Skip to main content

Database Abstraction Library

Reason this release was yanked:

critical caching issue identified, 1.4.35 resolves

Project description

PyPI PyPI - Python Version PyPI - Downloads

The Python SQL Toolkit and Object Relational Mapper

Introduction

SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives application developers the full power and flexibility of SQL. SQLAlchemy provides a full suite of well known enterprise-level persistence patterns, designed for efficient and high-performing database access, adapted into a simple and Pythonic domain language.

Major SQLAlchemy features include:

  • An industrial strength ORM, built from the core on the identity map, unit of work, and data mapper patterns. These patterns allow transparent persistence of objects using a declarative configuration system. Domain models can be constructed and manipulated naturally, and changes are synchronized with the current transaction automatically.

  • A relationally-oriented query system, exposing the full range of SQL’s capabilities explicitly, including joins, subqueries, correlation, and most everything else, in terms of the object model. Writing queries with the ORM uses the same techniques of relational composition you use when writing SQL. While you can drop into literal SQL at any time, it’s virtually never needed.

  • A comprehensive and flexible system of eager loading for related collections and objects. Collections are cached within a session, and can be loaded on individual access, all at once using joins, or by query per collection across the full result set.

  • A Core SQL construction system and DBAPI interaction layer. The SQLAlchemy Core is separate from the ORM and is a full database abstraction layer in its own right, and includes an extensible Python-based SQL expression language, schema metadata, connection pooling, type coercion, and custom types.

  • All primary and foreign key constraints are assumed to be composite and natural. Surrogate integer primary keys are of course still the norm, but SQLAlchemy never assumes or hardcodes to this model.

  • Database introspection and generation. Database schemas can be “reflected” in one step into Python structures representing database metadata; those same structures can then generate CREATE statements right back out - all within the Core, independent of the ORM.

SQLAlchemy’s philosophy:

  • SQL databases behave less and less like object collections the more size and performance start to matter; object collections behave less and less like tables and rows the more abstraction starts to matter. SQLAlchemy aims to accommodate both of these principles.

  • An ORM doesn’t need to hide the “R”. A relational database provides rich, set-based functionality that should be fully exposed. SQLAlchemy’s ORM provides an open-ended set of patterns that allow a developer to construct a custom mediation layer between a domain model and a relational schema, turning the so-called “object relational impedance” issue into a distant memory.

  • The developer, in all cases, makes all decisions regarding the design, structure, and naming conventions of both the object model as well as the relational schema. SQLAlchemy only provides the means to automate the execution of these decisions.

  • With SQLAlchemy, there’s no such thing as “the ORM generated a bad query” - you retain full control over the structure of queries, including how joins are organized, how subqueries and correlation is used, what columns are requested. Everything SQLAlchemy does is ultimately the result of a developer- initiated decision.

  • Don’t use an ORM if the problem doesn’t need one. SQLAlchemy consists of a Core and separate ORM component. The Core offers a full SQL expression language that allows Pythonic construction of SQL constructs that render directly to SQL strings for a target database, returning result sets that are essentially enhanced DBAPI cursors.

  • Transactions should be the norm. With SQLAlchemy’s ORM, nothing goes to permanent storage until commit() is called. SQLAlchemy encourages applications to create a consistent means of delineating the start and end of a series of operations.

  • Never render a literal value in a SQL statement. Bound parameters are used to the greatest degree possible, allowing query optimizers to cache query plans effectively and making SQL injection attacks a non-issue.

Documentation

Latest documentation is at:

https://www.sqlalchemy.org/docs/

Installation / Requirements

Full documentation for installation is at Installation.

Getting Help / Development / Bug reporting

Please refer to the SQLAlchemy Community Guide.

Code of Conduct

Above all, SQLAlchemy places great emphasis on polite, thoughtful, and constructive communication between users and developers. Please see our current Code of Conduct at Code of Conduct.

License

SQLAlchemy is distributed under the MIT license.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SQLAlchemy-1.4.34.tar.gz (8.1 MB view details)

Uploaded Source

Built Distributions

SQLAlchemy-1.4.34-cp310-cp310-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

SQLAlchemy-1.4.34-cp310-cp310-win32.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86

SQLAlchemy-1.4.34-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.34-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.34-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.34-cp310-cp310-macosx_10_15_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

SQLAlchemy-1.4.34-cp39-cp39-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

SQLAlchemy-1.4.34-cp39-cp39-win32.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86

SQLAlchemy-1.4.34-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.34-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.34-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.34-cp39-cp39-macosx_10_15_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

SQLAlchemy-1.4.34-cp38-cp38-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

SQLAlchemy-1.4.34-cp38-cp38-win32.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86

SQLAlchemy-1.4.34-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.34-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.34-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.34-cp38-cp38-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

SQLAlchemy-1.4.34-cp37-cp37m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

SQLAlchemy-1.4.34-cp37-cp37m-win32.whl (1.6 MB view details)

Uploaded CPython 3.7m Windows x86

SQLAlchemy-1.4.34-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.34-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.34-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.34-cp37-cp37m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

SQLAlchemy-1.4.34-cp36-cp36m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

SQLAlchemy-1.4.34-cp36-cp36m-win32.whl (1.6 MB view details)

Uploaded CPython 3.6m Windows x86

SQLAlchemy-1.4.34-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.34-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.34-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.34-cp36-cp36m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

SQLAlchemy-1.4.34-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.34-cp27-cp27m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 2.7m Windows x86-64

SQLAlchemy-1.4.34-cp27-cp27m-win32.whl (1.6 MB view details)

Uploaded CPython 2.7m Windows x86

SQLAlchemy-1.4.34-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.34-cp27-cp27m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m macOS 10.14+ x86-64

File details

Details for the file SQLAlchemy-1.4.34.tar.gz.

File metadata

  • Download URL: SQLAlchemy-1.4.34.tar.gz
  • Upload date:
  • Size: 8.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for SQLAlchemy-1.4.34.tar.gz
Algorithm Hash digest
SHA256 623bac2d6bdca3f3e61cf1e1c466c5fb9f5cf08735736ee1111187b7a4108891
MD5 ff5d630321f68a1c9300c8737ad6f17e
BLAKE2b-256 a26f5bda54b52b50801f83bbb5e2ffac503ef57ea8ec889bcef3263470578964

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.34-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d8efcaa709ea8e7c08c3d3e7639c39b36083f5a995f397f9e6eedf5f5e4e4946
MD5 3ca29630db13aa984fd69ed1e7e47bb7
BLAKE2b-256 787313916401358425d85bc957c29cb46ab9fa5a79b05607f66a4a003ddfd24a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp310-cp310-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.34-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.34-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 3ebb97ed96f4506e2f212e1fcf0ec07a103bb194938627660a5acb4d9feae49c
MD5 bf3073d07f08609eafda05149c21cb19
BLAKE2b-256 e4f98f685b53e8c2658cd1eed4accb24c32169e26da1386a019bc9e69a2ba415

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.34-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6a6cfd468f54d65324fd3847cfd0148b0610efa6a43e5f5fcc89f455696ae9e7
MD5 3ce468413a87660bd7aa76d586651dfe
BLAKE2b-256 c4ddcee59361b1f6305df2d642aac8aafa4226c08a19fb6013dead33049c32e8

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.34-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 671f61c3db4595b0e86cc4b30f675a7c0206d9ce99f041b4f6761c7ddd1e0074
MD5 56f2174657ae9225783f6e97749f3498
BLAKE2b-256 f17811cb7a04b9e07ff12ad55f7242290fb2402c336de49745f8a880d19c8476

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.34-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 27a42894a2751e438eaed12fc0dcfe741ff2f66c14760d081222c5adc5460064
MD5 36556aa1aa24dbb2367f8eb86cb233ee
BLAKE2b-256 0ca42506a7c78dfd7afad6593cbad5603d5645473819bbaa0a1ad11652c79588

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.34-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 4414ace6e3a5e39523e55a5d9f3b215699b2ead4ff91fca98f1b659b7ab2d92a
MD5 11039fd9d55dfd045513256c6564eb81
BLAKE2b-256 aa870156188b11271b5f7ecab301fe5373c4c87a42fc8ade1a959718e4d8a1d3

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.34-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5e88912bf192e7b5739c446d2276e1cba74cfa6c1c93eea2b2534404f6be1dbd
MD5 d6a3637125bc7433037cd8bf7b8787a0
BLAKE2b-256 905afdd19e30adf99ad9201414db7ef8b62f28eaeb0745bca6525bd9723939ba

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp39-cp39-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.34-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.34-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 c3ad7f5b61ba014f5045912aea15b03c473bb02b1c07fd92c9d2c794fa183276
MD5 0a7eaec832cd5889634196cc8f8fcb04
BLAKE2b-256 aa802e9856ec7c37d0274860a3f3b2d0fd1801d042a6a71db1309fa69e6ebf29

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.34-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 eb6558ba07409dafa18c793c34292b3265be455904966f0724c10198829477e3
MD5 a816ca4f69ca4d6832e62d701f68918c
BLAKE2b-256 87e49944e3b068aaacf4cef273aa2473293fb97217500aa4bab8b55b75801751

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.34-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 50107d8183da3fbe5715957aa3954cd9d82aed555c5b4d3fd37fac861af422fa
MD5 c0c5dc6653794df3eb713bb5e147aabc
BLAKE2b-256 c767e12c56ebc3ace5e06c06126473337391af7306f3789329af24c3f916edb8

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.34-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e67278ceb63270cdac0a7b89fc3c29a56f7dac9616a7ee48e7ad6b52e3b631e5
MD5 0677fb51a90c5941b0314075bd1c4b09
BLAKE2b-256 5fef18b5d25042f5ef377429f6c45c19548f6102f7fe86af3b6c757020e09bde

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.34-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 40b995d7aeeb6f88a1927ce6692c0f626b59d8effd3e1d597f125e141707b37c
MD5 094dc16e108ebeb046269f79a4fa9d92
BLAKE2b-256 d9a4b1e833115b38b314c940c87f269d705548c09a46f44b6cac5ed1b6f9b00f

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.34-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 36f08d94670315ca04c8139bd80b3e02b9dd9cc66fc11bcb96fd10ad51a051ab
MD5 768a2367aec987d5fcc602f980ed71f1
BLAKE2b-256 95b65cbc7c9cb2efeb37d2db6e868616f35a0215149398a0677693013c45c0a8

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp38-cp38-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.34-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.34-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 e297a5cc625e3f1367a82deedf2d48ee4d2b2bd263b8b8d2efbaaf5608b5229e
MD5 9519af7e7e0a1d00c2113574344edfd5
BLAKE2b-256 871b661e9fe83e5762317a915aca556f2cd8eb19d5239800f8a4eebc5edcab6e

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.34-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 70048a83f0a1ece1fcd7189891c888e20af2c57fbd33eb760d8cece9843b896c
MD5 665aaa090cb947e40a9a7cafe7f0dbe9
BLAKE2b-256 6687f2cf49e16538212924e88859a673e5fb5ddcf8a3e05b3474ac9a6a17a30b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.34-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 045d6a26c262929af0b9cb25441aae675ac04db4ea8bd2446b355617cd6b6b7d
MD5 9c55d9da53f6ffe7975318aab05136fb
BLAKE2b-256 ba3149d37cda0ef51edc2326cc71244a39cfc12846c87903b415a15c81c26207

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.34-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 621d3f6c0ba2407bb97e82b649be5ca7d5b6c201dcfb964ce13f517bf1cb6305
MD5 ff6f17c4873f21702f1842eb4dabf55d
BLAKE2b-256 c614bf3230bf7dee157ccf012bfc8ae63622f982c98756b2b4d2fca09a384d02

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.34-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 878c7beaafa365602762c19f638282e1885454fed1aed86f8fae038933c7c671
MD5 9eaad2263e8e4c420a4eeb7f337ca48b
BLAKE2b-256 5e83629d9435ca9f9a42d733739fb158a0ccdbdc638b725e6ef8368284bae985

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.34-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 50174e173d03209c34e07e7b57cca48d0082ac2390edf927aafc706c111da11e
MD5 6b276aed1ac15d7fd24ceacc73a5a1cf
BLAKE2b-256 e2cd437a26a72b79ecde069f68be32663c6b65a1bcf876163b76ede6c3f1ed5a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp37-cp37m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.34-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.34-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 345306707bb0e51e7cd6e7573adafbce018894ee5e3b9c31134545f704936db0
MD5 cf8bacd58954ecae675b6d9462595a5e
BLAKE2b-256 a53ad253a297943435769b3af5b568938d283a0555b95d468c0b3ef92151f3ee

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.34-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 804cf491437f3e4ce31247ab4b309b181f06ecc97d309b746d10f09439b4eb85
MD5 8bee386d8af365496aa0e17cd4539913
BLAKE2b-256 41066f3ced8ba2a64fdfae1fbd242a2c8a8846a241349c921027de22d5f424fa

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.34-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 08aaad905aba8940f27aeb9f1f851bf63f18ef97b0062ca41f64afc4b64e0e8c
MD5 064bb26b13e9c1306a0d5217c3e003d7
BLAKE2b-256 a6197c0df6878e414c0b6308fe3404387199176717c2053203b3e1f9aa13277e

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.34-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f197c66663ed0f9e1178d51141d864688fb244a83f6b17f667d521e482537b2e
MD5 95e3fa24c24bce60d8c5dc43fc5c7166
BLAKE2b-256 aab4a0a3053868543fd32b276abbd6d870f760bffed90a59c31ceb447d412f34

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.34-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b34bbc683789559f1bc9bb685fc162e0956dbbdfbe2fbd6755a9f5982c113610
MD5 1ed9efcf2f7674d409a3bda7677d9437
BLAKE2b-256 d8eab265a4d158ed862900e01a46efa7d4680a1918a297ed83e97d86d3a97ee0

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.34-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 f47996b1810894f766c9ee689607077c6c0e0fd6761e04c12ba13efb56d50c1d
MD5 66d61f2cda058d60c92853a39cf3eb38
BLAKE2b-256 834aaa25d70f7187e3ed58427f035a0e09975f5aa955b3ea97b5f2d006c92c7e

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp36-cp36m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.34-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.34-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 2a3e4dc7c452ba3c0f3175ad5a8e0ba49c2b0570a8d07272cf50844c8d78e74f
MD5 eefe7ebf9502e0160a1e7c082fdcf368
BLAKE2b-256 a3b5cd16523c3c68809baa33aa6841295bd5cc2a6ba9c6e0678f67c569a82cfc

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.34-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 07f4dab2deb6d34618a2ccfff3971a85923ad7c3a9a45401818870fc51d3f0cc
MD5 18502f6a04ff42f931af881b06ef2fa2
BLAKE2b-256 c22dcd2133c82ddfe566b4cd8468f7a2c1d888d6dfff5008cedc201e801bb946

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.34-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 954ea8c527c4322afb6885944904714893af81fe9167e421273770991bf08a4a
MD5 80dc7d01af1c221fafc2e7968f1a5d8f
BLAKE2b-256 dea0e5c6f419bcfd61538c03d3a15c6ef8f09a9f7839a10844170ab9de1851f1

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.34-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 67c1c27c48875afc950bee5ee24582794f20b545e64e4f9ca94071a9b514d6ed
MD5 3044f357761045fe9db5455fbf81830f
BLAKE2b-256 7bc727302a323d5a06f93123df70e3cf4b53f8eaa07bf3ed1859da4376168460

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.34-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a4fb5c6ee84a6bba4ff6f9f5379f0b3a0ffe9de7ba5a0945659b3da8d519709b
MD5 48c07b66c6d057eaf5496b558cbeeab1
BLAKE2b-256 ac4293de4c0615ef9b885c1276a1ac8a7f1bc01043469d6aa38ff69826679901

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.34-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7ee14a7f9f76d1ef9d5e5b760c9252617c839b87eee04d1ce8325ac66ae155c4
MD5 8789b21cd42104d89ff03c2ef26fa08f
BLAKE2b-256 8b97ac0083b975aab82e51cc47b60bd9b878ed9b1196e918183ce607a19f0ba9

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.34-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 c9218e3519398129e364121e0d89823e6ba2a2b77c28bfc661face0829c41433
MD5 b799576cc302a26ad8555f11feb28616
BLAKE2b-256 2f8f845efeadb6561acb7be8014d82494069c84230b35e925cc3a0e2719942d5

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp27-cp27m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.34-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.34-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 a47bf6b7ca6c28e4f4e262fabcf5be6b907af81be36de77839c9eeda2cdf3bb3
MD5 4d675c0e9a6d58f8f97bb85e5deb7339
BLAKE2b-256 61e43ee087ea41e1c3ac909136cb2fe8a1030391259a255f9611474c173d115a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.34-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 cd5cffd1dd753828f1069f33062f3896e51c990acd957c264f40e051b3e19887
MD5 47226a7aeced6489772d8944c117ce62
BLAKE2b-256 26d5a642b41d53b4e5cdc31b994c09ac3725e0c11fd6feda33a664ab0f5cc084

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.34-cp27-cp27m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.34-cp27-cp27m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c025d45318b73c0601cca451532556cbab532b2742839ebb8cb58f9ebf06811e
MD5 b9974aff9b983df19060eaca866c1412
BLAKE2b-256 8fbebfb4019b52491103662116452fd085158cc77568d9004da69f2bb8e8c720

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page