Skip to main content

Database Abstraction Library

Project description

PyPI PyPI - Python Version PyPI - Downloads

The Python SQL Toolkit and Object Relational Mapper

Introduction

SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives application developers the full power and flexibility of SQL. SQLAlchemy provides a full suite of well known enterprise-level persistence patterns, designed for efficient and high-performing database access, adapted into a simple and Pythonic domain language.

Major SQLAlchemy features include:

  • An industrial strength ORM, built from the core on the identity map, unit of work, and data mapper patterns. These patterns allow transparent persistence of objects using a declarative configuration system. Domain models can be constructed and manipulated naturally, and changes are synchronized with the current transaction automatically.

  • A relationally-oriented query system, exposing the full range of SQL’s capabilities explicitly, including joins, subqueries, correlation, and most everything else, in terms of the object model. Writing queries with the ORM uses the same techniques of relational composition you use when writing SQL. While you can drop into literal SQL at any time, it’s virtually never needed.

  • A comprehensive and flexible system of eager loading for related collections and objects. Collections are cached within a session, and can be loaded on individual access, all at once using joins, or by query per collection across the full result set.

  • A Core SQL construction system and DBAPI interaction layer. The SQLAlchemy Core is separate from the ORM and is a full database abstraction layer in its own right, and includes an extensible Python-based SQL expression language, schema metadata, connection pooling, type coercion, and custom types.

  • All primary and foreign key constraints are assumed to be composite and natural. Surrogate integer primary keys are of course still the norm, but SQLAlchemy never assumes or hardcodes to this model.

  • Database introspection and generation. Database schemas can be “reflected” in one step into Python structures representing database metadata; those same structures can then generate CREATE statements right back out - all within the Core, independent of the ORM.

SQLAlchemy’s philosophy:

  • SQL databases behave less and less like object collections the more size and performance start to matter; object collections behave less and less like tables and rows the more abstraction starts to matter. SQLAlchemy aims to accommodate both of these principles.

  • An ORM doesn’t need to hide the “R”. A relational database provides rich, set-based functionality that should be fully exposed. SQLAlchemy’s ORM provides an open-ended set of patterns that allow a developer to construct a custom mediation layer between a domain model and a relational schema, turning the so-called “object relational impedance” issue into a distant memory.

  • The developer, in all cases, makes all decisions regarding the design, structure, and naming conventions of both the object model as well as the relational schema. SQLAlchemy only provides the means to automate the execution of these decisions.

  • With SQLAlchemy, there’s no such thing as “the ORM generated a bad query” - you retain full control over the structure of queries, including how joins are organized, how subqueries and correlation is used, what columns are requested. Everything SQLAlchemy does is ultimately the result of a developer- initiated decision.

  • Don’t use an ORM if the problem doesn’t need one. SQLAlchemy consists of a Core and separate ORM component. The Core offers a full SQL expression language that allows Pythonic construction of SQL constructs that render directly to SQL strings for a target database, returning result sets that are essentially enhanced DBAPI cursors.

  • Transactions should be the norm. With SQLAlchemy’s ORM, nothing goes to permanent storage until commit() is called. SQLAlchemy encourages applications to create a consistent means of delineating the start and end of a series of operations.

  • Never render a literal value in a SQL statement. Bound parameters are used to the greatest degree possible, allowing query optimizers to cache query plans effectively and making SQL injection attacks a non-issue.

Documentation

Latest documentation is at:

https://www.sqlalchemy.org/docs/

Installation / Requirements

Full documentation for installation is at Installation.

Getting Help / Development / Bug reporting

Please refer to the SQLAlchemy Community Guide.

Code of Conduct

Above all, SQLAlchemy places great emphasis on polite, thoughtful, and constructive communication between users and developers. Please see our current Code of Conduct at Code of Conduct.

License

SQLAlchemy is distributed under the MIT license.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SQLAlchemy-1.4.43.tar.gz (8.5 MB view details)

Uploaded Source

Built Distributions

SQLAlchemy-1.4.43-cp311-cp311-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

SQLAlchemy-1.4.43-cp311-cp311-win32.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows x86

SQLAlchemy-1.4.43-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.43-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.43-cp311-cp311-macosx_10_9_universal2.whl (1.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

SQLAlchemy-1.4.43-cp310-cp310-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

SQLAlchemy-1.4.43-cp310-cp310-win32.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86

SQLAlchemy-1.4.43-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.43-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.43-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.43-cp310-cp310-macosx_10_15_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

SQLAlchemy-1.4.43-cp39-cp39-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

SQLAlchemy-1.4.43-cp39-cp39-win32.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86

SQLAlchemy-1.4.43-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.43-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.43-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.43-cp39-cp39-macosx_10_15_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

SQLAlchemy-1.4.43-cp38-cp38-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

SQLAlchemy-1.4.43-cp38-cp38-win32.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86

SQLAlchemy-1.4.43-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.43-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.43-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.43-cp38-cp38-macosx_10_15_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

SQLAlchemy-1.4.43-cp37-cp37m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

SQLAlchemy-1.4.43-cp37-cp37m-win32.whl (1.6 MB view details)

Uploaded CPython 3.7m Windows x86

SQLAlchemy-1.4.43-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.43-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.43-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.43-cp37-cp37m-macosx_10_15_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

SQLAlchemy-1.4.43-cp36-cp36m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

SQLAlchemy-1.4.43-cp36-cp36m-win32.whl (1.6 MB view details)

Uploaded CPython 3.6m Windows x86

SQLAlchemy-1.4.43-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.43-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.43-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.43-cp36-cp36m-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

SQLAlchemy-1.4.43-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.43-cp27-cp27m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 2.7m Windows x86-64

SQLAlchemy-1.4.43-cp27-cp27m-win32.whl (1.6 MB view details)

Uploaded CPython 2.7m Windows x86

SQLAlchemy-1.4.43-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.43-cp27-cp27m-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7m macOS 10.14+ x86-64

File details

Details for the file SQLAlchemy-1.4.43.tar.gz.

File metadata

  • Download URL: SQLAlchemy-1.4.43.tar.gz
  • Upload date:
  • Size: 8.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.0

File hashes

Hashes for SQLAlchemy-1.4.43.tar.gz
Algorithm Hash digest
SHA256 c628697aad7a141da8fc3fd81b4874a711cc84af172e1b1e7bbfadf760446496
MD5 1c01284db5e2b4a14f388490a7ea557d
BLAKE2b-256 ae92815bc4dbd071ec9e215685c31e3ba86269876a2cb36eed38b2da63a22295

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5d5937e1bf7921e4d1acdfad72dd98d9e7f9ea5c52aeb12b3b05b534b527692d
MD5 a8c2f9abd4ecf7df5fc08e79e325a28c
BLAKE2b-256 fcecfd4ac858d1a14882ea6c26a64170db262959ee806cbfb87c73d3fe1ae597

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 0c8a174f23bc021aac97bcb27fbe2ae3d4652d3d23e5768bc2ec3d44e386c7eb
MD5 cae0a34e92b00012dba0d8365570ab8d
BLAKE2b-256 833ee95a28afd9e6b5b9969d91b4852bce5fb775973814fd0d87534fc3c022cb

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d05d7365c2d1df03a69d90157a3e9b3e7b62088cca8ee6686aed2598659a6e14
MD5 4d4ed85d19b08e1d7e91125a4e3582ad
BLAKE2b-256 b6c43aa2bb01ae7a7460f2715d78416eb7585d565b64c5bae26c1077a4c75cb2

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 59bd0ae166253f7fed8c3f4f6265d2637f25d2f6614d00df34d7ee0d95d29c91
MD5 eb62fa5fd4766c2944989d50a6514a1e
BLAKE2b-256 c7cccd0a0375bb4e4f721c951d86306a1f9b6cc75643a2b7e697d8be8fba063b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f6e036714a586f757a3e12ff0798ce9a90aa04a60cff392d8bcacc5ecf79c95e
MD5 0d2cc8735d2994a002e2b5a849b4ab5c
BLAKE2b-256 baeeee3637fc9ecace4d75c828d16b817aea8f14476e235d10774480f8db1ae6

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 962c7c80c54a42836c47cb0d8a53016986c8584e8d98e90e2ea723a4ed0ba85b
MD5 e170aca869b529c45f36b8c295c0b41c
BLAKE2b-256 1dd0f9d8cf4c71aeb0c605f49044f130c238b851d85ec07af6e71b6d199190af

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 fa46d86a17cccd48c6762df1a60aecf5aaa2e0c0973efacf146c637694b62ffd
MD5 630075563e9fcb0b8bf3c45ce03d78a6
BLAKE2b-256 ed6234265f0c7c4bef8bc91a91062731d2e622e35ad1b533a7bde25d9e31f376

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1d16aca30fad4753aeb4ebde564bbd4a248b9673e4f879b940f4e806a17be87f
MD5 b5babf20f1731ddba74ad228dda01899
BLAKE2b-256 d1959e511dfda2c69afe4db90eefc0d7386aa1a86c9151f6647c1f96898650e3

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4abda3e693d24169221ffc7aa0444ccef3dc43dfeab6ad8665d3836751cd6af7
MD5 18f1a680fd71699185751eec14fabebc
BLAKE2b-256 b6bf6b01d4fad398f1faf630b21c743504c41c6f959846f6bcda902c63a96586

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 cde363fb5412ab178f1cc1e596e9cfc396464da8a4fe8e733cc6d6b4e2c23aa9
MD5 622313d9bea7390137d4958cbc5eb4c2
BLAKE2b-256 dad158bf196f6e41278772f79adc0f1d5ac6243f26261c17f56685cb0d235200

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 aa12e27cb465b4b006ffb777624fc6023363e01cfed2d3f89d33fb6da80f6de2
MD5 b15472f497c685a2d780a574d5d9793c
BLAKE2b-256 fe7d8b1d2d6f2d6f44d68195919c5c8a4737a0f01d22024a845b47e8c2ee27c6

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a7fa3e57a7b0476fbcba72b231150503d53dbcbdd23f4a86be5152912a923b6e
MD5 5d6b39a5584a25e34548020eb8656488
BLAKE2b-256 656db0c70433044a8d30ae5618d2eb4026a91d520638fa3320cdced1362f06a7

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp39-cp39-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.43-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.43-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 c1f5bfffc3227d05d90c557b10604962f655b4a83c9f3ad507a81ac8d6847679
MD5 5a21449f83bdb721b27ed3238efe6271
BLAKE2b-256 b7991c6b50d75429f734b602fc1ab458232cce743e7f3f646f5aed5bfd33849d

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bd80300d81d92661e2488a4bf4383f0c5dc6e7b05fa46d2823e231af4e30539a
MD5 f448b73ee74adaa1519c037119188656
BLAKE2b-256 2f4302782b228b4d18bf40b9f817a2e72f30d97a793c511b57c6aafe25e7a7f0

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6b462c070769f0ef06ea5fe65206b970bcf2b59cb3fda2bec2f4729e1be89c13
MD5 a68666dd8b3b81709b9b8f01df0ae2cb
BLAKE2b-256 3559c4923e6e80cd53dd722522be95d657df912b6aa40d063bc6a0a0d0ffeabf

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c3dde668edea70dc8d55a74d933d5446e5a97786cdd1c67c8e4971c73bd087ad
MD5 3012530c3da5030f8f675aabc15e1dc4
BLAKE2b-256 3deb0bf046a351ae38c80b475e98b741a3b91fcd48633d3a0a9076319d1e9a47

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c9b59863e2b1f1e1ebf9ee517f86cdfa82d7049c8d81ad71ab58d442b137bbe9
MD5 239c6d5c8d35b75798dbd96d7285f436
BLAKE2b-256 f1d3e58ae08c534527197712fdcc509758ce42610d374940f848f8497bb006f2

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4a791e7a1e5ac33f70a3598f8f34fdd3b60c68593bbb038baf58bc50e02d7468
MD5 ca5938d9fde1774c049eab109bc28a95
BLAKE2b-256 5f7cee464e69570f70dca3568fbf440228310d7125c804bb6c486a855bc3e348

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp38-cp38-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.43-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.43-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 fb9a44e7124f72b79023ab04e1c8fcd8f392939ef0d7a75beae8634e15605d30
MD5 2f4fb88486d038c983a5dcfde55617d8
BLAKE2b-256 518c91b5112cbce5c2013dacd7d5faa29d355f001157f2bef0e56a89ca4be4a6

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2fef01240d32ada9007387afd8e0b2230f99efdc4b57ca6f1d1192fca4fcf6a5
MD5 82060af630eefc12180bb3c411dd43b8
BLAKE2b-256 a7020aa0cc6f46d335dab752be14c777f9906be7bd72ee349124cbe6c990b212

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 35dc0a5e934c41e282e019c889069b01ff4cd356b2ea452c9985e1542734cfb1
MD5 b557d7248329f0e62866689644a80034
BLAKE2b-256 16c2e8740f600450cdd641ebf9549e8fdd5f353ac6f98dc17b7a80e1a2aa418d

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b6fd58e25e6cdd2a131d7e97f9713f8f2142360cd40c75af8aa5b83d535f811c
MD5 fc6d7694a1b31c35afdc810cf9ef3cbc
BLAKE2b-256 bf1d79f8f50ebe00787437508eb5bc9e656ca00f8a3cc259e32d0b5f6cab42da

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c6de20de7c19b965c007c9da240268dde1451865099ca10f0f593c347041b845
MD5 dd873be0c350aa1e0e34f337bedff744
BLAKE2b-256 d378fe387d78dd39b567cb5d523554e3d6271315483a7431ff20aabaaee963f6

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c9a6e878e63286392b262d86d21fe16e6eec12b95ccb0a92c392f2b1e0acca03
MD5 821102767abff9972e9437c1827089d5
BLAKE2b-256 6f2e23dfa32b8ffa3f2836a0a7e20e5139e22d0a36c341f6eb845611b920337e

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp37-cp37m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.43-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.43-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 dc1e005d490c101d27657481a05765851ab795cc8aedeb8d9425595088b20736
MD5 1a1fd9406fb529e3c9cf69d956eb8c09
BLAKE2b-256 4bfc4515f5954c77d3da0bd4a966ae49123a908a90878754f719408fd0aa54ff

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 23a4569d3db1ce44370d05c5ad79be4f37915fcc97387aef9da232b95db7b695
MD5 c128438ac0211ccc3441c27587b46e2b
BLAKE2b-256 a8751765db1f21e7aefb1732a067b30b51caa02477e03a5c8b35e1e0ec64fba3

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ee9613b0460dce970414cfc990ca40afe518bc139e697243fcdf890285fb30ac
MD5 2a977dfeb0c2a832cd89a9456ad8a458
BLAKE2b-256 7e12c9a8201b886dd77cc4e0e4ea521b8bc4796056f5950057648c68995453ea

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 42bff29eaecbb284f614f4bb265bb0c268625f5b93ce6268f8017811e0afbdde
MD5 964a8f510c31377f53df3a9695dcd450
BLAKE2b-256 f63ef7faf79bfa496a397ae7cc2a533a13671c8ced3aa361f9b4a866fedef8a3

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 736d4e706adb3c95a0a7e660073a5213dfae78ff2df6addf8ff2918c83fbeebe
MD5 7292cce63f6de50778cab16ba861519c
BLAKE2b-256 502d6c1a8f91a1e64f3fd0c6fefd26bb4e7f4369f84622a87038854ad90b9dc1

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 c1ced2fae7a1177a36cf94d0a5567452d195d3b4d7d932dd61f123fb15ddf87b
MD5 2739b7b8818d7ecbb20b18200b3119af
BLAKE2b-256 7cfed98af0080ceeb8e8187d2e7d3d6116a72e844081f44871eadd6403d326c0

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp36-cp36m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.43-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.43-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 529e2cc8af75811114e5ab2eb116fd71b6e252c6bdb32adbfcd5e0c5f6d5ab06
MD5 8761d27595d816e14a98996fa7df6da3
BLAKE2b-256 e421574e7bb93cb886e2263558ceab32e16567fa2a190724ebc83e8aee175061

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f5438f6c768b7e928f0463777b545965648ba0d55877afd14a4e96d2a99702e7
MD5 efabf2d6b83a4264db339b335ee973d9
BLAKE2b-256 5f146c83a3ad6e3536698ff245235db4015b67af1f3ddd21d8242c7cd2ac7bbc

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a22f46440e61d90100e0f378faac40335fb5bbf278472df0d83dc15b653b9896
MD5 8b555ece91ccb0e43fb8ebbe39e91478
BLAKE2b-256 382eb5df500647b6a631a1e236f49a0ccfe8692ad593edd13f06966b5b79e51b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 41df873cdae1d56fde97a1b4f6ffa118f40e4b2d6a6aa8c25c50eea31ecbeb08
MD5 dcc6b7c8dd20d01a9748a4e67868ec02
BLAKE2b-256 5dd437398fd46477773ac940c404bc75407a47c18895d5da63979fe18ef02d57

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ed1c950aba723b7a5b702b88f05d883607c587de918d7d8c2014fe7f55cf67e0
MD5 bf91665624306a964f114d6f40d4553a
BLAKE2b-256 0a7295c77e71fb1d37ea471abfedf456e8de23b8c6a90b3af8d4d24dac331f88

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 13ce4f3a068ec4ef7598d2a77f42adc3d90c76981f5a7c198756b25c4f4a22ea
MD5 7ee8849643c6d8a311e040aae2ed1343
BLAKE2b-256 68a1056ddd6fc05a17113f78cbaeeb9bc3fd7c0d8632e5efab0c869f575a45b7

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 27479b5a1e110e64c56b18ffbf8cf99e101572a3d1a43943ea02158f1304108e
MD5 8e04db60b98e1233002fe54232cd3ef3
BLAKE2b-256 2df3dba5844b5b1921f1547b9727460d4fa425fae5f39631ebe08105babeb574

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp27-cp27m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.43-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.43-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 7d6293010aa0af8bd3b0c9993259f8979db2422d6abf85a31d70ec69cb2ee4dc
MD5 42c1e6f6f6cbb4d8707a09f7098bf575
BLAKE2b-256 17870d3f3109e8ba8e4782991162e3375d43bb149e4ee105da0c5072be6e8775

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 eeb55a555eef1a9607c1635bbdddd0b8a2bb9713bcb5bc8da1e8fae8ee46d1d8
MD5 d723fa3e6f6eed29e80eb0c8d5f5a628
BLAKE2b-256 8258f6fdb1ecb83c5658e148f9d95e7d8139390f535c4689c4425baf35e80543

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.43-cp27-cp27m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.43-cp27-cp27m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 491d94879f9ec0dea7e1cb053cd9cc65a28d2467960cf99f7b3c286590406060
MD5 5dcbee9ebe0dbc5f547daca7c8aa8faa
BLAKE2b-256 7678782adf06c9de5c147dfd1909ccdd16ed3d48a20d045153633301e028ebdc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page