Skip to main content

Database Abstraction Library

Project description

PyPI PyPI - Python Version PyPI - Downloads

The Python SQL Toolkit and Object Relational Mapper

Introduction

SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives application developers the full power and flexibility of SQL. SQLAlchemy provides a full suite of well known enterprise-level persistence patterns, designed for efficient and high-performing database access, adapted into a simple and Pythonic domain language.

Major SQLAlchemy features include:

  • An industrial strength ORM, built from the core on the identity map, unit of work, and data mapper patterns. These patterns allow transparent persistence of objects using a declarative configuration system. Domain models can be constructed and manipulated naturally, and changes are synchronized with the current transaction automatically.

  • A relationally-oriented query system, exposing the full range of SQL’s capabilities explicitly, including joins, subqueries, correlation, and most everything else, in terms of the object model. Writing queries with the ORM uses the same techniques of relational composition you use when writing SQL. While you can drop into literal SQL at any time, it’s virtually never needed.

  • A comprehensive and flexible system of eager loading for related collections and objects. Collections are cached within a session, and can be loaded on individual access, all at once using joins, or by query per collection across the full result set.

  • A Core SQL construction system and DBAPI interaction layer. The SQLAlchemy Core is separate from the ORM and is a full database abstraction layer in its own right, and includes an extensible Python-based SQL expression language, schema metadata, connection pooling, type coercion, and custom types.

  • All primary and foreign key constraints are assumed to be composite and natural. Surrogate integer primary keys are of course still the norm, but SQLAlchemy never assumes or hardcodes to this model.

  • Database introspection and generation. Database schemas can be “reflected” in one step into Python structures representing database metadata; those same structures can then generate CREATE statements right back out - all within the Core, independent of the ORM.

SQLAlchemy’s philosophy:

  • SQL databases behave less and less like object collections the more size and performance start to matter; object collections behave less and less like tables and rows the more abstraction starts to matter. SQLAlchemy aims to accommodate both of these principles.

  • An ORM doesn’t need to hide the “R”. A relational database provides rich, set-based functionality that should be fully exposed. SQLAlchemy’s ORM provides an open-ended set of patterns that allow a developer to construct a custom mediation layer between a domain model and a relational schema, turning the so-called “object relational impedance” issue into a distant memory.

  • The developer, in all cases, makes all decisions regarding the design, structure, and naming conventions of both the object model as well as the relational schema. SQLAlchemy only provides the means to automate the execution of these decisions.

  • With SQLAlchemy, there’s no such thing as “the ORM generated a bad query” - you retain full control over the structure of queries, including how joins are organized, how subqueries and correlation is used, what columns are requested. Everything SQLAlchemy does is ultimately the result of a developer- initiated decision.

  • Don’t use an ORM if the problem doesn’t need one. SQLAlchemy consists of a Core and separate ORM component. The Core offers a full SQL expression language that allows Pythonic construction of SQL constructs that render directly to SQL strings for a target database, returning result sets that are essentially enhanced DBAPI cursors.

  • Transactions should be the norm. With SQLAlchemy’s ORM, nothing goes to permanent storage until commit() is called. SQLAlchemy encourages applications to create a consistent means of delineating the start and end of a series of operations.

  • Never render a literal value in a SQL statement. Bound parameters are used to the greatest degree possible, allowing query optimizers to cache query plans effectively and making SQL injection attacks a non-issue.

Documentation

Latest documentation is at:

https://www.sqlalchemy.org/docs/

Installation / Requirements

Full documentation for installation is at Installation.

Getting Help / Development / Bug reporting

Please refer to the SQLAlchemy Community Guide.

Code of Conduct

Above all, SQLAlchemy places great emphasis on polite, thoughtful, and constructive communication between users and developers. Please see our current Code of Conduct at Code of Conduct.

License

SQLAlchemy is distributed under the MIT license.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SQLAlchemy-1.4.41.tar.gz (8.3 MB view details)

Uploaded Source

Built Distributions

SQLAlchemy-1.4.41-cp311-cp311-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

SQLAlchemy-1.4.41-cp311-cp311-win32.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows x86

SQLAlchemy-1.4.41-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.41-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.41-cp311-cp311-macosx_10_15_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

SQLAlchemy-1.4.41-cp310-cp310-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

SQLAlchemy-1.4.41-cp310-cp310-win32.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86

SQLAlchemy-1.4.41-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.41-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.41-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.41-cp310-cp310-macosx_10_15_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

SQLAlchemy-1.4.41-cp39-cp39-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

SQLAlchemy-1.4.41-cp39-cp39-win32.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86

SQLAlchemy-1.4.41-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.41-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.41-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.41-cp39-cp39-macosx_10_15_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

SQLAlchemy-1.4.41-cp38-cp38-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

SQLAlchemy-1.4.41-cp38-cp38-win32.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86

SQLAlchemy-1.4.41-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.41-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.41-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.41-cp38-cp38-macosx_10_15_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

SQLAlchemy-1.4.41-cp37-cp37m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

SQLAlchemy-1.4.41-cp37-cp37m-win32.whl (1.6 MB view details)

Uploaded CPython 3.7m Windows x86

SQLAlchemy-1.4.41-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.41-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.41-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.41-cp37-cp37m-macosx_10_15_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

SQLAlchemy-1.4.41-cp36-cp36m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

SQLAlchemy-1.4.41-cp36-cp36m-win32.whl (1.6 MB view details)

Uploaded CPython 3.6m Windows x86

SQLAlchemy-1.4.41-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.41-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.41-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.41-cp36-cp36m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

SQLAlchemy-1.4.41-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.41-cp27-cp27m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 2.7m Windows x86-64

SQLAlchemy-1.4.41-cp27-cp27m-win32.whl (1.6 MB view details)

Uploaded CPython 2.7m Windows x86

SQLAlchemy-1.4.41-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.41-cp27-cp27m-macosx_10_14_x86_64.whl (1.5 MB view details)

Uploaded CPython 2.7m macOS 10.14+ x86-64

File details

Details for the file SQLAlchemy-1.4.41.tar.gz.

File metadata

  • Download URL: SQLAlchemy-1.4.41.tar.gz
  • Upload date:
  • Size: 8.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.0

File hashes

Hashes for SQLAlchemy-1.4.41.tar.gz
Algorithm Hash digest
SHA256 0292f70d1797e3c54e862e6f30ae474014648bc9c723e14a2fda730adb0a9791
MD5 b8fad4f0c4335cdba7655dca8dcedb09
BLAKE2b-256 67a097da2cb07e013fd6c37fd896a86b374aa726e4161cafd57185e8418d59aa

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d2e054aed4645f9b755db85bc69fc4ed2c9020c19c8027976f66576b906a74f1
MD5 52f87f74875129837ff986380001be4f
BLAKE2b-256 37b5136c78031fb88f3f79fa1090c339f36a7b9bbb359651767b617f2bbf655a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 59bdc291165b6119fc6cdbc287c36f7f2859e6051dd923bdf47b4c55fd2f8bd0
MD5 a3072a713d07a29b09d68322682c3488
BLAKE2b-256 930c377daa276fa54ad65a6dbd0323285cf0892972fa88a4dbe17113ec440c32

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b67fc780cfe2b306180e56daaa411dd3186bf979d50a6a7c2a5b5036575cbdbb
MD5 dc2dab7d503c0edc2c2550345602704f
BLAKE2b-256 ea4e4bcd7e756fa2e989e7eed239bca3c3fc57101b7d0c49864f8e41d202d1ce

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2ad2b727fc41c7f8757098903f85fafb4bf587ca6605f82d9bf5604bd9c7cded
MD5 2866f97f2436ce7533fbddad6b8ddef4
BLAKE2b-256 bff269c9f96515b4eb65fac522c8b81ec10666ee4789484b0c123452c1f22505

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 90484a2b00baedad361402c257895b13faa3f01780f18f4a104a2f5c413e4536
MD5 67d9934512173a5539ddd07bc1f0d0e3
BLAKE2b-256 fe28f22792eee334cd83a15ef34b825761ee057d330b9b24d3f1496b95faa557

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e4b12e3d88a8fffd0b4ca559f6d4957ed91bd4c0613a4e13846ab8729dc5c251
MD5 f37896e5860a2020a78f5d775e2b04c2
BLAKE2b-256 d6b778d3425a6b3aa486c46259228c1933a22ac4d48b0e6220930973ac852091

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 2082a2d2fca363a3ce21cfa3d068c5a1ce4bf720cf6497fb3a9fc643a8ee4ddd
MD5 df9e8d6fff8ac9989f2fe3a3b570fe91
BLAKE2b-256 d0ea86e73fb946694c491a332710d0686f3260b941b3af43502457d3a62512dd

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0990932f7cca97fece8017414f57fdd80db506a045869d7ddf2dda1d7cf69ecc
MD5 fa7d170b2827b4aa2e18f767abe3df9e
BLAKE2b-256 be76912622f9e0b87a9fc58d4d58e9ce459bbd9cd83021c51989afb1839d2162

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5102fb9ee2c258a2218281adcb3e1918b793c51d6c2b4666ce38c35101bb940e
MD5 71b4a9cf1c6d611186a98a681def6c53
BLAKE2b-256 b6df51a99ba9b419e15aa39948756f79d6ef2df9ede3288799c1deb43b618799

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 cd767cf5d7252b1c88fcfb58426a32d7bd14a7e4942497e15b68ff5d822b41ad
MD5 5c3b8dbd6df82645ad19a7d52e5f0b54
BLAKE2b-256 f097c6a1bc6e80844c10ee1cb599fa5d8c919fc68b9d9ebed22217cadcfca4c8

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 361f6b5e3f659e3c56ea3518cf85fbdae1b9e788ade0219a67eeaaea8a4e4d2a
MD5 1df058001b0a30c0705a2b523a8f5cc1
BLAKE2b-256 5b050344b99768d345cd92785949a3dac38bfb7059b3b4dc6ae1e55ea842c772

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f5fa526d027d804b1f85cdda1eb091f70bde6fb7d87892f6dd5a48925bc88898
MD5 c220f5f4bc2947e64cfec0d16e21d7c4
BLAKE2b-256 732ed61aeec5580ae1841508c39ac63a9a8cfb8200d88f3d9b7d57607ab2f245

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp39-cp39-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.41-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.41-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 9c56e19780cd1344fcd362fd6265a15f48aa8d365996a37fab1495cae8fcd97d
MD5 ee29e3757efca5b80085a3fe3f23ecc8
BLAKE2b-256 f181638d6bd19baf595959c42c154d83262d609140898eb88866db2f024fcc00

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4676d51c9f6f6226ae8f26dc83ec291c088fe7633269757d333978df78d931ab
MD5 72d082e35e40032de7e906f0a0839bdd
BLAKE2b-256 e55bfbaf9a5f3ef900f9eb30644cb74520a7771250a1d0b26a44ca053d3ef4fe

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2307495d9e0ea00d0c726be97a5b96615035854972cc538f6e7eaed23a35886c
MD5 d47a6b6f886666ff96675c6c62a3d4c1
BLAKE2b-256 ceb71b65516236b36b55624768f7923c9a8d55ca4ba239b795ea84cb82086718

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 036d8472356e1d5f096c5e0e1a7e0f9182140ada3602f8fff6b7329e9e7cfbcd
MD5 741027755870428e3ba0e8ce9f9c3ee1
BLAKE2b-256 1b8253cc4c827ce330ce97767a3536e320e58f8803da3255ba4752ca20d8f376

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 199a73c31ac8ea59937cc0bf3dfc04392e81afe2ec8a74f26f489d268867846c
MD5 488521e04cb2381bc4273f9502686237
BLAKE2b-256 bca9f9eb3d4952bfa67f7489732af8db2c31b2e99b6b2f70f786fb6d92b18ebb

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ce8feaa52c1640de9541eeaaa8b5fb632d9d66249c947bb0d89dd01f87c7c288
MD5 6ce216a81f7f4bc41513519d43118d25
BLAKE2b-256 5c0c4256c722fc41e7f581776ac05af9b5db5c304c7888d625e47d079024c7b8

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp38-cp38-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.41-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.41-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 58bb65b3274b0c8a02cea9f91d6f44d0da79abc993b33bdedbfec98c8440175a
MD5 7aabaf9b38d6211aa67b985fe9dcfe7d
BLAKE2b-256 5b3d4c6da7a76f850c55e9115d5bcf2f90509a8617f4e955d9bd82f23008e029

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0002e829142b2af00b4eaa26c51728f3ea68235f232a2e72a9508a3116bd6ed0
MD5 368e936b7950ac23465c209db5cc6168
BLAKE2b-256 a8629f74f13f3907ca416d8fc7b1c33a8137717a2a2d42364038b9437dcc8040

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ccfd238f766a5bb5ee5545a62dd03f316ac67966a6a658efb63eeff8158a4bbf
MD5 23759924d3a0dfe549ef7ae2b0087a93
BLAKE2b-256 f6ca6d666434176ff264e750d14b833a7f2243183a8a69f3a25253f1f0052f09

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 22ff16cedab5b16a0db79f1bc99e46a6ddececb60c396562e50aab58ddb2871c
MD5 5a52c35496053d6434aca4cc49d3a7b4
BLAKE2b-256 b11ae0c11a28c2d2c3c1e74705d4fcb2246434050eed69b70e6acf0ef88adbb0

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 05f0de3a1dc3810a776275763764bb0015a02ae0f698a794646ebc5fb06fad33
MD5 6ed8b8537f1c592378ebff8cb6c4bfb1
BLAKE2b-256 858a83f1056449d819532c337a4a1b709a8e6291b9398340c0b2c00d5fdc7589

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 5323252be2bd261e0aa3f33cb3a64c45d76829989fa3ce90652838397d84197d
MD5 a2810c8bdfc09954e06f2282ae6202ad
BLAKE2b-256 08a88146793f1cbe0b7753463e885dd30ad2f647d700530625598355863397b5

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp37-cp37m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.41-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.41-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 0005bd73026cd239fc1e8ccdf54db58b6193be9a02b3f0c5983808f84862c767
MD5 c4fb502ddfba9f7db018793e99b931b8
BLAKE2b-256 1d46208bb085d3405eaec7aa41e8b3eda0c3aa596169e0d31c7bcc75ad1b9abc

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8eb8897367a21b578b26f5713833836f886817ee2ffba1177d446fa3f77e67c8
MD5 078871c0fe5160e242deb3bb0d12a5f9
BLAKE2b-256 bfed443a8584b15cbab97f0a5e5ba4974c7b6c989d2ec5a37423946a24619bcf

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 639e1ae8d48b3c86ffe59c0daa9a02e2bfe17ca3d2b41611b30a0073937d4497
MD5 7b4b83e8faec1eb90d06c617fc240e81
BLAKE2b-256 070d46d1a6c25fce13d2c6892e9a203d4baae3058cb04396915365d621965f95

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 14576238a5f89bcf504c5f0a388d0ca78df61fb42cb2af0efe239dc965d4f5c9
MD5 ab9caa7cf15d8cd3b6e934dc3d74636a
BLAKE2b-256 795fcf2664ea15b04cfacab5f9ed791741874c67d58f69ad86c22488bc53a2f0

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c23d64a0b28fc78c96289ffbd0d9d1abd48d267269b27f2d34e430ea73ce4b26
MD5 de2ee623e511ab7b4139ec8e8d9898fe
BLAKE2b-256 39ec02955ea76aca27cba7b280cea29f7952133f154b3a0be50281f125a4c753

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 eb30cf008850c0a26b72bd1b9be6730830165ce049d239cfdccd906f2685f892
MD5 160ccb72adb7b822e278e7df09fdd3bd
BLAKE2b-256 f884f92a2de0e4a7e82acca2bc74c75295fe5f141ea8ba002e2218cea41d2245

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp36-cp36m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.41-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.41-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 3e2ef592ac3693c65210f8b53d0edcf9f4405925adcfc031ff495e8d18169682
MD5 e7169ecd82244d4455bebad0ba1a7657
BLAKE2b-256 05f523735f8e87c4c66058b327773654930898cdb3e206a8ddb22aadc2e54cea

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c0dcf127bb99458a9d211e6e1f0f3edb96c874dd12f2503d4d8e4f1fd103790b
MD5 6a9a26e1092d0f93e36ec57aa6e5dce1
BLAKE2b-256 e43cb37bbfe25ebfe129cfa7843e74af3081cca6ae9a893869ba82639479fdf9

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f5ebeeec5c14533221eb30bad716bc1fd32f509196318fb9caa7002c4a364e4c
MD5 6b06b5ef8632e5fd24d1462ea2aab37f
BLAKE2b-256 d54a29ce9d2ec5bb2d3e83ad387b956defde6229252259795cd28210a5020740

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e16c2be5cb19e2c08da7bd3a87fed2a0d4e90065ee553a940c4fc1a0fb1ab72b
MD5 08507611e25d3c9919e6c2e5667f47a6
BLAKE2b-256 7e7f0693241547e0b8534600e831dfe0a8bbcb29a60c53925ed604a747a00bb8

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4ba7e122510bbc07258dc42be6ed45997efdf38129bde3e3f12649be70683546
MD5 b4205c8ba2fd314843084b12ad50cbe1
BLAKE2b-256 428b4ddf009cb17231471419d9e31dd03005c0b31f8a4e94a9cd1a0b4ade44d4

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f37fa70d95658763254941ddd30ecb23fc4ec0c5a788a7c21034fc2305dab7cc
MD5 ee27f886d9ae29f1d2aafa9e881a95b3
BLAKE2b-256 ff1c55bf52c1961ce01164835047ed2c09e44b76d1f18a75841715626f2786b1

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 5facb7fd6fa8a7353bbe88b95695e555338fb038ad19ceb29c82d94f62775a05
MD5 173465c84cbc17eb0f6a03fb1eca47fc
BLAKE2b-256 f40678ab18ec859c7dbdb5182b8463ebb3abac932ad086b9dd15fb60958f9a4f

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp27-cp27m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.41-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.41-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 e570cfc40a29d6ad46c9aeaddbdcee687880940a3a327f2c668dd0e4ef0a441d
MD5 ea81add977197ee9e1f84db76d09da57
BLAKE2b-256 fa5f150ca2e971231624041de73fbc61b0b16f5139530cbff889213cc00f83f8

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2d6495f84c4fd11584f34e62f9feec81bf373787b3942270487074e35cbe5330
MD5 6ae683907a61d8ca9a75478b69d00912
BLAKE2b-256 1060e891b496ca0bbbabedcb387d43be52b6b59dfb902a0e2df26d1cc43caf4c

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.41-cp27-cp27m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.41-cp27-cp27m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 13e397a9371ecd25573a7b90bd037db604331cf403f5318038c46ee44908c44d
MD5 12f96871380604a412b74527f3568da0
BLAKE2b-256 dec2cb1e60fee76b253b396e31a641e117ba689437b1d9dbecfe8415cb0e8b43

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page