Skip to main content

Database Abstraction Library

Project description

PyPI PyPI - Python Version PyPI - Downloads

The Python SQL Toolkit and Object Relational Mapper

Introduction

SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives application developers the full power and flexibility of SQL. SQLAlchemy provides a full suite of well known enterprise-level persistence patterns, designed for efficient and high-performing database access, adapted into a simple and Pythonic domain language.

Major SQLAlchemy features include:

  • An industrial strength ORM, built from the core on the identity map, unit of work, and data mapper patterns. These patterns allow transparent persistence of objects using a declarative configuration system. Domain models can be constructed and manipulated naturally, and changes are synchronized with the current transaction automatically.

  • A relationally-oriented query system, exposing the full range of SQL’s capabilities explicitly, including joins, subqueries, correlation, and most everything else, in terms of the object model. Writing queries with the ORM uses the same techniques of relational composition you use when writing SQL. While you can drop into literal SQL at any time, it’s virtually never needed.

  • A comprehensive and flexible system of eager loading for related collections and objects. Collections are cached within a session, and can be loaded on individual access, all at once using joins, or by query per collection across the full result set.

  • A Core SQL construction system and DBAPI interaction layer. The SQLAlchemy Core is separate from the ORM and is a full database abstraction layer in its own right, and includes an extensible Python-based SQL expression language, schema metadata, connection pooling, type coercion, and custom types.

  • All primary and foreign key constraints are assumed to be composite and natural. Surrogate integer primary keys are of course still the norm, but SQLAlchemy never assumes or hardcodes to this model.

  • Database introspection and generation. Database schemas can be “reflected” in one step into Python structures representing database metadata; those same structures can then generate CREATE statements right back out - all within the Core, independent of the ORM.

SQLAlchemy’s philosophy:

  • SQL databases behave less and less like object collections the more size and performance start to matter; object collections behave less and less like tables and rows the more abstraction starts to matter. SQLAlchemy aims to accommodate both of these principles.

  • An ORM doesn’t need to hide the “R”. A relational database provides rich, set-based functionality that should be fully exposed. SQLAlchemy’s ORM provides an open-ended set of patterns that allow a developer to construct a custom mediation layer between a domain model and a relational schema, turning the so-called “object relational impedance” issue into a distant memory.

  • The developer, in all cases, makes all decisions regarding the design, structure, and naming conventions of both the object model as well as the relational schema. SQLAlchemy only provides the means to automate the execution of these decisions.

  • With SQLAlchemy, there’s no such thing as “the ORM generated a bad query” - you retain full control over the structure of queries, including how joins are organized, how subqueries and correlation is used, what columns are requested. Everything SQLAlchemy does is ultimately the result of a developer- initiated decision.

  • Don’t use an ORM if the problem doesn’t need one. SQLAlchemy consists of a Core and separate ORM component. The Core offers a full SQL expression language that allows Pythonic construction of SQL constructs that render directly to SQL strings for a target database, returning result sets that are essentially enhanced DBAPI cursors.

  • Transactions should be the norm. With SQLAlchemy’s ORM, nothing goes to permanent storage until commit() is called. SQLAlchemy encourages applications to create a consistent means of delineating the start and end of a series of operations.

  • Never render a literal value in a SQL statement. Bound parameters are used to the greatest degree possible, allowing query optimizers to cache query plans effectively and making SQL injection attacks a non-issue.

Documentation

Latest documentation is at:

https://www.sqlalchemy.org/docs/

Installation / Requirements

Full documentation for installation is at Installation.

Getting Help / Development / Bug reporting

Please refer to the SQLAlchemy Community Guide.

Code of Conduct

Above all, SQLAlchemy places great emphasis on polite, thoughtful, and constructive communication between users and developers. Please see our current Code of Conduct at Code of Conduct.

License

SQLAlchemy is distributed under the MIT license.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SQLAlchemy-1.4.44.tar.gz (8.5 MB view details)

Uploaded Source

Built Distributions

SQLAlchemy-1.4.44-cp311-cp311-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

SQLAlchemy-1.4.44-cp311-cp311-win32.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows x86

SQLAlchemy-1.4.44-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.44-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.44-cp311-cp311-macosx_10_9_universal2.whl (1.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

SQLAlchemy-1.4.44-cp310-cp310-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

SQLAlchemy-1.4.44-cp310-cp310-win32.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86

SQLAlchemy-1.4.44-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.44-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.44-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.44-cp310-cp310-macosx_10_15_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

SQLAlchemy-1.4.44-cp39-cp39-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

SQLAlchemy-1.4.44-cp39-cp39-win32.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86

SQLAlchemy-1.4.44-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.44-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.44-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.44-cp39-cp39-macosx_10_15_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

SQLAlchemy-1.4.44-cp38-cp38-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

SQLAlchemy-1.4.44-cp38-cp38-win32.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86

SQLAlchemy-1.4.44-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.44-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.44-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.44-cp38-cp38-macosx_10_15_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

SQLAlchemy-1.4.44-cp37-cp37m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

SQLAlchemy-1.4.44-cp37-cp37m-win32.whl (1.6 MB view details)

Uploaded CPython 3.7m Windows x86

SQLAlchemy-1.4.44-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.44-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.44-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.44-cp37-cp37m-macosx_10_15_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

SQLAlchemy-1.4.44-cp36-cp36m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

SQLAlchemy-1.4.44-cp36-cp36m-win32.whl (1.6 MB view details)

Uploaded CPython 3.6m Windows x86

SQLAlchemy-1.4.44-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.44-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.44-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.44-cp36-cp36m-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

SQLAlchemy-1.4.44-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.44-cp27-cp27m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 2.7m Windows x86-64

SQLAlchemy-1.4.44-cp27-cp27m-win32.whl (1.6 MB view details)

Uploaded CPython 2.7m Windows x86

SQLAlchemy-1.4.44-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.44-cp27-cp27m-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7m macOS 10.14+ x86-64

File details

Details for the file SQLAlchemy-1.4.44.tar.gz.

File metadata

  • Download URL: SQLAlchemy-1.4.44.tar.gz
  • Upload date:
  • Size: 8.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.0

File hashes

Hashes for SQLAlchemy-1.4.44.tar.gz
Algorithm Hash digest
SHA256 2dda5f96719ae89b3ec0f1b79698d86eb9aecb1d54e990abb3fdd92c04b46a90
MD5 088cf22e4a2845a85fbcd8a80ea7d6ba
BLAKE2b-256 eb71f5f512914b86bd007bf842d9b95dba78eedb899d46025ab86b197b22ae62

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 7313e4acebb9ae88dbde14a8a177467a7625b7449306c03a3f9f309b30e163d0
MD5 1cfeb78e7b5ae824102ab1543add0736
BLAKE2b-256 565a7122b55c6380b204af3ee12a732966003c06f193b7aee158bacf46acc7d6

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp311-cp311-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.44-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.44-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 c46322354c58d4dc039a2c982d28284330f8919f31206894281f4b595b9d8dbe
MD5 f591a5c5c0ca6a50dc0e53e949f04a14
BLAKE2b-256 409608c3b770e680683a00d25dbe5766bfa00b586fd6bbde79b30471a02084bf

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9c857676d810ca196be73c98eb839125d6fa849bfa3589be06201a6517f9961c
MD5 3c28fe7085fcce773fac3af2a135064e
BLAKE2b-256 c501968a65de5f249a2943ed14adfef8b59cfeb73747d678d1d8ee70c0b7d806

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4c56e6899fa6e767e4be5d106941804a4201c5cb9620a409c0b80448ec70b656
MD5 3d35a97d8e960612e07d51969d9ebe57
BLAKE2b-256 e9292e92e729da5f3bb3c7daba5949865dcae7d7afe763ce267119f6ac2f3525

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f5e8ed9cde48b76318ab989deeddc48f833d2a6a7b7c393c49b704f67dedf01d
MD5 f35edbc7d1147ef093cc346505c057c4
BLAKE2b-256 90c0960e58e7599cc379b082314212aa1af610a2f9e1c4c9909bee24a1fa0b92

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6f0ea4d7348feb5e5d0bf317aace92e28398fa9a6e38b7be9ec1f31aad4a8039
MD5 af011142a7c4b36d6ba7203a32cde9ec
BLAKE2b-256 1e230a0b26a7b94e4c268fa0dfbb9eb834628e4f27dbd421ec81483a74cda9b7

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp310-cp310-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.44-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.44-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 ae1ed1ebc407d2f66c6f0ec44ef7d56e3f455859df5494680e2cf89dad8e3ae0
MD5 a9411cd22e261de6966a79485e34d0df
BLAKE2b-256 e768b0018977adf60718de3fbb7201e907bc6b9ee8549dd2f363be1016a7dbab

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 595b185041a4dc5c685283ea98c2f67bbfa47bb28e4a4f5b27ebf40684e7a9f8
MD5 184f363f1d4d2040685f4398bac51597
BLAKE2b-256 aeaea367beae48e34a318de390580675e231960e051b04c482e61f2149963652

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 68e0cd5d32a32c4395168d42f2fefbb03b817ead3a8f3704b8bd5697c0b26c24
MD5 54dfc3694efb82971a6fa0722534aebd
BLAKE2b-256 fc3f9789b0ed62202e3d0f3aeb9415c572fb97aaa8be10b2a941874b5ff8096b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 80ead36fb1d676cc019586ffdc21c7e906ce4bf243fe4021e4973dae332b6038
MD5 373c4011551be10d6612bea216731dd8
BLAKE2b-256 2cb27bbd111b546f853f19c0994d9b43023f3b42fba325eeef4a9efe5c141250

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 65a0ad931944fcb0be12a8e0ac322dbd3ecf17c53f088bc10b6da8f0caac287b
MD5 4a3fc1909deb6c6a0a3516e416096356
BLAKE2b-256 6d86e4ed32f9bbaa26944d0455695d185ac4b3d8300d78e1920d29795635f92e

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d3b6d4588994da73567bb00af9d7224a16c8027865a8aab53ae9be83f9b7cbd1
MD5 785bbe9a74781ebd01c000b1348c7696
BLAKE2b-256 e4e6d6adeec3da2ed6b808d6fd6531d3bde14de5a04807563736555f33d1fa1d

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp39-cp39-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.44-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.44-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 7cf7c7adbf4417e3f46fc5a2dbf8395a5a69698217337086888f79700a12e93a
MD5 355e3c168587b2d03811ed8107c35f00
BLAKE2b-256 6383e383d7ff99871e747a2e3641ad8034eb31ce7ae762883c8daed70fcfd56f

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 237067ba0ef45a518b64606e1807f7229969ad568288b110ed5f0ca714a3ed3a
MD5 380c09bfb8db3621846f868c19b139d5
BLAKE2b-256 3290dc2454e34129f18dc0ed44f23311d474f5a1dbd520e78a8b08b1fd187cad

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 94c0093678001f5d79f2dcbf3104c54d6c89e41ab50d619494c503a4d3f1aef2
MD5 11e2e8b397d696d50768daa40731a449
BLAKE2b-256 8d2c56564b36ea9ac88b90563fa26d51602792b07ef4a324b1c63bca9b97e984

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6d7e1b28342b45f19e3dea7873a9479e4a57e15095a575afca902e517fb89652
MD5 1a611a089b1a4b0a02d96671468efe7d
BLAKE2b-256 9fa191dcc218089e94ba5b1d0ec81880993c115c10f3ba958b7850c5e1fd7d20

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c9aa372b295a36771cffc226b6517df3011a7d146ac22d19fa6a75f1cdf9d7e6
MD5 a0479c7b8545e2b9092e4eaecf8b3e98
BLAKE2b-256 d6d758fb086d0cf343407f857f5a41ed3453ad94e6c94655f5d6b8626e593ca6

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b737fbeb2f78926d1f59964feb287bbbd050e7904766f87c8ce5cfb86e6d840c
MD5 bf5708e978326735d3646da44e4558be
BLAKE2b-256 86ac377ab498eae1d90074654617fcb10ec45e0656b130da7c64f1b453456c42

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp38-cp38-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.44-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.44-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 b6a337a2643a41476fb6262059b8740f4b9a2ec29bf00ffb18c18c080f6e0aed
MD5 e0711e91a2e8824369dab7d2270cf551
BLAKE2b-256 836b0465a6278c90957ccf4e57953d6cd4873ed6399e331a8906d5d693303532

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3f68eab46649504eb95be36ca529aea16cd199f080726c28cbdbcbf23d20b2a2
MD5 2989a9e0cff4a813c16f1d9b36112180
BLAKE2b-256 7427ba0e52854a43267bba0ee9f89ac3ba7849adcddeff8a295811f73d10f3e2

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d8080bc51a775627865e0f1dbfc0040ff4ace685f187f6036837e1727ba2ed10
MD5 5c6b2820ca2b8fd6f407e4ab8ca87414
BLAKE2b-256 2ff89e76a68616587527d0ebf20f793f272ebf12baa4595697c2f09f4694ce82

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 21f3df74a0ab39e1255e94613556e33c1dc3b454059fe0b365ec3bbb9ed82e4a
MD5 01042956f8b06e494f25f1ccbc89b0f6
BLAKE2b-256 2e82ac1bd2ffc3b8173fed591c464194d8fc652248e71b90096c6748743cbc32

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 ad5f966623905ee33694680dda1b735544c99c7638f216045d21546d3d8c6f5b
MD5 33cd77508119e99af40fe269efbe840e
BLAKE2b-256 7d81ff330751fe246750ffaa470f070c0f6e1d2619ca9e05d37d35c5d68b4962

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3eba07f740488c3a125f17c092a81eeae24a6c7ec32ac9dbc52bf7afaf0c4f16
MD5 29b606c03889d2b93cc76699bd77549c
BLAKE2b-256 99129f5ca8939bf002ed86982c6205e0066f0c95600d4b74a0abf471245e52ea

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp37-cp37m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.44-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.44-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 0be9b479c5806cece01f1581726573a8d6515f8404e082c375b922c45cfc2a7b
MD5 c51621028f6ce8465b78c14ee380105b
BLAKE2b-256 4df1b7fe22eebd7379a041a9ca979224eeada6be4bdbf3baba1c2a16fed47050

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a22208c1982f1fe2ae82e5e4c3d4a6f2445a7a0d65fb7983a3d7cbbe3983f5a4
MD5 8b48eb24bdeb4f367cb203fbc7794fb4
BLAKE2b-256 41bae3cd76f4789ce873f751e0b2fdbe8c9577077ba4d3ab737935a130670d6b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d654870a66027af3a26df1372cf7f002e161c6768ebe4c9c6fdc0da331cb5173
MD5 7374eba97a69a9dddd3686c53f82cdd8
BLAKE2b-256 45e531ed505281c880f082323aa377f9997c153960683c5fc1563e5edf19f657

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d3b9ac11f36ab9a726097fba7c7f6384f0129aedb017f1d4d1d4fce9052a1320
MD5 edae89db7fd3a7d3ca816c7981e6c376
BLAKE2b-256 7be60197e06b36ec53b5af6684a8b462d1e7e934745e8c03af05de30ba9a8254

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 3cbdbed8cdcae0f83640a9c44fa02b45a6c61e149c58d45a63c9581aba62850f
MD5 7f6905194bd884b5300ed3a9e2c0adcf
BLAKE2b-256 40354202aa6635130ed6f0889d1cef873685ee9b7610ec86b16f65e6366051fc

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 3ca21b35b714ce36f4b8d1ee8d15f149db8eb43a472cf71600bf18dae32286e7
MD5 62c36ba7853b123a99af9c9b0758fd5c
BLAKE2b-256 5f9d2d1e408c3b03b3cef6212dfcd11c2eae78e458d91a9fcc38bbaf117c793e

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp36-cp36m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.44-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.44-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 6a06c2506c41926d2769f7968759995f2505e31c5b5a0821e43ca5a3ddb0e8ae
MD5 8a55c3e2e04b180547c8c35068183a76
BLAKE2b-256 0041678ed058d63e1baf1d44b45a2d8e8ce273de9c65fde4954824256c253689

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9470633395e5f24d6741b4c8a6e905bce405a28cf417bba4ccbaadf3dab0111d
MD5 5cdd8636c23e3b2dd5f65587352aa830
BLAKE2b-256 1ad04736d0d04f813722a653c0e9716699abbb0ccdb7e15682c105255a8ddded

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c7e3b9e01fdbe1ce3a165cc7e1ff52b24813ee79c6df6dee0d1e13888a97817e
MD5 2eca21a2d9fd68d36bbf917860e44c08
BLAKE2b-256 f13c9a804927fda83c3d431aba22d10760069c783a380caa7eb5e0a318e29460

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 393f51a09778e8984d735b59a810731394308b4038acdb1635397c2865dae2b6
MD5 4e01cb6ec08bc4fe69ebdca1dca25e73
BLAKE2b-256 fd0c0f1538602c4f0f0c6d445bd457e73cb62672bd16fd1a52c03d6cd69300e4

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 17aee7bfcef7bf0dea92f10e5dfdd67418dcf6fe0759f520e168b605855c003e
MD5 a0769bcf1cce1ec00007ddd15f9fc157
BLAKE2b-256 16520324b724570512fb66629c041e083ada411379214cc6ff260b161661faf2

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 53f90a2374f60e703c94118d21533765412da8225ba98659de7dd7998641ab17
MD5 dbeba0285c7ced2eb49232620d87f9ef
BLAKE2b-256 546731a95ec0827891ddc685ce833a2573a48f6ce74dc178c984cf9cd91bf288

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 f8e5443295b218b08bef8eb85d31b214d184b3690d99a33b7bd8e5591e2b0aa1
MD5 a618d56f3c205b3f9286ce52a363df4d
BLAKE2b-256 c4aa315314a310752e0ceb64c97d606f0cb78d5514d1a25d27626e6c5270bce8

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp27-cp27m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.44-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.44-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 afd1ac99179d1864a68c06b31263a08ea25a49df94e272712eb2824ef151e294
MD5 9154f111bf3c51d5c299aade0058afa6
BLAKE2b-256 7b3979719c9d2383e8b8b5d3bbf31511ea4bd9c6fedfacfb58d3664ee28830ee

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 95f4f8d62589755b507218f2e3189475a4c1f5cc9db2aec772071a7dc6cd5726
MD5 f55b740ec86b606dfa7ce630a91695bd
BLAKE2b-256 74ddcb2ddb2200eeefee68b9a3ffa297bfb613314c10182c1f91fc508960fa80

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.44-cp27-cp27m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.44-cp27-cp27m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 da60b98b0f6f0df9fbf8b72d67d13b73aa8091923a48af79a951d4088530a239
MD5 3dcee0c3d22b5c86622df9626e4ccdcf
BLAKE2b-256 0fcfdb4716ebdf422388f1d4392752a4fa86f734b29c716eebee46a22bb20ee1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page