Skip to main content

Database Abstraction Library

Project description

PyPI PyPI - Python Version PyPI - Downloads

The Python SQL Toolkit and Object Relational Mapper

Introduction

SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives application developers the full power and flexibility of SQL. SQLAlchemy provides a full suite of well known enterprise-level persistence patterns, designed for efficient and high-performing database access, adapted into a simple and Pythonic domain language.

Major SQLAlchemy features include:

  • An industrial strength ORM, built from the core on the identity map, unit of work, and data mapper patterns. These patterns allow transparent persistence of objects using a declarative configuration system. Domain models can be constructed and manipulated naturally, and changes are synchronized with the current transaction automatically.

  • A relationally-oriented query system, exposing the full range of SQL’s capabilities explicitly, including joins, subqueries, correlation, and most everything else, in terms of the object model. Writing queries with the ORM uses the same techniques of relational composition you use when writing SQL. While you can drop into literal SQL at any time, it’s virtually never needed.

  • A comprehensive and flexible system of eager loading for related collections and objects. Collections are cached within a session, and can be loaded on individual access, all at once using joins, or by query per collection across the full result set.

  • A Core SQL construction system and DBAPI interaction layer. The SQLAlchemy Core is separate from the ORM and is a full database abstraction layer in its own right, and includes an extensible Python-based SQL expression language, schema metadata, connection pooling, type coercion, and custom types.

  • All primary and foreign key constraints are assumed to be composite and natural. Surrogate integer primary keys are of course still the norm, but SQLAlchemy never assumes or hardcodes to this model.

  • Database introspection and generation. Database schemas can be “reflected” in one step into Python structures representing database metadata; those same structures can then generate CREATE statements right back out - all within the Core, independent of the ORM.

SQLAlchemy’s philosophy:

  • SQL databases behave less and less like object collections the more size and performance start to matter; object collections behave less and less like tables and rows the more abstraction starts to matter. SQLAlchemy aims to accommodate both of these principles.

  • An ORM doesn’t need to hide the “R”. A relational database provides rich, set-based functionality that should be fully exposed. SQLAlchemy’s ORM provides an open-ended set of patterns that allow a developer to construct a custom mediation layer between a domain model and a relational schema, turning the so-called “object relational impedance” issue into a distant memory.

  • The developer, in all cases, makes all decisions regarding the design, structure, and naming conventions of both the object model as well as the relational schema. SQLAlchemy only provides the means to automate the execution of these decisions.

  • With SQLAlchemy, there’s no such thing as “the ORM generated a bad query” - you retain full control over the structure of queries, including how joins are organized, how subqueries and correlation is used, what columns are requested. Everything SQLAlchemy does is ultimately the result of a developer- initiated decision.

  • Don’t use an ORM if the problem doesn’t need one. SQLAlchemy consists of a Core and separate ORM component. The Core offers a full SQL expression language that allows Pythonic construction of SQL constructs that render directly to SQL strings for a target database, returning result sets that are essentially enhanced DBAPI cursors.

  • Transactions should be the norm. With SQLAlchemy’s ORM, nothing goes to permanent storage until commit() is called. SQLAlchemy encourages applications to create a consistent means of delineating the start and end of a series of operations.

  • Never render a literal value in a SQL statement. Bound parameters are used to the greatest degree possible, allowing query optimizers to cache query plans effectively and making SQL injection attacks a non-issue.

Documentation

Latest documentation is at:

https://www.sqlalchemy.org/docs/

Installation / Requirements

Full documentation for installation is at Installation.

Getting Help / Development / Bug reporting

Please refer to the SQLAlchemy Community Guide.

Code of Conduct

Above all, SQLAlchemy places great emphasis on polite, thoughtful, and constructive communication between users and developers. Please see our current Code of Conduct at Code of Conduct.

License

SQLAlchemy is distributed under the MIT license.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SQLAlchemy-1.4.35.tar.gz (8.1 MB view details)

Uploaded Source

Built Distributions

SQLAlchemy-1.4.35-cp310-cp310-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

SQLAlchemy-1.4.35-cp310-cp310-win32.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86

SQLAlchemy-1.4.35-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.35-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.35-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.35-cp310-cp310-macosx_10_15_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

SQLAlchemy-1.4.35-cp39-cp39-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

SQLAlchemy-1.4.35-cp39-cp39-win32.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86

SQLAlchemy-1.4.35-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.35-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.35-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.35-cp39-cp39-macosx_10_15_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

SQLAlchemy-1.4.35-cp38-cp38-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

SQLAlchemy-1.4.35-cp38-cp38-win32.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86

SQLAlchemy-1.4.35-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.35-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.35-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.35-cp38-cp38-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

SQLAlchemy-1.4.35-cp37-cp37m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

SQLAlchemy-1.4.35-cp37-cp37m-win32.whl (1.6 MB view details)

Uploaded CPython 3.7m Windows x86

SQLAlchemy-1.4.35-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.35-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.35-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.35-cp37-cp37m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

SQLAlchemy-1.4.35-cp36-cp36m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

SQLAlchemy-1.4.35-cp36-cp36m-win32.whl (1.6 MB view details)

Uploaded CPython 3.6m Windows x86

SQLAlchemy-1.4.35-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.35-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.35-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.35-cp36-cp36m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

SQLAlchemy-1.4.35-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.35-cp27-cp27m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 2.7m Windows x86-64

SQLAlchemy-1.4.35-cp27-cp27m-win32.whl (1.6 MB view details)

Uploaded CPython 2.7m Windows x86

SQLAlchemy-1.4.35-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.35-cp27-cp27m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m macOS 10.14+ x86-64

File details

Details for the file SQLAlchemy-1.4.35.tar.gz.

File metadata

  • Download URL: SQLAlchemy-1.4.35.tar.gz
  • Upload date:
  • Size: 8.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for SQLAlchemy-1.4.35.tar.gz
Algorithm Hash digest
SHA256 2ffc813b01dc6473990f5e575f210ca5ac2f5465ace3908b78ffd6d20058aab5
MD5 121f3374e3cb3d73bb3e00ad2a81aa03
BLAKE2b-256 f6d6fcf14b752daba13a02a6669eccb025bf3ba3f814741cd23253c180a12fff

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.35-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 48f0eb5bcc87a9b2a95b345ed18d6400daaa86ca414f6840961ed85c342af8f4
MD5 ae2610c5fd12eb79526b7fd94d5afbcb
BLAKE2b-256 639ad31aebbf8923772d4ff4b75b14ab0e1c69f2889c435a7b83205a4862583d

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.35-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 1ff9f84b2098ef1b96255a80981ee10f4b5d49b6cfeeccf9632c2078cd86052e
MD5 158a18de7bcd7c6ee1f38bf28edaca63
BLAKE2b-256 2659db37527ffa720386c0dc830a4f6b6b2bb2d50bbac3460d602a78cfb45093

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.35-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d17316100fcd0b6371ac9211351cb976fd0c2e12a859c1a57965e3ef7f3ed2bc
MD5 af339e8a2fa530778b5395c93f7d210b
BLAKE2b-256 b0cc453eae2ad2bce3ab679aaf2a57211cb824135dd667f17392a95014ed85de

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.35-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a4efb70a62cbbbc052c67dc66b5448b0053b509732184af3e7859d05fdf6223c
MD5 a1765eb1c3f990dffe89157fcacdbee3
BLAKE2b-256 0ae8f47d840ee2fdb3adeeececa72a041c16c9de3123227f1e5113fd1a5455a9

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.35-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9837133b89ad017e50a02a3b46419869cf4e9aa02743e911b2a9e25fa6b05403
MD5 5d6856a150d311a4d4eb5c45fdeafafe
BLAKE2b-256 f33162548eab55a3ed38b8d27f467c0345517eadd24528e214573615190f3988

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.35-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 4ba2c1f368bcf8551cdaa27eac525022471015633d5bdafbc4297e0511f62f51
MD5 a07af591d3d847d218030a1a150c5c26
BLAKE2b-256 c25ce8a525395a156996c1a8e9c60a9c4e8572e22fc1d509d4c9be8a3c5d8c39

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.35-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 53c7469b86a60fe2babca4f70111357e6e3d5150373bc85eb3b914356983e89a
MD5 409e0590f547537d3b34e42c3d336d2d
BLAKE2b-256 e22df90a358320e13741b7aeb7f971c18d9fc3e6c807dbffb2c6390416c2cb29

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp39-cp39-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.35-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.35-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 ecc81336b46e31ae9c9bdfa220082079914e31a476d088d3337ecf531d861228
MD5 7fdad679ab4597190a2e160fab4aa2d0
BLAKE2b-256 593bcce510f85f0a0c6ce0cf63a40e326a8cfc28e9190bc13fafd1c9b96da008

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.35-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9d8edfb09ed2b865485530c13e269833dab62ab2d582fde21026c9039d4d0e62
MD5 e8af3e0b3eec7b0d1ecf42e0bbed7aa8
BLAKE2b-256 707968f43182b036cccf1f51df1dc235e8fcf9dfa7ab0b4bbd9bd017fc2aa972

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.35-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 28aa2ef06c904729620cc735262192e622db9136c26d8587f71f29ec7715628a
MD5 ab6c650941fa8ec7ae706f7592eea68c
BLAKE2b-256 784612ba38378d28240e6a76ae7503c74bac9ab95e7963e3947f40971195d90f

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.35-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6204d06bfa85f87625e1831ca663f9dba91ac8aec24b8c65d02fb25cbaf4b4d7
MD5 3b1acdcd8d3279b1a8bb6296fc7c79d9
BLAKE2b-256 db9dc640e1749b97866778f117ad930e79a45a5152aa8db89fef77fc941d6c13

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.35-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 1b4eac3933c335d7f375639885765722534bb4e52e51cdc01a667eea822af9b6
MD5 4b54ba4523e23c822ea367c44986a1ff
BLAKE2b-256 d5d400d9e5e3c9ec9916dac5627945096a66aadc329191511cb16b5faaa3bd48

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.35-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9e7094cf04e6042c4210a185fa7b9b8b3b789dd6d1de7b4f19452290838e48bd
MD5 f91d18e8f72009bc8b06270f32d7313f
BLAKE2b-256 3db6b202236baf6cec75460fda2fbe30a36e50e608691dcda45abf22beb98d6b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp38-cp38-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.35-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.35-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 28b17ebbaee6587013be2f78dc4f6e95115e1ec8dd7647c4e7be048da749e48b
MD5 45e3965148b398cd3ee545381ff2cfa3
BLAKE2b-256 fb6016495a9446ff530ec0a15ad7db34b611495b514e6d7dc34fae97b1623548

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.35-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e255a8dd5572b0c66d6ee53597d36157ad6cf3bc1114f61c54a65189f996ab03
MD5 d3816b900b41b4b49e8c7c050438c7e4
BLAKE2b-256 ecacba8a4283341f67ddd3f85f05359a44cdd581b0e0ce01207046c1088a3c18

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.35-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 95411abc0e36d18f54fa5e24d42960ea3f144fb16caaa5a8c2e492b5424cc82c
MD5 7fd15dc51229564cacc4def41d314f4c
BLAKE2b-256 44e619f18fc78203be275dd03f99e513c180c5bdf79d523daa1c9b8ff718321e

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.35-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9bec63b1e20ef69484f530fb4b4837e050450637ff9acd6dccc7003c5013abf8
MD5 9d49742bf1a5bf9010b3ec9cde089a83
BLAKE2b-256 5324f7d9fe06a54078add2f3cc8e1ebbb619471291298df4efd097456b4b56af

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.35-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9e1a72197529ea00357640f21d92ffc7024e156ef9ac36edf271c8335facbc1a
MD5 284f59dd518b0be786c2ffaa2aafaf7a
BLAKE2b-256 04689057ce6f8c0426fb95f23f723d8e042476c0f7c633acb2836f88c8c3dd64

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.35-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 babd63fb7cb6b0440abb6d16aca2be63342a6eea3dc7b613bb7a9357dc36920f
MD5 0980f8421f4e2033e1d2eb48b98d0a3f
BLAKE2b-256 a193f0938420e20ea6600edd7d4385aa1a7a5169d4dbb75b02df7ff6db48ef13

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp37-cp37m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.35-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.35-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 186cb3bd77abf2ddcf722f755659559bfb157647b3fd3f32ea1c70e8311e8f6b
MD5 109bca6322d0c66e04d6576e0c016224
BLAKE2b-256 c55abb14443fb6a2bf9591b65656a88170fe7a5e47adad57f04e850e33ffce6c

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.35-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 effadcda9a129cc56408dd5b2ea20ee9edcea24bd58e6a1489fa27672d733182
MD5 ab100d015bccce8a1dde5f062d063a21
BLAKE2b-256 872d171eb9c1b70242d87f2ff69d0bcdf5628b1ae5ee8af00782ba41197cd6ce

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.35-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b2489e70bfa2356f2d421106794507daccf6cc8711753c442fc97272437fc606
MD5 51c725df0c2ee1fa321903d6c026b8c5
BLAKE2b-256 125ff2c1f95b5bd8d4c3029569ef12036a972deacb984ada847be159c53015ef

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.35-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2c6c411d8c59afba95abccd2b418f30ade674186660a2d310d364843049fb2c1
MD5 481de66137845b9082b0171d86a894f1
BLAKE2b-256 0334ef992975fdd3dbb71683ed6e23548c6a703fe5c1ff650d78026ee1f8624f

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.35-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 63c82c9e8ccc2fb4bfd87c24ffbac320f70b7c93b78f206c1f9c441fa3013a5f
MD5 28c68ac41065336e6ab9f0d9ac63eb83
BLAKE2b-256 378845b2ec44184d856ad3d75c1d626d9b4cd09dd65f65de3edabc35425fe9a4

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.35-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 e8b09e2d90267717d850f2e2323919ea32004f55c40e5d53b41267e382446044
MD5 80379c4a60d1f29ed8cfb0dd4bc3fe63
BLAKE2b-256 6bbfde22fb72153a303dd89dc8b2cae56bda6658ad04aeec1ebe215405b7fb9a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp36-cp36m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.35-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.35-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 9dac1924611698f8fe5b2e58601156c01da2b6c0758ba519003013a78280cf4d
MD5 81f069f16641feec68e53491aed0e254
BLAKE2b-256 41a21810bc9c028ff0dd53e08ad464540bf472ad87b309edeafc7e6907946d52

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.35-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 aeea6ace30603ca9a8869853bb4a04c7446856d7789e36694cd887967b7621f6
MD5 c37a44e691a377bce0e3a528166d8f61
BLAKE2b-256 945b94e9ec61c44d4299e03eba996f6b3526f133e370938c4f9dc5ec42020a9d

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.35-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cfd8e4c64c30a5219032e64404d468c425bdbc13b397da906fc9bee6591fc0dd
MD5 b94d418f819f6b1b26738a33a2ed96bf
BLAKE2b-256 425779e2a9ceb2af64eece976c4a3fbe8e85ca9e46112a57a6b95e8cef6e6e4a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.35-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a5dbdbb39c1b100df4d182c78949158073ca46ba2850c64fe02ffb1eb5b70903
MD5 0ffe4d85840800beebf3bbe13a3067f3
BLAKE2b-256 9754e4eb6c91d564bcec72f35b323684e3927d8f22c470e17e1f87bd86f873ed

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.35-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 da25e75ba9f3fabc271673b6b413ca234994e6d3453424bea36bb5549c5bbaec
MD5 b010f7a6e4d60e45ae93aa476ad2e233
BLAKE2b-256 e302a97c89211993e6d1d20a5826fad49bcb7095c8078fbb4ff06cd91b9f09d0

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.35-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 48036698f20080462e981b18d77d574631a3d1fc2c33b416c6df299ec1d10b99
MD5 b1bcc3b62c2d8fe9830aad2d0f49bd2b
BLAKE2b-256 1e8b6cc30a5c4eda835b62367e994c426c20742ed86ee7e4f275042024a7e225

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.35-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 70e571ae9ee0ff36ed37e2b2765445d54981e4d600eccdf6fe3838bc2538d157
MD5 503d03e07c04728687a8c593cc395476
BLAKE2b-256 a7425e788a248f55c3c6ee508ab8329d4ff6d147e0d064fd07dfb44141179f27

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp27-cp27m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.35-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.35-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 d38a49aa75a5759d0d118e26701d70c70a37b896379115f8386e91b0444bfa70
MD5 b13e98de0090a980e103c041feda5b43
BLAKE2b-256 eda504c1a9dc293029c32ea9a0a05edcb06e6fbed6c72cca861de9653ac90923

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.35-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c6fb6b9ed1d0be7fa2c90be8ad2442c14cbf84eb0709dd1afeeff1e511550041
MD5 b85f0d0603742f4042226c905782c331
BLAKE2b-256 8a0ce6e46447da1d539a68a7290dde5037dd1d5f64f7c3c12e1b8e783510da36

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.35-cp27-cp27m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.35-cp27-cp27m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 093b3109c2747d5dc0fa4314b1caf4c7ca336d5c8c831e3cfbec06a7e861e1e6
MD5 75a61d8f0360df029fe2cc262ff70d2c
BLAKE2b-256 cff99daa71bf6c6664edc8b426e4df3a4c96bf01eb5b497a1b1ad0ab45a7b506

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page