4.31-cp39-cp39-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

SQLAlchemy-1.4.31-cp39-cp39-win32.whl (1.5 MB view details)

Uploaded CPython 3.9 Windows x86

SQLAlchemy-1.4.31-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.31-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.31-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.31-cp39-cp39-macosx_10_15_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

SQLAlchemy-1.4.31-cp38-cp38-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

SQLAlchemy-1.4.31-cp38-cp38-win32.whl (1.5 MB view details)

Uploaded CPython 3.8 Windows x86

SQLAlchemy-1.4.31-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.31-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.31-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.31-cp38-cp38-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

SQLAlchemy-1.4.31-cp37-cp37m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

SQLAlchemy-1.4.31-cp37-cp37m-win32.whl (1.5 MB view details)

Uploaded CPython 3.7m Windows x86

SQLAlchemy-1.4.31-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.31-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.31-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.31-cp37-cp37m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

SQLAlchemy-1.4.31-cp36-cp36m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86-64

SQLAlchemy-1.4.31-cp36-cp36m-win32.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86

SQLAlchemy-1.4.31-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.31-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.31-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.31-cp36-cp36m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

SQLAlchemy-1.4.31-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.31-cp27-cp27m-win_amd64.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86-64

SQLAlchemy-1.4.31-cp27-cp27m-win32.whl (1.5 MB view details)

Uploaded CPython 2.7m Windows x86

SQLAlchemy-1.4.31-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.31-cp27-cp27m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m macOS 10.14+ x86-64

File details

Details for the file SQLAlchemy-1.4.31.tar.gz.

File metadata

  • Download URL: SQLAlchemy-1.4.31.tar.gz
  • Upload date:
  • Size: 8.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for SQLAlchemy-1.4.31.tar.gz
Algorithm Hash digest
SHA256 582b59d1e5780a447aada22b461e50b404a9dc05768da1d87368ad8190468418
MD5 d9caae7e5d85b9a4a5e4f40288d3c309
BLAKE2b-256 0f80d8883f12689a55e333d221bb9a56c727e976f5a8e9dc862efeac9f40d296

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.31-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.31-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e3a86b59b6227ef72ffc10d4b23f0fe994bef64d4667eab4fb8cd43de4223bec
MD5 a6b8facf2906071cd2aa5f9171ceb941
BLAKE2b-256 71d6e2706e1751419931ea8cf4a3ddf53482fe0ac3040cbceee0e0127614e8a6

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp310-cp310-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.31-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.31-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 2e216c13ecc7fcdcbb86bb3225425b3ed338e43a8810c7089ddb472676124b9b
MD5 471e78bab0edbe386183394765c026da
BLAKE2b-256 6e4d52520483aa275d6adf74e13a26d60b4bed8ce6c93db083636202f7a044aa

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.31-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dccff41478050e823271642837b904d5f9bda3f5cf7d371ce163f00a694118d6
MD5 6664f5d0871dc7adf8e0103ea945dc72
BLAKE2b-256 20f0df4859d955aa53b632605e51d71ac90c4a5d94da361afecce4754cde7fb8

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.31-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ea8210090a816d48a4291a47462bac750e3bc5c2442e6d64f7b8137a7c3f9ac5
MD5 ed4d2c8c5ae380cf79b93440f637cdb0
BLAKE2b-256 311e2ec313bf8ae2c2a032c8ab6755ce3454fbd3a9a91bfb1397b5490b65b036

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.31-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 57205844f246bab9b666a32f59b046add8995c665d9ecb2b7b837b087df90639
MD5 be1948954d77a8285e36cc49b0065e94
BLAKE2b-256 80c94e3455dfd37f79e017a8b9d15e44cadceaac8bc0ca2beab9d8a08f958944

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.31-cp310-cp310-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.31-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 05fa14f279d43df68964ad066f653193187909950aa0163320b728edfc400167
MD5 403d605b918e75b6bb3b7720bc9cc643
BLAKE2b-256 d5fc823adcad208ed9684e7b336adce52f256a46d8b1430da540964e6695ce08

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.31-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.31-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9e4fb2895b83993831ba2401b6404de953fdbfa9d7d4fa6a4756294a83bbc94f
MD5 91ea15a1ec70435b8c0ec97a9c3d86af
BLAKE2b-256 6bfcf760cae409ad06787fb1f6d0ebd97ce67881fbf14ee5b377ef4ed4ab4aa3

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp39-cp39-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.31-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.31-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 289465162b1fa1e7a982f8abe59d26a8331211cad4942e8031d2b7db1f75e649
MD5 a01b9aa9a34499d63b99e0f3602c6613
BLAKE2b-256 3e5219bb20974b993cdd1d6c6d933aa972ccfb819c3df704bd4ec964b5957839

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.31-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e79e73d5ee24196d3057340e356e6254af4d10e1fc22d3207ea8342fc5ffb977
MD5 20add15d7fa11a33e4c9df003a81d87b
BLAKE2b-256 cf53dcf19e1e08102a59e9a4b53a6c0229222c045cdd5b3e32c7ebf6bc7f2907

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.31-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0ddc5e5ccc0160e7ad190e5c61eb57560f38559e22586955f205e537cda26034
MD5 84e5fd92f387a56d10dc59613a4a7cc2
BLAKE2b-256 542af247980111202ef39d7d3b3fb5591c6e5af4a351d36d9440a799ceacb1ca

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.31-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 15a03261aa1e68f208e71ae3cd845b00063d242cbf8c87348a0c2c0fc6e1f2ac
MD5 88d5e9d1d7e5a0eb42d6b65d8ee4f5d9
BLAKE2b-256 867387a7ec96604f931edbfecb4852f0c6b334f2672278f6af7aecef54597146

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.31-cp39-cp39-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.31-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 85e4c244e1de056d48dae466e9baf9437980c19fcde493e0db1a0a986e6d75b4
MD5 270cfca8a7b397c04585eab61b3db566
BLAKE2b-256 6b8b7c74f9b3f84f7fea282165e56dc538e3dfa09a322ab33ab50c653bf5206c

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.31-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.31-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b7b20c88873675903d6438d8b33fba027997193e274b9367421e610d9da76c08
MD5 cd9a84112cc0daaf10d3f99afbc6b0ee
BLAKE2b-256 34db88823d644ac7e9975be992185a96c289cbe8da530ef08a1e45013d049455

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp38-cp38-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.31-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.31-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 b35dca159c1c9fa8a5f9005e42133eed82705bf8e243da371a5e5826440e65ca
MD5 62cdfad14debc539497f3d9f20ec60bb
BLAKE2b-256 af47df00e42f5d2666990679296b83bbe8640a1622092ee237c29b546c32417f

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.31-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 de85c26a5a1c72e695ab0454e92f60213b4459b8d7c502e0be7a6369690eeb1a
MD5 44eaa7c571a0300546b9d4a2dd3f1087
BLAKE2b-256 6b5cc794a8d44921e11dcd63d845b98e0aa9280aa64b4f91e94dd9ff6a1b43ed

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.31-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d5c20c8415173b119762b6110af64448adccd4d11f273fb9f718a9865b88a99c
MD5 08506d7cf4a0f7cf250aad89e1489003
BLAKE2b-256 e615739ade8af241b23e60d632d0efb49736bd22aa65f23ec595447085c5bd36

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.31-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 975f5c0793892c634c4920057da0de3a48bbbbd0a5c86f5fcf2f2fedf41b76da
MD5 33371f3d961ed8a9bbf82faacae7985a
BLAKE2b-256 f061ae38e84081498cc25437284dee2fe801a4ffbd5f5c6a0c2edab030e7060b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.31-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.31-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5e9c7b3567edbc2183607f7d9f3e7e89355b8f8984eec4d2cd1e1513c8f7b43f
MD5 9ca74af0883f30d362b24d7a44b3440a
BLAKE2b-256 ac500bb05f789fd445796d26bc9b7f3eb49538f3265a413ebc87f448cb5058a2

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.31-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.31-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 330eb45395874cc7787214fdd4489e2afb931bc49e0a7a8f9cd56d6e9c5b1639
MD5 d04b0ca19060bf2d8246735500ae99eb
BLAKE2b-256 6434d547d4e4ff2f0ab4f766e25dfe81d134e38ad17b5b2388d214c6bec01c15

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp37-cp37m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.31-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.31-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 6a01ec49ca54ce03bc14e10de55dfc64187a2194b3b0e5ac0fdbe9b24767e79e
MD5 53717cf2078060ac57265613e6a46816
BLAKE2b-256 6b2bcbf07a7be533f9d70e8b065b836543b32ddf8b88b4c94e122238bcd84bf6

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.31-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bb4b15fb1f0aafa65cbdc62d3c2078bea1ceecbfccc9a1f23a2113c9ac1191fa
MD5 e66a597ecfb19755bd3665aac7e1ca7b
BLAKE2b-256 7ed2ad8e98c6ce472d0c503ab52f2447cf23d5e88b20fe58a1440879726d4e4d

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.31-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3c7ed6c69debaf6198fadb1c16ae1253a29a7670bbf0646f92582eb465a0b999
MD5 53bd55f34d490d7ea68c6ef67af0f164
BLAKE2b-256 9cef7189d737254af2a88443d82c4da4278d9fc006732d2da4842cbe88b5bb16

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.31-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c317ddd7c586af350a6aef22b891e84b16bff1a27886ed5b30f15c1ed59caeaa
MD5 5d57164a11b58e41fe6f37e9e6a22ab1
BLAKE2b-256 af0a6c27bb79d7664ef158484bd0d6fab0366fb352bbe17f10b7f1109dca6c9e

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.31-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.31-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 cf2cd387409b12d0a8b801610d6336ee7d24043b6dd965950eaec09b73e7262f
MD5 988a71440c7e18d2fdbde52131320a8e
BLAKE2b-256 86a21ff220e65b491933a26cd2608ddcf26225346069a8a3475dbcdcc2978b45

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.31-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.31-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ca68c52e3cae491ace2bf39b35fef4ce26c192fd70b4cd90f040d419f70893b5
MD5 d14ec936706fee5123195e6ca0c28dfc
BLAKE2b-256 301f4e7f4302d97c289aabc336836a19a891c6399c905f13fb3f199615ab3538

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp36-cp36m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.31-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.31-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 d86132922531f0dc5a4f424c7580a472a924dd737602638e704841c9cb24aea2
MD5 f02bbbe4d8e8acc4cc518c94ff57b56f
BLAKE2b-256 4fbe2f991aefa49b3c18f2701808cb98542630f592b1d86f9d46ad52db0722ab

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.31-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6f22c040d196f841168b1456e77c30a18a3dc16b336ddbc5a24ce01ab4e95ae0
MD5 c258a37ac572868f798877ef47c73d3c
BLAKE2b-256 2b90206efead1b9381e1a3a7b34b9106e8c7eaf6c6bbf8b2b69502d9479e1995

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.31-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d046a9aeba9bc53e88a41e58beb72b6205abb9a20f6c136161adf9128e589db5
MD5 2caf82fe1a0ebe67c612b9a4f892c443
BLAKE2b-256 5e9a00fcc92faa439c869f89b3bd3a6bcd2512f1430d2631484ee2ada1d7d4ac

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.31-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c0c7171aa5a57e522a04a31b84798b6c926234cb559c0939840c3235cf068813
MD5 00dda5c00542ab994d221910a5355c61
BLAKE2b-256 4162e3a98189f18f0f4190a00761346b47d6f1854aa26641dcf0f5223e69de24

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.31-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.31-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2fd4d3ca64c41dae31228b80556ab55b6489275fb204827f6560b65f95692cf3
MD5 0c3de7fd38a3ccd2d32057c227192db7
BLAKE2b-256 8622a0eda98102b1d83ae499762f2dc5a0de8b43fd1ef200dba2242df8eb1a60

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.31-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4ad31cec8b49fd718470328ad9711f4dc703507d434fd45461096da0a7135ee0
MD5 c0c80dcc3a226a1da90c58cd5e915866
BLAKE2b-256 bd73b9b0827e16818937e8d136fc57b8b29b30135307908f953e235eddff98b6

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.31-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.31-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 81f2dd355b57770fdf292b54f3e0a9823ec27a543f947fa2eb4ec0df44f35f0d
MD5 bf1c9c7c86e017e082f3bc5698e2e4e8
BLAKE2b-256 ecdfa0abd3983d11809ae9080f6ae579dfe934dcd5647abbb0adbff19cd867e8

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp27-cp27m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.31-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.31-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 f3b7ec97e68b68cb1f9ddb82eda17b418f19a034fa8380a0ac04e8fe01532875
MD5 285d679619607a20c9d4eed7a16140c6
BLAKE2b-256 b5b0341645025e6b37978a01d9f68f2558ba809ca49d8c0f17984c413950ba2a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.31-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8d0949b11681380b4a50ac3cd075e4816afe9fa4a8c8ae006c1ca26f0fa40ad8
MD5 208ba9c3acf4c29b2e368a5c0e7eba1d
BLAKE2b-256 e5befa5002451ec5f1e4e92eca644fa3b73c51d3d66efaf715a9f0c20a58a875

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.31-cp27-cp27m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.31-cp27-cp27m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 2.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for SQLAlchemy-1.4.31-cp27-cp27m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c3abc34fed19fdeaead0ced8cf56dd121f08198008c033596aa6aae7cc58f59f
MD5 2b2f721a3b634b3b8472c994abe52255
BLAKE2b-256 8d9b0c293a43204b287ebd2e5d2c0fcb146de7c71d6df507ae2efe0a0bd7c625

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page