Skip to main content

Database Abstraction Library

Project description

PyPI PyPI - Python Version PyPI - Downloads

The Python SQL Toolkit and Object Relational Mapper

Introduction

SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives application developers the full power and flexibility of SQL. SQLAlchemy provides a full suite of well known enterprise-level persistence patterns, designed for efficient and high-performing database access, adapted into a simple and Pythonic domain language.

Major SQLAlchemy features include:

  • An industrial strength ORM, built from the core on the identity map, unit of work, and data mapper patterns. These patterns allow transparent persistence of objects using a declarative configuration system. Domain models can be constructed and manipulated naturally, and changes are synchronized with the current transaction automatically.

  • A relationally-oriented query system, exposing the full range of SQL’s capabilities explicitly, including joins, subqueries, correlation, and most everything else, in terms of the object model. Writing queries with the ORM uses the same techniques of relational composition you use when writing SQL. While you can drop into literal SQL at any time, it’s virtually never needed.

  • A comprehensive and flexible system of eager loading for related collections and objects. Collections are cached within a session, and can be loaded on individual access, all at once using joins, or by query per collection across the full result set.

  • A Core SQL construction system and DBAPI interaction layer. The SQLAlchemy Core is separate from the ORM and is a full database abstraction layer in its own right, and includes an extensible Python-based SQL expression language, schema metadata, connection pooling, type coercion, and custom types.

  • All primary and foreign key constraints are assumed to be composite and natural. Surrogate integer primary keys are of course still the norm, but SQLAlchemy never assumes or hardcodes to this model.

  • Database introspection and generation. Database schemas can be “reflected” in one step into Python structures representing database metadata; those same structures can then generate CREATE statements right back out - all within the Core, independent of the ORM.

SQLAlchemy’s philosophy:

  • SQL databases behave less and less like object collections the more size and performance start to matter; object collections behave less and less like tables and rows the more abstraction starts to matter. SQLAlchemy aims to accommodate both of these principles.

  • An ORM doesn’t need to hide the “R”. A relational database provides rich, set-based functionality that should be fully exposed. SQLAlchemy’s ORM provides an open-ended set of patterns that allow a developer to construct a custom mediation layer between a domain model and a relational schema, turning the so-called “object relational impedance” issue into a distant memory.

  • The developer, in all cases, makes all decisions regarding the design, structure, and naming conventions of both the object model as well as the relational schema. SQLAlchemy only provides the means to automate the execution of these decisions.

  • With SQLAlchemy, there’s no such thing as “the ORM generated a bad query” - you retain full control over the structure of queries, including how joins are organized, how subqueries and correlation is used, what columns are requested. Everything SQLAlchemy does is ultimately the result of a developer- initiated decision.

  • Don’t use an ORM if the problem doesn’t need one. SQLAlchemy consists of a Core and separate ORM component. The Core offers a full SQL expression language that allows Pythonic construction of SQL constructs that render directly to SQL strings for a target database, returning result sets that are essentially enhanced DBAPI cursors.

  • Transactions should be the norm. With SQLAlchemy’s ORM, nothing goes to permanent storage until commit() is called. SQLAlchemy encourages applications to create a consistent means of delineating the start and end of a series of operations.

  • Never render a literal value in a SQL statement. Bound parameters are used to the greatest degree possible, allowing query optimizers to cache query plans effectively and making SQL injection attacks a non-issue.

Documentation

Latest documentation is at:

https://www.sqlalchemy.org/docs/

Installation / Requirements

Full documentation for installation is at Installation.

Getting Help / Development / Bug reporting

Please refer to the SQLAlchemy Community Guide.

Code of Conduct

Above all, SQLAlchemy places great emphasis on polite, thoughtful, and constructive communication between users and developers. Please see our current Code of Conduct at Code of Conduct.

License

SQLAlchemy is distributed under the MIT license.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SQLAlchemy-1.4.36.tar.gz (8.1 MB view details)

Uploaded Source

Built Distributions

SQLAlchemy-1.4.36-cp310-cp310-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

SQLAlchemy-1.4.36-cp310-cp310-win32.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86

SQLAlchemy-1.4.36-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.36-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.36-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.36-cp310-cp310-macosx_10_15_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

SQLAlchemy-1.4.36-cp39-cp39-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

SQLAlchemy-1.4.36-cp39-cp39-win32.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86

SQLAlchemy-1.4.36-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.36-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.36-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.36-cp39-cp39-macosx_10_15_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

SQLAlchemy-1.4.36-cp38-cp38-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

SQLAlchemy-1.4.36-cp38-cp38-win32.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86

SQLAlchemy-1.4.36-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.36-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.36-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.36-cp38-cp38-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

SQLAlchemy-1.4.36-cp37-cp37m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

SQLAlchemy-1.4.36-cp37-cp37m-win32.whl (1.6 MB view details)

Uploaded CPython 3.7m Windows x86

SQLAlchemy-1.4.36-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.36-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.36-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.36-cp37-cp37m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

SQLAlchemy-1.4.36-cp36-cp36m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

SQLAlchemy-1.4.36-cp36-cp36m-win32.whl (1.6 MB view details)

Uploaded CPython 3.6m Windows x86

SQLAlchemy-1.4.36-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.36-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.36-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.36-cp36-cp36m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

SQLAlchemy-1.4.36-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.36-cp27-cp27m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 2.7m Windows x86-64

SQLAlchemy-1.4.36-cp27-cp27m-win32.whl (1.6 MB view details)

Uploaded CPython 2.7m Windows x86

SQLAlchemy-1.4.36-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.36-cp27-cp27m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m macOS 10.14+ x86-64

File details

Details for the file SQLAlchemy-1.4.36.tar.gz.

File metadata

  • Download URL: SQLAlchemy-1.4.36.tar.gz
  • Upload date:
  • Size: 8.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for SQLAlchemy-1.4.36.tar.gz
Algorithm Hash digest
SHA256 64678ac321d64a45901ef2e24725ec5e783f1f4a588305e196431447e7ace243
MD5 11028a2d6420e03920f228d3c9539739
BLAKE2b-256 fbb053e540c9fad14ac2da8a15ae95d707b167f64f62d85d4f506b0335dfd66d

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.36-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 64d796e9af522162f7f2bf7a3c5531a0a550764c426782797bbeed809d0646c5
MD5 d308c8b939f0cc6dae56e0d1a07fdbbb
BLAKE2b-256 46be1fe89630d6bcd239c702117a5c7be7f1403137b8dd5fb451533995d73b58

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp310-cp310-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.36-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.36-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 be094460930087e50fd08297db9d7aadaed8408ad896baf758e9190c335632da
MD5 41aa71244e4d7a261dd40208263bcd5b
BLAKE2b-256 b5b13ea004b6e6a30f5098c20bfb3153343acabf5a6e0f1a77e1ab941165f3db

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.36-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 09c606d8238feae2f360b8742ffbe67741937eb0a05b57f536948d198a3def96
MD5 6c7f4244e882cfb9ceb6ef280369f235
BLAKE2b-256 9c6b81d2d3e3020f9105570a7e8730815134223802f13d1fd122ee5c813cf1d2

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.36-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5041474dcab7973baa91ec1f3112049a9dd4652898d6a95a6a895ff5c58beb6b
MD5 c8c47e8db5f8aac91dc8eaaf95bdb96e
BLAKE2b-256 d4c81496a0fb6b853eeb2fbd82f0cdd3b5c1ca0a7d46146dc91ce3b65a1616bf

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.36-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8d07fe2de0325d06e7e73281e9a9b5e259fbd7cbfbe398a0433cbb0082ad8fa7
MD5 78368b896c2f392cb9f3d179a2c5c561
BLAKE2b-256 3e2cfcb7508e5e40c42eb00516c7c1a936afae7af95b2de0e4680a60924fff7f

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.36-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 f0394a3acfb8925db178f7728adb38c027ed7e303665b225906bfa8099dc1ce8
MD5 e762ed567309dcf5d0cb90b282e83f48
BLAKE2b-256 8239cab0562a7e580004b513856bf73af789a8b9aa810b3e2bb25b9ab74f720f

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.36-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 cb441ca461bf97d00877b607f132772644b623518b39ced54da433215adce691
MD5 c526a8c1bb436c30fb9e698205b438c0
BLAKE2b-256 2ef9d099355b7d2a8cf9779714fee3fd10e0a3c2683e98cb6bb77e059250bc43

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp39-cp39-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.36-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.36-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 e12532c4d3f614678623da5d852f038ace1f01869b89f003ed6fe8c793f0c6a3
MD5 6422b98dc3c16c76a9fb14f5fcfffe4b
BLAKE2b-256 d6534db126672fdb02f196aabb0478a170d238afccde8bdf0b92fece904daef9

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.36-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2ecac4db8c1aa4a269f5829df7e706639a24b780d2ac46b3e485cbbd27ec0028
MD5 7c0f4cec8075d9852301eeabec2b8a1a
BLAKE2b-256 f166f76a995402df36fb30a816a35ed0d118f0e083c74b1650dfd0e798e1f671

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.36-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2ec89bf98cc6a0f5d1e28e3ad28e9be6f3b4bdbd521a4053c7ae8d5e1289a8a1
MD5 a4c56d3383af683962735d3e2a60e61f
BLAKE2b-256 77bb149385fa35826aeb92acb0732a1ac6939a3c177268c0cb386188b96f148d

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.36-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b3db741beaa983d4cbf9087558620e7787106319f7e63a066990a70657dd6b35
MD5 4853fa5f8e54ee018e9d29690b3d67f0
BLAKE2b-256 a4fbb8a957adfb8ab10c4fb44fe3fd443ad7fc097226f6dc4fd13a48f3fd27f0

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.36-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 f522214f6749bc073262529c056f7dfd660f3b5ec4180c5354d985eb7219801e
MD5 811d19c1758983ae05b68a18be044b30
BLAKE2b-256 b705b82f1880c1ba7e01a022598141101af22813d16318ebbf90a939a664ba35

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.36-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 316c7e5304dda3e3ad711569ac5d02698bbc71299b168ac56a7076b86259f7ea
MD5 95f238a332ae40effd8406fb9b3d2b23
BLAKE2b-256 9818da158c0326e41f474325f253889cdc0e370cb18d4cb81c841269507f329c

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp38-cp38-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.36-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.36-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 ce20f5da141f8af26c123ebaa1b7771835ca6c161225ce728962a79054f528c3
MD5 e883d62e2ecc3da9ffafcb3bbd54b898
BLAKE2b-256 1a87098bfa50938a49edb973ca6c8a0a66f1068c3382cfd4db0e4c225ac81b16

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.36-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8b20c4178ead9bc398be479428568ff31b6c296eb22e75776273781a6551973f
MD5 1bf2e838abffe408da83356fa1ed852e
BLAKE2b-256 fd7c5dd890fb57d5635cac8111f2d1941238662da92a84d12d5d00f5ec7c5f9e

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.36-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 83cf3077712be9f65c9aaa0b5bc47bc1a44789fd45053e2e3ecd59ff17c63fe9
MD5 fcdeaf5bf69cd6838e340c9045b0bf0e
BLAKE2b-256 27c25e6edfc43172d64f54d6e6ccbf744395581f449e8483a0df3867a9c13d27

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.36-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 af2587ae11400157753115612d6c6ad255143efba791406ad8a0cbcccf2edcb3
MD5 b36b1bbb08822020e836ee105b8f42d9
BLAKE2b-256 855298c6289a32525d54da2abfd17920636ccab29a47707b5bd3a2b7ac1dc832

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.36-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e74ce103b81c375c3853b436297952ef8d7863d801dcffb6728d01544e5191b5
MD5 e49e6411448726c04110d56025e1fde5
BLAKE2b-256 b08917dc01974ca5058b7d66fb39b74dc5a83e5b3f574189d37043791fc262d6

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.36-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 6cb4c4f57a20710cea277edf720d249d514e587f796b75785ad2c25e1c0fed26
MD5 f396fa71f662e8633e84ad29c22ff5c7
BLAKE2b-256 e0a165bba009d35be3ddf0d8185594c1403feba6c720b10031eb176394b8989e

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp37-cp37m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.36-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.36-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 dce3468bf1fc12374a1a732c9efd146ce034f91bb0482b602a9311cb6166a920
MD5 94ddb107cbf4706c845773b074f60642
BLAKE2b-256 eab078001b5fe9fb1024174d0cf5479f7e75b33d41add8c5e13c069a8abf3ede

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.36-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2e885548da361aa3f8a9433db4cfb335b2107e533bf314359ae3952821d84b3e
MD5 974104177cba38789ed026bc816544a9
BLAKE2b-256 6a9909fbe34277bdb1117a28eb2fef08fb79cf1548b2e5fec1fc372a4057eba3

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.36-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7a052bd9f53004f8993c624c452dfad8ec600f572dd0ed0445fbe64b22f5570e
MD5 5e9bb0750137fb8148d3692673003d66
BLAKE2b-256 3693ba9e48b15260e7420482d73f5fc0f9d8d63d4e0da455118f033bf171300a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.36-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5c90ef955d429966d84326d772eb34333178737ebb669845f1d529eb00c75e72
MD5 4ddb8beacaea39800f19caf1e5115b90
BLAKE2b-256 f5b3a7b027a376e0e1673c07b205055b0a8e526506bee1e6751357f692e9c3e2

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.36-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 166a3887ec355f7d2f12738f7fa25dc8ac541867147a255f790f2f41f614cb44
MD5 1f61f302dff9711141fe9271952f0365
BLAKE2b-256 b0cb09d3119945f00a9c11c968bd5a6bb5d4c752cc17c39394c92f9ec4cee787

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.36-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 6e859fa96605027bd50d8e966db1c4e1b03e7b3267abbc4b89ae658c99393c58
MD5 4af0a83886b7be691bf61a1465cad0d8
BLAKE2b-256 4491a7752f2f7ce152144bf6e4f8a707a9f5ccfad6a39612ad8f41aa1b873196

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp36-cp36m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.36-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.36-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 fbf8c09fe9728168f8cc1b40c239eab10baf9c422c18be7f53213d70434dea43
MD5 aaf65b84ad5bd06a32b1939f651d01b0
BLAKE2b-256 a8d5b91d57304f2bb3334111f3218ff408878af519e5d283291c20a1b52843df

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.36-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5d50cb71c1dbed70646d521a0975fb0f92b7c3f84c61fa59e07be23a1aaeecfc
MD5 c421ce2db4bd4a5d045b2df90c00c39e
BLAKE2b-256 a493326f240a0b7a058a6157509bea641123f0657d16d85c757c5c1225dbe431

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.36-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5864a83bd345871ad9699ce466388f836db7572003d67d9392a71998092210e3
MD5 b8a2a3a149e86123489b9d56c4a45226
BLAKE2b-256 2d57b2bf4c7adb045ce05f4f2648e7938aef96bc2909be433b1c650071f6a466

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.36-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 16abf35af37a3d5af92725fc9ec507dd9e9183d261c2069b6606d60981ed1c6e
MD5 c2142b0737bdb80b8a060f4c0321ec24
BLAKE2b-256 9f3aa68fc48a79c06ee70165138ccbc2411a1a8547f47443e79fef8a950596fc

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.36-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a0ae3aa2e86a4613f2d4c49eb7da23da536e6ce80b2bfd60bbb2f55fc02b0b32
MD5 ff5d6b41eb47b19338f1e8d099483324
BLAKE2b-256 b6c8524e12ee1e4b7ad09fa76de40bdee0d0b91dbf6786bd0dcb323a9be8775e

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.36-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 53d2d9ee93970c969bc4e3c78b1277d7129554642f6ffea039c282c7dc4577bc
MD5 497ac66195e745cef69128e55f4c81e3
BLAKE2b-256 d34f2b188a3b570eb939e2746dcf2b0af34e496f4d607d77baf714a7a8c7cd4b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.36-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 fca8322e04b2dde722fcb0558682740eebd3bd239bea7a0d0febbc190e99dc15
MD5 0129e28e16b19985e801149d3623d443
BLAKE2b-256 0b63caa4579edb1e15c86c242032b0f750e7b8c655d8595cb786c564bc2f7a4b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp27-cp27m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.36-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.36-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 d57ac32f8dc731fddeb6f5d1358b4ca5456e72594e664769f0a9163f13df2a31
MD5 7e69d35f4400d799f7a20811cf571961
BLAKE2b-256 d752358d05d4756b88de4e1ac172b51546359290d7ac3d32bd45341a93e18f66

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.36-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6e1fe00ee85c768807f2a139b83469c1e52a9ffd58a6eb51aa7aeb524325ab18
MD5 a7e4587df5db68574865a13d0a01917e
BLAKE2b-256 0803e15821a18d1d5c07d1816c1a210f4bad8279e84a49cec88d3f4016a84fd0

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.36-cp27-cp27m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.36-cp27-cp27m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 81e53bd383c2c33de9d578bfcc243f559bd3801a0e57f2bcc9a943c790662e0c
MD5 37ee5d9a2515a63df549bfa5c6d38fee
BLAKE2b-256 bed36f9795b51f3ba020976279a4754c1e8263ab6e3db225e15ec0ab9e25aa53

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page