Skip to main content

Database Abstraction Library

Project description

PyPI PyPI - Python Version PyPI - Downloads

The Python SQL Toolkit and Object Relational Mapper

Introduction

SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives application developers the full power and flexibility of SQL. SQLAlchemy provides a full suite of well known enterprise-level persistence patterns, designed for efficient and high-performing database access, adapted into a simple and Pythonic domain language.

Major SQLAlchemy features include:

  • An industrial strength ORM, built from the core on the identity map, unit of work, and data mapper patterns. These patterns allow transparent persistence of objects using a declarative configuration system. Domain models can be constructed and manipulated naturally, and changes are synchronized with the current transaction automatically.

  • A relationally-oriented query system, exposing the full range of SQL’s capabilities explicitly, including joins, subqueries, correlation, and most everything else, in terms of the object model. Writing queries with the ORM uses the same techniques of relational composition you use when writing SQL. While you can drop into literal SQL at any time, it’s virtually never needed.

  • A comprehensive and flexible system of eager loading for related collections and objects. Collections are cached within a session, and can be loaded on individual access, all at once using joins, or by query per collection across the full result set.

  • A Core SQL construction system and DBAPI interaction layer. The SQLAlchemy Core is separate from the ORM and is a full database abstraction layer in its own right, and includes an extensible Python-based SQL expression language, schema metadata, connection pooling, type coercion, and custom types.

  • All primary and foreign key constraints are assumed to be composite and natural. Surrogate integer primary keys are of course still the norm, but SQLAlchemy never assumes or hardcodes to this model.

  • Database introspection and generation. Database schemas can be “reflected” in one step into Python structures representing database metadata; those same structures can then generate CREATE statements right back out - all within the Core, independent of the ORM.

SQLAlchemy’s philosophy:

  • SQL databases behave less and less like object collections the more size and performance start to matter; object collections behave less and less like tables and rows the more abstraction starts to matter. SQLAlchemy aims to accommodate both of these principles.

  • An ORM doesn’t need to hide the “R”. A relational database provides rich, set-based functionality that should be fully exposed. SQLAlchemy’s ORM provides an open-ended set of patterns that allow a developer to construct a custom mediation layer between a domain model and a relational schema, turning the so-called “object relational impedance” issue into a distant memory.

  • The developer, in all cases, makes all decisions regarding the design, structure, and naming conventions of both the object model as well as the relational schema. SQLAlchemy only provides the means to automate the execution of these decisions.

  • With SQLAlchemy, there’s no such thing as “the ORM generated a bad query” - you retain full control over the structure of queries, including how joins are organized, how subqueries and correlation is used, what columns are requested. Everything SQLAlchemy does is ultimately the result of a developer- initiated decision.

  • Don’t use an ORM if the problem doesn’t need one. SQLAlchemy consists of a Core and separate ORM component. The Core offers a full SQL expression language that allows Pythonic construction of SQL constructs that render directly to SQL strings for a target database, returning result sets that are essentially enhanced DBAPI cursors.

  • Transactions should be the norm. With SQLAlchemy’s ORM, nothing goes to permanent storage until commit() is called. SQLAlchemy encourages applications to create a consistent means of delineating the start and end of a series of operations.

  • Never render a literal value in a SQL statement. Bound parameters are used to the greatest degree possible, allowing query optimizers to cache query plans effectively and making SQL injection attacks a non-issue.

Documentation

Latest documentation is at:

https://www.sqlalchemy.org/docs/

Installation / Requirements

Full documentation for installation is at Installation.

Getting Help / Development / Bug reporting

Please refer to the SQLAlchemy Community Guide.

Code of Conduct

Above all, SQLAlchemy places great emphasis on polite, thoughtful, and constructive communication between users and developers. Please see our current Code of Conduct at Code of Conduct.

License

SQLAlchemy is distributed under the MIT license.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SQLAlchemy-1.4.38.tar.gz (8.2 MB view details)

Uploaded Source

Built Distributions

SQLAlchemy-1.4.38-cp310-cp310-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

SQLAlchemy-1.4.38-cp310-cp310-win32.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86

SQLAlchemy-1.4.38-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.38-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.38-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.38-cp310-cp310-macosx_10_15_universal2.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 10.15+ universal2 (ARM64, x86-64)

SQLAlchemy-1.4.38-cp39-cp39-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

SQLAlchemy-1.4.38-cp39-cp39-win32.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86

SQLAlchemy-1.4.38-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.38-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.38-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.38-cp39-cp39-macosx_10_15_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

SQLAlchemy-1.4.38-cp38-cp38-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

SQLAlchemy-1.4.38-cp38-cp38-win32.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86

SQLAlchemy-1.4.38-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.38-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.38-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.38-cp38-cp38-macosx_10_15_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

SQLAlchemy-1.4.38-cp37-cp37m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

SQLAlchemy-1.4.38-cp37-cp37m-win32.whl (1.6 MB view details)

Uploaded CPython 3.7m Windows x86

SQLAlchemy-1.4.38-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.38-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.38-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.38-cp37-cp37m-macosx_10_15_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

SQLAlchemy-1.4.38-cp36-cp36m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

SQLAlchemy-1.4.38-cp36-cp36m-win32.whl (1.6 MB view details)

Uploaded CPython 3.6m Windows x86

SQLAlchemy-1.4.38-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.38-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.38-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.38-cp36-cp36m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

SQLAlchemy-1.4.38-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.38-cp27-cp27m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 2.7m Windows x86-64

SQLAlchemy-1.4.38-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.38-cp27-cp27m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m macOS 10.14+ x86-64

File details

Details for the file SQLAlchemy-1.4.38.tar.gz.

File metadata

  • Download URL: SQLAlchemy-1.4.38.tar.gz
  • Upload date:
  • Size: 8.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for SQLAlchemy-1.4.38.tar.gz
Algorithm Hash digest
SHA256 93ae1d2ef42fbf0f0b3d44b35225bda123310df4b33c9bf662e7b50a68c48a98
MD5 617a2fa5a3249502a0642430d82630b5
BLAKE2b-256 be068c75ad5b5d2f0935304dbdbd0cdf54761f73f6bc4d18cd092b49ed7520d5

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.38-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 57ea67a9206eab2abe130e4fdae0662f10cca3dc72ba27553f70a7d613588571
MD5 f797d715387a43a47c2c4452cb6d2ef9
BLAKE2b-256 3d19877d024f2e6fd0da38c11480b8d6f1a37d430015749dac0fab165edcc78c

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp310-cp310-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.38-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.38-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 82701a4cbb14affc6c1ae62dcebdaff65611b7c7f96f9d0e92a34a8be112a8fa
MD5 dee40cf18edba28004206e66bbf30714
BLAKE2b-256 797fedd5b5776f4e53ef6edda18daa5d491587fac3af721d6203f3b26c6c98f1

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.38-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 42810e560b57e981ed0a947b65a4936b398b4fca97e5b56e10a9c5a151568de2
MD5 ab167634d173fcd65a555816ee629027
BLAKE2b-256 d8c720d7eff8cc446d1d062e4cc84cd026a0856c620b61389d122d4148d23946

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.38-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bf05b312bf0165f92fa0eb09e7661c26f2f06c7a89694ecb79fa15a933deb768
MD5 a6a8207748a8b9df059824b41b9833f1
BLAKE2b-256 c6f11b3394834e10e90d46062990a1344c7fd6f1bf68b023bce551f7861ca096

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.38-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b8cd779ef29718f3d2c558042ccc45c03006c599dd722fb760faca641a2f32ac
MD5 496798986aebd5d64b558bcb78df3b8b
BLAKE2b-256 dcd2168947db642dc8a4eb98e2a40efa0b86bb0965f7df089488f6cb2e72967b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp310-cp310-macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.38-cp310-cp310-macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 6edadd6a0a722c22558e1d1f5360d3e85fa938bc69d9049d29968a643de6dd34
MD5 798afabe4f31b49a8512bb2d4f51bc6a
BLAKE2b-256 98a710d04747aab7af0adf4d85c9acee2224afd850a1905a44a4cb39c2637b72

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.38-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 97ba370e31b70be94f2f1e85494a5c90f8cf50381ddc02ab95a33a4a86371e02
MD5 90daf59ce6cc1810e127e4f429b800ef
BLAKE2b-256 4ed439d6c9199b1a21048e30a47595f0512e1fce7cfc062c43906080b3419211

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp39-cp39-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.38-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.38-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 d3c4191e0348428b127c4c2e25ec9c1e8e895e3c6d9a7f083fca28dce23257ee
MD5 e1b14472d558586366c2a2f0f6a0cc34
BLAKE2b-256 2f5ed9afdfcd92a91b38ed12d45fab8aebd05667c503e4c8439d9ba517c3db13

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.38-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 da424c8b285da91733fed2dd40fed7db076818a62859244d311b80fc8ba4d75e
MD5 5fbb5598ba04cfff9652b20fb73bd630
BLAKE2b-256 8d759380a9cffeab6a25d0a7234839d82e7ce0908eef4bc02c1ac8202808eef9

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.38-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3abe087b641788abbbe94abbf9f15f50bb985f72c0669ef35d1941d2912a276d
MD5 0556d0625b7dca6b4e86a384ff6bcb75
BLAKE2b-256 68261856636bbaf5ed25dc81ab96e629cb2ac2e95455cb1d8b441a860d696d38

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.38-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 07865d93e4ca77b59a5ce0f36fbae8161f7dfe57ba17934a3e442cf95dcb3c49
MD5 94a22280294d9315d7477a240dbaa722
BLAKE2b-256 6a79501d04d29b938ecf46e702a4b93cad3d6e1cc27b3d548271fa096f40c8d5

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.38-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 cd1aba14bbb1ecfe8b5cc52dc840a7e071cfcce6bff545037cf56714c48dfc92
MD5 3a213c54e1dc37ff4662a8ca2949e096
BLAKE2b-256 bf46a1bb686981463a2bf589110bbf9b9014b102687de5e4bb89a02fb1d170c9

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.38-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 eba2c5f717fa6d7be040bbc1e4334f1827d31e672cfd53ddbd995935d43e517e
MD5 677a2d829aa5122a2913a70eb3f33810
BLAKE2b-256 c7c6483a7b493bb2afe9cc134c5271310770d54cba9a7516d9dc450828b17dfc

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp38-cp38-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.38-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.38-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 737f4feee88d78230fa38027ad5645cb327fe9aac0dd0bde3f8fa7026ed81910
MD5 ced7148eadfb4fc9eb4a60f648a074ce
BLAKE2b-256 7b8da348d6a6a994babcd2a68d4bd58e9883059f0d02b7f6ce2f4c3ef60f601a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.38-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 77831317da71adec7b785ebf9e6467b59ba1e186de1ba13c94b4e4951387ba64
MD5 9c9d75770fbf5a53767ee41b48aa860d
BLAKE2b-256 872db69ba40d30bf619b0643f3e1980001d51b1e08463d6ae819c621392adfa7

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.38-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ad2447f17425e6889f0fb2b229844799aabafc90ff780123067fc5846a30992c
MD5 bc033f5266dc8eaec1d8a9ea050be68f
BLAKE2b-256 e161c3a9de5bde9a44b3a9b13dc29453ce29822364288c84a71b82705fb45384

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.38-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f036bdc951b0d64c64ae83e7ff83a1848eea74f1c6e42461347caab2ed7282b9
MD5 f1d126399f50e31d1e7fb1994451fbb9
BLAKE2b-256 e488be4db77fa4ab1ec4d2fb91a848be0963d20a680bcf17020113219c166bc8

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.38-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 e44e5f4d84861f4a2a00da8e55712db0dd2ec3d680544fb5d3ac84d3682d7d4c
MD5 3396b1a5d10ec536521313eb2773d54c
BLAKE2b-256 c7eb1e0d58c9a080fdd5b6ab5d017ca55e18dc2e57b8dbb2af78215bf508e3d6

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.38-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 380e09881cdf3c87e90b8995425f7ea618e6bbd33c6b7c9234af21c4b6b3c143
MD5 9bac42a765b8e002299ab955fee8d4a7
BLAKE2b-256 7b2c1dd0b213765932b883b30c340fac3d37641b0914ee4b6744592dc95d054a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp37-cp37m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.38-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.38-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 42a60988aad143a4b2745711548833f57340d7f35586160140361314a509e6f7
MD5 767be9ee081ee9951737c49072ae4a58
BLAKE2b-256 466133aa639ce8ac79be31769708fc498f71382a6739ee1a77708856df9de904

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.38-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 470fd9d820fbd25c2a2a2929327c44aaff9d5871a20e0cadd32d293540817517
MD5 4407659aaa7cbd761dede94563a77cd4
BLAKE2b-256 3c8fa713c8ee50efc73949527aedb263c3817e1ab91494fc8dc3e6d971ab5d79

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.38-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1ac6b091b322ec54a30c751dfcb736987e317f5c53a5cf3beb62e11a18210319
MD5 5444de81786b96244a2d8ec0fad342ae
BLAKE2b-256 f80c10dccd9155118eb42f14e281ad6961b44483c71616485d82896e977b1fc8

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.38-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d8193b4a340d868f2daeeb856dfae9d9d4b011f249128380a83ee7342a887bdb
MD5 62976638c5b5aea65d5c6555cbcbfdd9
BLAKE2b-256 5caa16f711645fdfbfea0d84bc4dde72234ff82fc4733ef5d89b74b0bffe9b33

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.38-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 a57edcbbb45e8307153c5d4635407df71529ed263666064c0524b0c412778306
MD5 a25b1e6508e3bb4d11310b8b828b0da2
BLAKE2b-256 85cc52e74add8861e8936767a2eeba33c7c0cb08c9bf7f6b27693e407045174f

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.38-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 b33388891faf67d0c4a7bb65657dd1a068168eda4b793cb929c4c3894adfdcf2
MD5 37248f6c0b289ba7253e73cb33af0587
BLAKE2b-256 7773860b914112c4e5da27bc2fd6ff9efe36d9cd59b6f2b2ab10ee6256114c6d

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp36-cp36m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.38-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.38-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 cfdb1b3763aa4bddccd7b627b9466fce94952dc150a49309eb56e5f50dd00806
MD5 4bc2cd22e100e3aaaaa702e2a1d8c8a7
BLAKE2b-256 4d752c193f747dc5220688a2c0a65270dff97570adf6f4bbccd661255295cd79

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.38-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fa64578158cb374e4dd6da2377f1ceabf9973313d171e67fc01a353aa8967858
MD5 698536a45719581195321c523392c2ae
BLAKE2b-256 e79bd0656e3134a8e7effcc016c84c4c33ff283419c80a8cb7a124f595980da0

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.38-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 63f8e68356b53072a653e8f61c5f1c19721469af4dbfdb3e3356073e9918f1fe
MD5 bc4105495820ce7667c759997001b9bf
BLAKE2b-256 85072b0ce514d32eac5de21abd802df238d05d554c882d077a08b1d6fffa014b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.38-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bdea12b997b174903292cf19f40d36cad46b44b645725b9485164684d1849bfd
MD5 9bc300fa0ca20f61324ec561f5f2d827
BLAKE2b-256 d5b428b42b9c92cbafc3e598e552a27169c37b00e3efafd948be84f7dd5e85e9

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.38-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 492f25432f0a998bcaa35e907f9d33f436d208326bb1e6c0f8485e8117502a3d
MD5 1195477c561f6cc1acf21b3d88ba6816
BLAKE2b-256 120f7a883544c5dc255ccce824488e8d0fe4ff79113ffee778f79525dc8ff287

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.38-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f04789d723fbd6214a63006b4711d7afca37630473edb6ab972c5df2b43b7a56
MD5 c48f75785a87927d1f6027b3adad341e
BLAKE2b-256 5d92f9123fde58d71b2528a1b18939a7ce03c3faa088583e64e5430f6204f514

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.38-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 55c09559e45d3f067435620195238f983d4a23f796650f959f19964ba9104c6f
MD5 b3de77b24f361dd6031525b337a6d9b3
BLAKE2b-256 0b60c3873f4ea6bc5930ba9be1b7e1285bed403eeba052e7623a0e075922ab34

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.38-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c715347cac3b1c563941162fbbf751d3a5e0c356a33cb20925699f4910504a8f
MD5 948e914a7ed8f7bf29009e7bdb172b30
BLAKE2b-256 7a303d06a1a97526136a203242e2db32d515500e9f3df804debc1c70fa013c4a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.38-cp27-cp27m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.38-cp27-cp27m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 cf1afb1deec19de7ba282062de8a8c4f931ef120faa8b3dc6fca826bbc2f6a9d
MD5 62d29ed98c880b27f75b262756e6d12b
BLAKE2b-256 646b93f6b9104e8fb53a4c3feddc4e2b1729d9f22f7882248b75bddf829a4911

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page