Skip to main content

Database Abstraction Library

Project description

PyPI PyPI - Python Version PyPI - Downloads

The Python SQL Toolkit and Object Relational Mapper

Introduction

SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives application developers the full power and flexibility of SQL. SQLAlchemy provides a full suite of well known enterprise-level persistence patterns, designed for efficient and high-performing database access, adapted into a simple and Pythonic domain language.

Major SQLAlchemy features include:

  • An industrial strength ORM, built from the core on the identity map, unit of work, and data mapper patterns. These patterns allow transparent persistence of objects using a declarative configuration system. Domain models can be constructed and manipulated naturally, and changes are synchronized with the current transaction automatically.

  • A relationally-oriented query system, exposing the full range of SQL’s capabilities explicitly, including joins, subqueries, correlation, and most everything else, in terms of the object model. Writing queries with the ORM uses the same techniques of relational composition you use when writing SQL. While you can drop into literal SQL at any time, it’s virtually never needed.

  • A comprehensive and flexible system of eager loading for related collections and objects. Collections are cached within a session, and can be loaded on individual access, all at once using joins, or by query per collection across the full result set.

  • A Core SQL construction system and DBAPI interaction layer. The SQLAlchemy Core is separate from the ORM and is a full database abstraction layer in its own right, and includes an extensible Python-based SQL expression language, schema metadata, connection pooling, type coercion, and custom types.

  • All primary and foreign key constraints are assumed to be composite and natural. Surrogate integer primary keys are of course still the norm, but SQLAlchemy never assumes or hardcodes to this model.

  • Database introspection and generation. Database schemas can be “reflected” in one step into Python structures representing database metadata; those same structures can then generate CREATE statements right back out - all within the Core, independent of the ORM.

SQLAlchemy’s philosophy:

  • SQL databases behave less and less like object collections the more size and performance start to matter; object collections behave less and less like tables and rows the more abstraction starts to matter. SQLAlchemy aims to accommodate both of these principles.

  • An ORM doesn’t need to hide the “R”. A relational database provides rich, set-based functionality that should be fully exposed. SQLAlchemy’s ORM provides an open-ended set of patterns that allow a developer to construct a custom mediation layer between a domain model and a relational schema, turning the so-called “object relational impedance” issue into a distant memory.

  • The developer, in all cases, makes all decisions regarding the design, structure, and naming conventions of both the object model as well as the relational schema. SQLAlchemy only provides the means to automate the execution of these decisions.

  • With SQLAlchemy, there’s no such thing as “the ORM generated a bad query” - you retain full control over the structure of queries, including how joins are organized, how subqueries and correlation is used, what columns are requested. Everything SQLAlchemy does is ultimately the result of a developer- initiated decision.

  • Don’t use an ORM if the problem doesn’t need one. SQLAlchemy consists of a Core and separate ORM component. The Core offers a full SQL expression language that allows Pythonic construction of SQL constructs that render directly to SQL strings for a target database, returning result sets that are essentially enhanced DBAPI cursors.

  • Transactions should be the norm. With SQLAlchemy’s ORM, nothing goes to permanent storage until commit() is called. SQLAlchemy encourages applications to create a consistent means of delineating the start and end of a series of operations.

  • Never render a literal value in a SQL statement. Bound parameters are used to the greatest degree possible, allowing query optimizers to cache query plans effectively and making SQL injection attacks a non-issue.

Documentation

Latest documentation is at:

https://www.sqlalchemy.org/docs/

Installation / Requirements

Full documentation for installation is at Installation.

Getting Help / Development / Bug reporting

Please refer to the SQLAlchemy Community Guide.

Code of Conduct

Above all, SQLAlchemy places great emphasis on polite, thoughtful, and constructive communication between users and developers. Please see our current Code of Conduct at Code of Conduct.

License

SQLAlchemy is distributed under the MIT license.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SQLAlchemy-1.4.40.tar.gz (8.3 MB view details)

Uploaded Source

Built Distributions

SQLAlchemy-1.4.40-cp310-cp310-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

SQLAlchemy-1.4.40-cp310-cp310-win32.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86

SQLAlchemy-1.4.40-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.40-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.40-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.40-cp310-cp310-macosx_10_15_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

SQLAlchemy-1.4.40-cp39-cp39-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

SQLAlchemy-1.4.40-cp39-cp39-win32.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86

SQLAlchemy-1.4.40-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.40-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.40-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.40-cp39-cp39-macosx_10_15_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

SQLAlchemy-1.4.40-cp38-cp38-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

SQLAlchemy-1.4.40-cp38-cp38-win32.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86

SQLAlchemy-1.4.40-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.40-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.40-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.40-cp38-cp38-macosx_10_15_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

SQLAlchemy-1.4.40-cp37-cp37m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

SQLAlchemy-1.4.40-cp37-cp37m-win32.whl (1.6 MB view details)

Uploaded CPython 3.7m Windows x86

SQLAlchemy-1.4.40-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.40-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.40-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.40-cp37-cp37m-macosx_10_15_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

SQLAlchemy-1.4.40-cp36-cp36m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

SQLAlchemy-1.4.40-cp36-cp36m-win32.whl (1.6 MB view details)

Uploaded CPython 3.6m Windows x86

SQLAlchemy-1.4.40-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.40-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.40-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.40-cp36-cp36m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

SQLAlchemy-1.4.40-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.40-cp27-cp27m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 2.7m Windows x86-64

SQLAlchemy-1.4.40-cp27-cp27m-win32.whl (1.6 MB view details)

Uploaded CPython 2.7m Windows x86

SQLAlchemy-1.4.40-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.40-cp27-cp27m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m macOS 10.14+ x86-64

File details

Details for the file SQLAlchemy-1.4.40.tar.gz.

File metadata

  • Download URL: SQLAlchemy-1.4.40.tar.gz
  • Upload date:
  • Size: 8.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for SQLAlchemy-1.4.40.tar.gz
Algorithm Hash digest
SHA256 44a660506080cc975e1dfa5776fe5f6315ddc626a77b50bf0eee18b0389ea265
MD5 9474e4fd6fce28e474ee55629a17be45
BLAKE2b-256 4e72e36fa6563c45f8e1f2a5781f43f096500c1bca4963a34e72e8d3d8002d77

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.40-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 26ee4dbac5dd7abf18bf3cd8f04e51f72c339caf702f68172d308888cd26c6c9
MD5 879245ae74baed82f3f167ad8bd4ca86
BLAKE2b-256 b4038102d7442498ba2dc915673c6617b1d1729cd3c762f275eb83c6bdc78dd0

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.40-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 2cf50611ef4221ad587fb7a1708e61ff72966f84330c6317642e08d6db4138fd
MD5 796a06a86054e69e3feb1203e9973c77
BLAKE2b-256 e429d0c5862e769727c10fa21c88b77876f3c9cfcdb4e229e606769de8eb9cc9

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.40-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 00dd998b43b282c71de46b061627b5edb9332510eb1edfc5017b9e4356ed44ea
MD5 d0120a7c94f3a7d1524d65eeab9f44b8
BLAKE2b-256 f6d3fef0edc60d3f235565a704f3585510bd895c8138b4ff413e46f0a059cb33

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.40-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 23b693876ac7963b6bc7b1a5f3a2642f38d2624af834faad5933913928089d1b
MD5 36ab785043efb9142abf6f5098e4a914
BLAKE2b-256 8e35dfc2d7c2b2064c6a51e8f704e139d583921bcf1e4ac0df57688349592ab1

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.40-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bb342c0e25cc8f78a0e7c692da3b984f072666b316fbbec2a0e371cb4dfef5f0
MD5 c410262b5ee9910873d2634ff4930dc3
BLAKE2b-256 2c892ca9359bde80e25572e57ec4f2c0d6578ef83ccdc2448d0d91a3fb45e488

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.40-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 1ab08141d93de83559f6a7d9a962830f918623a885b3759ec2b9d1a531ff28fe
MD5 2605a28934e260371d628cfd84579f8e
BLAKE2b-256 446eee91fdeef035a250cb2ca3de022e08e84105a8fe88bb35744aa24aad203b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.40-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 bf073c619b5a7f7cd731507d0fdc7329bee14b247a63b0419929e4acd24afea8
MD5 d5ea4f4589053440a92667fb8cee8c8d
BLAKE2b-256 93ea183eb404f71d677578b46ea414e7ecd4cb906618aa62d19973ceaf94165e

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp39-cp39-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.40-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.40-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 6b70d02bbe1adbbf715d2249cacf9ac17c6f8d22dfcb3f1a4fbc5bf64364da8a
MD5 60f9a61f01f0125f4361acf27a295240
BLAKE2b-256 d8f7b3c907c8456a563a32bd1316c09f1a5f76f935d92b2c347765e9f3085327

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.40-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fa9e0d7832b7511b3b3fd0e67fac85ff11fd752834c143ca2364c9b778c0485a
MD5 9f507060ea23926375c04c174c6286b5
BLAKE2b-256 4a55883ec990672870d141a565a6a2fb9ff580b119d74843f41f666426bcd530

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.40-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0c956a5d1adb49a35d78ef0fae26717afc48a36262359bb5b0cbd7a3a247c26f
MD5 f706cee1704aff53a8e1c9c54a239306
BLAKE2b-256 76021aca0e9250c2ff2d72bdc4ce2bd9ecf8df40ed0bcd82123def5db99ed687

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.40-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c9d0f1a9538cc5e75f2ea0cb6c3d70155a1b7f18092c052e0d84105622a41b63
MD5 507e4f9e3b6247aa932ed1714fb7b1b2
BLAKE2b-256 9f0bad4475586f2d92c2189e4e85e10d76c07eb01d16280f69de6d3e63dbd313

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.40-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 0992f3cc640ec0f88f721e426da884c34ff0a60eb73d3d64172e23dfadfc8a0b
MD5 db60aa8e1386125a0b3653271f729b97
BLAKE2b-256 075a6b8e0925240df8602a27189d08edd279aa45a27177be8867634e13814f40

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.40-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 959bf4390766a8696aa01285016c766b4eb676f712878aac5fce956dd49695d9
MD5 62ad217cbe803f8dddeabfdc3ddfdc7a
BLAKE2b-256 bdda4004f4e045e9d1af1e1b26f7203d6f80f8c83260f497a4aac82bc78f7edc

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp38-cp38-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.40-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.40-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 2b64955850a14b9d481c17becf0d3f62fb1bb31ac2c45c2caf5ad06d9e811187
MD5 57ad08b156f84769a59c323244fdd3b2
BLAKE2b-256 068da786c112c078da650b68f4355cffa1d76990cf0c149f80d401b1a151e924

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.40-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1cf03d37819dc17a388d313919daf32058d19ba1e592efdf14ce8cbd997e6023
MD5 268f1f946b38068f2c43947a4dd73227
BLAKE2b-256 6e9ece791c704a6c8a4f4fc9595ad41127b2feda25225afd6539cb201fb1fcc8

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.40-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4ec440990ab00650d0c7ea2c75bc225087afdd7ddcb248e3d934def4dff62762
MD5 b6673d6984afa12b498788954f4c91d4
BLAKE2b-256 49b826061d5da7e68dc7564d64584dd6c7dde96297042b3f1e1ed79e99a440d8

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.40-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a62c0ecbb9976550f26f7bf75569f425e661e7249349487f1483115e5fc893a6
MD5 8c1b2770b9742219d684198b6d412f35
BLAKE2b-256 c2821545adf2cce19d69da1ee61a408627bfba56c806b5dc89b6897c5e8d9279

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.40-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 08b47c971327e733ffd6bae2d4f50a7b761793efe69d41067fcba86282819eea
MD5 e5c36ec2d2acdbecd412d95001dc43bd
BLAKE2b-256 8f77343390ff271207d238e522e656389648f7b172425895db52fd41a8946863

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.40-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 cdee4d475e35684d210dc6b430ff8ca2ed0636378ac19b457e2f6f350d1f5acc
MD5 7fe1a6b390f0448fd9a98aee296f6189
BLAKE2b-256 5d5f5755d21e37f2faeb7446b32ad96212556ab3931bfceb0129440f35f6adb4

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp37-cp37m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.40-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.40-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 9ced2450c9fd016f9232d976661623e54c450679eeefc7aa48a3d29924a63189
MD5 465a2d9b242bd13cf8522715b7f00a49
BLAKE2b-256 7c369d239b8f6e21deffd5e36d923cac8eafe33229b288ac48df8b8f5aa5e086

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.40-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b7ccdca6cd167611f4a62a8c2c0c4285c2535640d77108f782ce3f3cccb70f3a
MD5 4076931678e5bfdb9a8a1257b4e15265
BLAKE2b-256 575d47788f3fa638812dd0a3ce28442767ae367f5ba10ceed8380c715cf2e5ed

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.40-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 63ad778f4e80913fb171247e4fa82123d0068615ae1d51a9791fc4284cb81748
MD5 40c1ba731dad086e891fe84d45a308bd
BLAKE2b-256 b819abc1509166eed9ed370e912af306233de1928a796dcbc57159ecc65203a3

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.40-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 69deec3a94de10062080d91e1ba69595efeafeafe68b996426dec9720031fb25
MD5 74e75b85085266ab186b5cc2277558a3
BLAKE2b-256 a344af65481755de2bb14a2079f784af5dbfdc78a5786464c444fcd7d7e712fe

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.40-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 28b1791a30d62fc104070965f1a2866699c45bbf5adc0be0cf5f22935edcac58
MD5 4fac6d514750112cd16442be4da09620
BLAKE2b-256 39ac30f255757feeb8c7b96cf66477ca4ea4fcabb3c636a0673467fe7bf54d32

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.40-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 c8d974c991eef0cd29418a5957ae544559dc326685a6f26b3a914c87759bf2f4
MD5 6dbaf83b31775f6da8ebb75be9b98635
BLAKE2b-256 fb22624e153be197de26921d9bc8868c6a04149dbba04d4a7a2a68dfb68d3928

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp36-cp36m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.40-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.40-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 d259fa08e4b3ed952c01711268bcf6cd2442b0c54866d64aece122f83da77c6d
MD5 a4e63bf271c22172164ecf50d3718733
BLAKE2b-256 5cdd4caca4fa0b1f6d7b510f5e152b2825568b79226c0727f758019f490b2384

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.40-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 885e11638946472b4a0a7db8e6df604b2cf64d23dc40eedc3806d869fcb18fae
MD5 87fe5f85646ac4c9869eae604d16e006
BLAKE2b-256 b0899adde13fa32d470c78faba307eb5b0e943dc024a5213bc250fee9ad3e567

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.40-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cfa8ab4ba0c97ab6bcae1f0948497d14c11b6c6ecd1b32b8a79546a0823d8211
MD5 b6cb6b02c5e773b3864f3faa4f083d42
BLAKE2b-256 a5005c1937935278e48753f6384d1fc6a2538902bbc1c106e2f4837ee14f7419

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.40-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b7ff0a8bf0aec1908b92b8dfa1246128bf4f94adbdd3da6730e9c542e112542d
MD5 9b272a5e49aecd510688a20a8563055a
BLAKE2b-256 fd22e1e84681a7d7aba7e02dbd04774ee59074905c48c6ae4bc5eb9e78e9809b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.40-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b41b87b929118838bafc4bb18cf3c5cd1b3be4b61cd9042e75174df79e8ac7a2
MD5 388bc7d67a173b93bc85928c75dc0dd7
BLAKE2b-256 d77823910dd2039ebbd92de14f6f48f1f6b068c2413bd87f86869de54b0e58bc

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.40-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a0b9e3d81f86ba04007f0349e373a5b8c81ec2047aadb8d669caf8c54a092461
MD5 fa381fd56543b51875f85f7847577674
BLAKE2b-256 da60266d99aa2f40f3e24e3f4ee3feabaeac74a175de909649937e311eede824

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.40-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 f2aa85aebc0ef6b342d5d3542f969caa8c6a63c8d36cf5098769158a9fa2123c
MD5 b2c82623e1293a351ff5c78ffdb0b3eb
BLAKE2b-256 3f628a87886b430386bd03299b14383bdda4481ca65b2c2e8b7348a1b80501f0

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp27-cp27m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.40-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.40-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 2026632051a93997cf8f6fda14360f99230be1725b7ab2ef15be205a4b8a5430
MD5 cdff366c51f3170a9caab22c6d8c1da9
BLAKE2b-256 07d70cc492b7775665933f84885586922501f31a1bac52b4246aa641a887aa68

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.40-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 fb4edb6c354eac0fcc07cb91797e142f702532dbb16c1d62839d6eec35f814cf
MD5 75b2a97220cfe15b6bd7105865189002
BLAKE2b-256 513aa41b6e7c6fad24224ef9ce5b865209ada2447c7e4fe59382000ee5f63293

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.40-cp27-cp27m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.40-cp27-cp27m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b07fc38e6392a65935dc8b486229679142b2ea33c94059366b4d8b56f1e35a97
MD5 64ef6af08d43955149fdc4d8d3c4ff1e
BLAKE2b-256 b62ae690ddd17c2ecf4476d322e38d29e0920d4ff9cef58b9acf9846894d7da7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page