Skip to main content

Database Abstraction Library

Project description

PyPI PyPI - Python Version PyPI - Downloads

The Python SQL Toolkit and Object Relational Mapper

Introduction

SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives application developers the full power and flexibility of SQL. SQLAlchemy provides a full suite of well known enterprise-level persistence patterns, designed for efficient and high-performing database access, adapted into a simple and Pythonic domain language.

Major SQLAlchemy features include:

  • An industrial strength ORM, built from the core on the identity map, unit of work, and data mapper patterns. These patterns allow transparent persistence of objects using a declarative configuration system. Domain models can be constructed and manipulated naturally, and changes are synchronized with the current transaction automatically.

  • A relationally-oriented query system, exposing the full range of SQL’s capabilities explicitly, including joins, subqueries, correlation, and most everything else, in terms of the object model. Writing queries with the ORM uses the same techniques of relational composition you use when writing SQL. While you can drop into literal SQL at any time, it’s virtually never needed.

  • A comprehensive and flexible system of eager loading for related collections and objects. Collections are cached within a session, and can be loaded on individual access, all at once using joins, or by query per collection across the full result set.

  • A Core SQL construction system and DBAPI interaction layer. The SQLAlchemy Core is separate from the ORM and is a full database abstraction layer in its own right, and includes an extensible Python-based SQL expression language, schema metadata, connection pooling, type coercion, and custom types.

  • All primary and foreign key constraints are assumed to be composite and natural. Surrogate integer primary keys are of course still the norm, but SQLAlchemy never assumes or hardcodes to this model.

  • Database introspection and generation. Database schemas can be “reflected” in one step into Python structures representing database metadata; those same structures can then generate CREATE statements right back out - all within the Core, independent of the ORM.

SQLAlchemy’s philosophy:

  • SQL databases behave less and less like object collections the more size and performance start to matter; object collections behave less and less like tables and rows the more abstraction starts to matter. SQLAlchemy aims to accommodate both of these principles.

  • An ORM doesn’t need to hide the “R”. A relational database provides rich, set-based functionality that should be fully exposed. SQLAlchemy’s ORM provides an open-ended set of patterns that allow a developer to construct a custom mediation layer between a domain model and a relational schema, turning the so-called “object relational impedance” issue into a distant memory.

  • The developer, in all cases, makes all decisions regarding the design, structure, and naming conventions of both the object model as well as the relational schema. SQLAlchemy only provides the means to automate the execution of these decisions.

  • With SQLAlchemy, there’s no such thing as “the ORM generated a bad query” - you retain full control over the structure of queries, including how joins are organized, how subqueries and correlation is used, what columns are requested. Everything SQLAlchemy does is ultimately the result of a developer- initiated decision.

  • Don’t use an ORM if the problem doesn’t need one. SQLAlchemy consists of a Core and separate ORM component. The Core offers a full SQL expression language that allows Pythonic construction of SQL constructs that render directly to SQL strings for a target database, returning result sets that are essentially enhanced DBAPI cursors.

  • Transactions should be the norm. With SQLAlchemy’s ORM, nothing goes to permanent storage until commit() is called. SQLAlchemy encourages applications to create a consistent means of delineating the start and end of a series of operations.

  • Never render a literal value in a SQL statement. Bound parameters are used to the greatest degree possible, allowing query optimizers to cache query plans effectively and making SQL injection attacks a non-issue.

Documentation

Latest documentation is at:

https://www.sqlalchemy.org/docs/

Installation / Requirements

Full documentation for installation is at Installation.

Getting Help / Development / Bug reporting

Please refer to the SQLAlchemy Community Guide.

Code of Conduct

Above all, SQLAlchemy places great emphasis on polite, thoughtful, and constructive communication between users and developers. Please see our current Code of Conduct at Code of Conduct.

License

SQLAlchemy is distributed under the MIT license.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SQLAlchemy-1.4.37.tar.gz (8.2 MB view details)

Uploaded Source

Built Distributions

SQLAlchemy-1.4.37-cp310-cp310-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

SQLAlchemy-1.4.37-cp310-cp310-win32.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86

SQLAlchemy-1.4.37-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.37-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.37-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.37-cp310-cp310-macosx_10_15_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

SQLAlchemy-1.4.37-cp39-cp39-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

SQLAlchemy-1.4.37-cp39-cp39-win32.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86

SQLAlchemy-1.4.37-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.37-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.37-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.37-cp39-cp39-macosx_10_15_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

SQLAlchemy-1.4.37-cp38-cp38-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

SQLAlchemy-1.4.37-cp38-cp38-win32.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86

SQLAlchemy-1.4.37-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.37-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.37-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.37-cp38-cp38-macosx_10_15_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

SQLAlchemy-1.4.37-cp37-cp37m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

SQLAlchemy-1.4.37-cp37-cp37m-win32.whl (1.6 MB view details)

Uploaded CPython 3.7m Windows x86

SQLAlchemy-1.4.37-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.37-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.37-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.37-cp37-cp37m-macosx_10_15_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

SQLAlchemy-1.4.37-cp36-cp36m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

SQLAlchemy-1.4.37-cp36-cp36m-win32.whl (1.6 MB view details)

Uploaded CPython 3.6m Windows x86

SQLAlchemy-1.4.37-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.37-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.37-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.37-cp36-cp36m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

SQLAlchemy-1.4.37-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.37-cp27-cp27m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 2.7m Windows x86-64

SQLAlchemy-1.4.37-cp27-cp27m-win32.whl (1.6 MB view details)

Uploaded CPython 2.7m Windows x86

SQLAlchemy-1.4.37-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.37-cp27-cp27m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m macOS 10.14+ x86-64

File details

Details for the file SQLAlchemy-1.4.37.tar.gz.

File metadata

  • Download URL: SQLAlchemy-1.4.37.tar.gz
  • Upload date:
  • Size: 8.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for SQLAlchemy-1.4.37.tar.gz
Algorithm Hash digest
SHA256 3688f92c62db6c5df268e2264891078f17ecb91e3141b400f2e28d0f75796dea
MD5 d1d0dc5add66be192e8e1cd26026c80d
BLAKE2b-256 8c6bdd25a730940556f4a0130968f29040e4aa6478285a33ac041d1b0817d398

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.37-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7a44683cf97744a405103ef8fdd31199e9d7fc41b4a67e9044523b29541662b0
MD5 b8d4b18d88d6aa936fceb7e13046029c
BLAKE2b-256 5b50f611e2a374e9b408019ffa8c69f243fdece6e8e03a381b7dd362e4758701

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp310-cp310-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.37-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.37-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 2aac2a685feb9882d09f457f4e5586c885d578af4e97a2b759e91e8c457cbce5
MD5 05790f3340cfbe4c7cf883b4d5163135
BLAKE2b-256 811345ef5db732bd80944d72c7f7a79e72e0d4d3c68db475eca5744be71d983d

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.37-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7ee34c85cbda7779d66abac392c306ec78c13f5c73a1f01b8b767916d4895d23
MD5 7c0087bf2d164ff68b227ed5646a5022
BLAKE2b-256 2914d62efb904935f7876728272a705863ffe310d8cf3c2c54c2c495376d12bc

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.37-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6629c79967a6c92e33fad811599adf9bc5cee6e504a1027bbf9cc1b6fb2d276d
MD5 7ee2e737c68529677336cef704e2bf41
BLAKE2b-256 f360622337c2cc2ace7997c9434ea3aef8d68cc068901cdbcdf95619248504da

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.37-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8b38e088659b30c2ca0af63e5d139fad1779a7925d75075a08717a21c406c0f6
MD5 529d9d1de3f50d3c0bebe9d1a0af7a36
BLAKE2b-256 ea61b164b4fcf4a2161692fa8903c79cebc5a7c711c3701493f72292efb32e6a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.37-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 78363f400fbda80f866e8e91d37d36fe6313ff847ded08674e272873c1377ea5
MD5 047476a03fb10f71e14978c73761ca53
BLAKE2b-256 7d1750a2cf230101515517d188d46742fd8eb05a139176d3324fca59b63a47ec

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.37-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c37885f83b59e248bebe2b35beabfbea398cb40960cdc6d3a76eac863d4e1938
MD5 448f8cb351c44f800d2fdbdecdc3bba2
BLAKE2b-256 59225099b333bb709c09d5153f79a37e6a0a1f42aa401c12bfcc03e45902b451

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp39-cp39-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.37-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.37-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 5e4e517ce72fad35cce364a01aff165f524449e9c959f1837dc71088afa2824c
MD5 ec7d8e6959f1348c8435624eec76d5cd
BLAKE2b-256 f1c1bd37d5c34c4b7f26990f0e5fc0a2c172b40bdb8b9b252dd84786ee708096

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.37-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 29a742c29fea12259f1d2a9ee2eb7fe4694a85d904a4ac66d15e01177b17ad7f
MD5 003ca6120c95baa797d3723d5b062447
BLAKE2b-256 58e8e3cb405605008a1d6d66481e548a9ee0e9c94f0f3456f0c45753c4cf7d26

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.37-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a940c551cfbd2e1e646ceea2777944425f5c3edff914bc808fe734d9e66f8d71
MD5 0342125ee92d2f2dd545ba63edf47340
BLAKE2b-256 a60230db9001b472604fc90e92b02c4d865d47660bb7d0f4751461d1aca03dac

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.37-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7e579d6e281cc937bdb59917017ab98e618502067e04efb1d24ac168925e1d2a
MD5 71335ac2e5319f80994c23a756214c4f
BLAKE2b-256 9bdfbdd1a30250e972b0f3177f80abed0e84eb1fdcef2dc48d5418d5bb9e0519

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.37-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 f9940528bf9c4df9e3c3872d23078b6b2da6431c19565637c09f1b88a427a684
MD5 541467343a512de5bddbb71ab65db928
BLAKE2b-256 c16fe776fad9cd5c7f669d426956eeb095e79093edfa9c96981b62008d411eb0

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.37-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a91d0668cada27352432f15b92ac3d43e34d8f30973fa8b86f5e9fddee928f3b
MD5 fa0c7350e56a18f4bd33a088d2980cce
BLAKE2b-256 f8b05ed20fbd8771b408ea02c20c04c695a2575766cccd203f826d6679b99b1e

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp38-cp38-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.37-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.37-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 d6927c9e3965b194acf75c8e0fb270b4d54512db171f65faae15ef418721996e
MD5 026fe9041c901751e06528a00f8a92b3
BLAKE2b-256 b29fe42962ddfcc6b99537b4c1df8da1588ff35cda27fcb416e5886085280d4b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.37-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4e8706919829d455a9fa687c6bbd1b048e36fec3919a59f2d366247c2bfdbd9c
MD5 b0b9d863da2dd64b3b3237421fb23fd3
BLAKE2b-256 b75bd9e2bc01dc227c2360fe1ac0d716d1266ad0bf0518fb5f1cb053df46a210

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.37-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d58f2d9d1a4b1459e8956a0153a4119da80f54ee5a9ea623cd568e99459a3ef1
MD5 a8bda66380da62c4ea169952daf4396f
BLAKE2b-256 796f368f02eee5cc948347152484f6d27c5329c20161a9d422a290a9bcfe4d13

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.37-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 06ec11a5e6a4b6428167d3ce33b5bd455c020c867dabe3e6951fa98836e0741d
MD5 1fb2b4c80cb6355a3a4536b210932b99
BLAKE2b-256 3104b29217ebe1ecf22e931fee52629be1c0b6c999f26635b4313dd5cba03da1

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.37-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 3862a069a24f354145e01a76c7c720c263d62405fe5bed038c46a7ce900f5dd6
MD5 35ef9584058503dfc706018a389813b8
BLAKE2b-256 5767dff3b4e618228282a8f70a2e3482f352f01e920d9c223b38d235d76a1d2f

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.37-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3197441772dc3b1c6419f13304402f2418a18d7fe78000aa5a026e7100836739
MD5 31242f82e26c649435340dba5f562f9e
BLAKE2b-256 f85648a589c35cce32a2b0122033d66ed85c0acecf37d445d1185bbdc9bd7b65

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp37-cp37m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.37-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.37-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 9785d6f962d2c925aeb06a7539ac9d16608877da6aeaaf341984b3693ae80a02
MD5 e0ca6510c9b7bd22aadb46cf8ed3cb72
BLAKE2b-256 1aab849994a378fa57445bd435ebbfda203df6a29b3f565f4a1d78c8e6029255

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.37-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 50c8eaf44c3fed5ba6758d375de25f163e46137c39fda3a72b9ee1d1bb327dfc
MD5 752af3462ca90b105d6bf1318beb900a
BLAKE2b-256 cccee0d68bd334d4741669f0c14c0f242ce8fd7921441326bfb0a42a269aaa0d

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.37-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d4c3b009c9220ae6e33f17b45f43fb46b9a1d281d76118405af13e26376f2e11
MD5 a39d80153fb6068be501e5cff0b808df
BLAKE2b-256 b545a34822f9346da702c9f957246c1e187fc53e583e1f72f3cb883cd734e990

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.37-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 139c50b9384e6d32a74fc4dcd0e9717f343ed38f95dbacf832c782c68e3862f3
MD5 c8476ea75066c2674a734cb80b71f326
BLAKE2b-256 7f3ce291bd4acf9082e6d815da4769e1eed73da583727405103070b5f4cd3cf5

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.37-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 caca6acf3f90893d7712ae2c6616ecfeac3581b4cc677c928a330ce6fbad4319
MD5 7079e014397242c11d12d5c41a5a4620
BLAKE2b-256 83580c455bf1b47840ded6b4677563d8ed26c10a4eb25de7ba564e24b0d34d25

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.37-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 eec39a17bab3f69c44c9df4e0ed87c7306f2d2bf1eca3070af644927ec4199fa
MD5 c9f4be0fd7c57dc631731c5faf89839c
BLAKE2b-256 2542d3de86976bc3c05051c793f08e56155dd9f11d2e797e18bb8dc97cd70992

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp36-cp36m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.37-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.37-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 0e7fd52e48e933771f177c2a1a484b06ea03774fc7741651ebdf19985a34037c
MD5 b78d2075874fbd44e0647377197c88d1
BLAKE2b-256 7393cf1644aa2cd92c98256ada5b824daf2e998fc4c26b06587b700b32ed8be3

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.37-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 17417327b87a0f703c9a20180f75e953315207d048159aff51822052f3e33e69
MD5 64780af31518f088dcd12f4bc9aa76bc
BLAKE2b-256 4ece046f198487a4c8bf9b6fa983c4d45f6a88be900e99f7cec319c2db08bf27

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.37-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4c1d9fb3931e27d59166bb5c4dcc911400fee51082cfba66ceb19ac954ade068
MD5 5e1dc244851a60280cbcb424d974cd82
BLAKE2b-256 b240a5beb9cf3243fd630849fea9ae4cb8be188728179d0446796905d77b50c5

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.37-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 aaa0e90e527066409c2ea5676282cf4afb4a40bb9dce0f56c8ec2768bff22a6e
MD5 7d7f0d29a94902bdc8e58d0a57a3046e
BLAKE2b-256 5e2ebfc5f96066c8e011ea4bf0bc80b4c448268ddfb86a40b6b27776f9afd6f9

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.37-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 cffc67cdd07f0e109a1fc83e333972ae423ea5ad414585b63275b66b870ea62b
MD5 9416e16888d33e82773ca23db596a2a7
BLAKE2b-256 e6a81ff49e89bceea8854555d3893ca386ff7c45190efe14b7615cc04787c399

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.37-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ffe487570f47536b96eff5ef2b84034a8ba4e19aab5ab7647e677d94a119ea55
MD5 f2950afc6a4c7744c9f7963db56ed66f
BLAKE2b-256 94d7a1ab58875ab95c6b6390cbe88fc42d82ca74ed2617ef4972374024a79406

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.37-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 4a17c1a1152ca4c29d992714aa9df3054da3af1598e02134f2e7314a32ef69d8
MD5 14db925a616a7a201a9e99ed39f269c5
BLAKE2b-256 1b2e5ba4ecf88fd8606e352a6ac1004c2a7ed19a529bced278ab3f8f03519d12

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp27-cp27m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.37-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.37-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 b55932fd0e81b43f4aff397c8ad0b3c038f540af37930423ab8f47a20b117e4c
MD5 12dc8e1effee349779c6d9212a6d00ea
BLAKE2b-256 ea1b54f72bb923748ec18cd6b08503af05f7caebe0287157c9809f6d8360d0d2

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.37-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b4c92823889cf9846b972ee6db30c0e3a92c0ddfc76c6060a6cda467aa5fb694
MD5 8c5f931bd7dc12210d749217f2c6ab73
BLAKE2b-256 a0dd9ef3fab63842758cdea045a7d3af594e940efb6477f445dc6d0f7dd829fe

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.37-cp27-cp27m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.37-cp27-cp27m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d9050b0c4a7f5538650c74aaba5c80cd64450e41c206f43ea6d194ae6d060ff9
MD5 bd30340ffe1c5cea3b44aa9057053cbf
BLAKE2b-256 6f3d64b21cd75e8ec8aa81a5b2c19b29f36bb8ff7062506bd6e9e0068a1e17c7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page