Skip to main content

Database Abstraction Library

Project description

PyPI PyPI - Python Version PyPI - Downloads

The Python SQL Toolkit and Object Relational Mapper

Introduction

SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives application developers the full power and flexibility of SQL. SQLAlchemy provides a full suite of well known enterprise-level persistence patterns, designed for efficient and high-performing database access, adapted into a simple and Pythonic domain language.

Major SQLAlchemy features include:

  • An industrial strength ORM, built from the core on the identity map, unit of work, and data mapper patterns. These patterns allow transparent persistence of objects using a declarative configuration system. Domain models can be constructed and manipulated naturally, and changes are synchronized with the current transaction automatically.

  • A relationally-oriented query system, exposing the full range of SQL’s capabilities explicitly, including joins, subqueries, correlation, and most everything else, in terms of the object model. Writing queries with the ORM uses the same techniques of relational composition you use when writing SQL. While you can drop into literal SQL at any time, it’s virtually never needed.

  • A comprehensive and flexible system of eager loading for related collections and objects. Collections are cached within a session, and can be loaded on individual access, all at once using joins, or by query per collection across the full result set.

  • A Core SQL construction system and DBAPI interaction layer. The SQLAlchemy Core is separate from the ORM and is a full database abstraction layer in its own right, and includes an extensible Python-based SQL expression language, schema metadata, connection pooling, type coercion, and custom types.

  • All primary and foreign key constraints are assumed to be composite and natural. Surrogate integer primary keys are of course still the norm, but SQLAlchemy never assumes or hardcodes to this model.

  • Database introspection and generation. Database schemas can be “reflected” in one step into Python structures representing database metadata; those same structures can then generate CREATE statements right back out - all within the Core, independent of the ORM.

SQLAlchemy’s philosophy:

  • SQL databases behave less and less like object collections the more size and performance start to matter; object collections behave less and less like tables and rows the more abstraction starts to matter. SQLAlchemy aims to accommodate both of these principles.

  • An ORM doesn’t need to hide the “R”. A relational database provides rich, set-based functionality that should be fully exposed. SQLAlchemy’s ORM provides an open-ended set of patterns that allow a developer to construct a custom mediation layer between a domain model and a relational schema, turning the so-called “object relational impedance” issue into a distant memory.

  • The developer, in all cases, makes all decisions regarding the design, structure, and naming conventions of both the object model as well as the relational schema. SQLAlchemy only provides the means to automate the execution of these decisions.

  • With SQLAlchemy, there’s no such thing as “the ORM generated a bad query” - you retain full control over the structure of queries, including how joins are organized, how subqueries and correlation is used, what columns are requested. Everything SQLAlchemy does is ultimately the result of a developer- initiated decision.

  • Don’t use an ORM if the problem doesn’t need one. SQLAlchemy consists of a Core and separate ORM component. The Core offers a full SQL expression language that allows Pythonic construction of SQL constructs that render directly to SQL strings for a target database, returning result sets that are essentially enhanced DBAPI cursors.

  • Transactions should be the norm. With SQLAlchemy’s ORM, nothing goes to permanent storage until commit() is called. SQLAlchemy encourages applications to create a consistent means of delineating the start and end of a series of operations.

  • Never render a literal value in a SQL statement. Bound parameters are used to the greatest degree possible, allowing query optimizers to cache query plans effectively and making SQL injection attacks a non-issue.

Documentation

Latest documentation is at:

https://www.sqlalchemy.org/docs/

Installation / Requirements

Full documentation for installation is at Installation.

Getting Help / Development / Bug reporting

Please refer to the SQLAlchemy Community Guide.

Code of Conduct

Above all, SQLAlchemy places great emphasis on polite, thoughtful, and constructive communication between users and developers. Please see our current Code of Conduct at Code of Conduct.

License

SQLAlchemy is distributed under the MIT license.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SQLAlchemy-1.4.46.tar.gz (8.5 MB view details)

Uploaded Source

Built Distributions

SQLAlchemy-1.4.46-cp311-cp311-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

SQLAlchemy-1.4.46-cp311-cp311-win32.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows x86

SQLAlchemy-1.4.46-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.46-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.46-cp311-cp311-macosx_10_9_universal2.whl (1.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

SQLAlchemy-1.4.46-cp310-cp310-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

SQLAlchemy-1.4.46-cp310-cp310-win32.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86

SQLAlchemy-1.4.46-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.46-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.46-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.46-cp310-cp310-macosx_11_0_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

SQLAlchemy-1.4.46-cp39-cp39-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

SQLAlchemy-1.4.46-cp39-cp39-win32.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86

SQLAlchemy-1.4.46-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.46-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.46-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.46-cp39-cp39-macosx_11_0_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

SQLAlchemy-1.4.46-cp38-cp38-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

SQLAlchemy-1.4.46-cp38-cp38-win32.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86

SQLAlchemy-1.4.46-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.46-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.46-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.46-cp38-cp38-macosx_10_15_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

SQLAlchemy-1.4.46-cp37-cp37m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

SQLAlchemy-1.4.46-cp37-cp37m-win32.whl (1.6 MB view details)

Uploaded CPython 3.7m Windows x86

SQLAlchemy-1.4.46-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.46-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.46-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.46-cp37-cp37m-macosx_10_15_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

SQLAlchemy-1.4.46-cp36-cp36m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

SQLAlchemy-1.4.46-cp36-cp36m-win32.whl (1.6 MB view details)

Uploaded CPython 3.6m Windows x86

SQLAlchemy-1.4.46-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.46-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.46-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.46-cp36-cp36m-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

SQLAlchemy-1.4.46-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.46-cp27-cp27m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 2.7m Windows x86-64

SQLAlchemy-1.4.46-cp27-cp27m-win32.whl (1.6 MB view details)

Uploaded CPython 2.7m Windows x86

SQLAlchemy-1.4.46-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.46-cp27-cp27m-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7m macOS 10.14+ x86-64

File details

Details for the file SQLAlchemy-1.4.46.tar.gz.

File metadata

  • Download URL: SQLAlchemy-1.4.46.tar.gz
  • Upload date:
  • Size: 8.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.0

File hashes

Hashes for SQLAlchemy-1.4.46.tar.gz
Algorithm Hash digest
SHA256 6913b8247d8a292ef8315162a51931e2b40ce91681f1b6f18f697045200c4a30
MD5 c505a7cdcdb18a90a7deeb554fd9cbd4
BLAKE2b-256 afae8d8e67f2691f0fdb845df90013d68c12a9127e009b4dedc34a3228f4e5ad

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 984ee13543a346324319a1fb72b698e521506f6f22dc37d7752a329e9cd00a32
MD5 fa729ae5126dbe020ff2309f6233bfa2
BLAKE2b-256 bd2ddb768a164efcd36c8ec1accf559dd89bda60fbaec33913207fc78d2043cf

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 887865924c3d6e9a473dc82b70977395301533b3030d0f020c38fd9eba5419f2
MD5 e2a31ca973ab5ad81a91005f9bee8897
BLAKE2b-256 18b46b635a822da6e69ad193a3963c5d4417ec07446bc5dfd7fded7aeac7e2ba

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4d112b0f3c1bc5ff70554a97344625ef621c1bfe02a73c5d97cac91f8cd7a41e
MD5 febc9b1336924c01c7debf66d8cafcd9
BLAKE2b-256 e0c921d0e10bff602b673f21ed99cc641e8883fef54983b23b09d5216fca3872

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 69fac0a7054d86b997af12dc23f581cf0b25fb1c7d1fed43257dee3af32d3d6d
MD5 84b5f7f3e4ff2253e57d7e840b336422
BLAKE2b-256 cd2919c2455deb2fcaa5aa951eda2c8a878aba5c7211e73d9201303441c63ccc

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d68e1762997bfebf9e5cf2a9fd0bcf9ca2fdd8136ce7b24bbd3bbfa4328f3e4a
MD5 a144cb4a1f9543099a4899df3453ca23
BLAKE2b-256 82772e514172a644f8c579a47f4d3125b057a5895ac9afc67971c5a33fed9550

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 31de1e2c45e67a5ec1ecca6ec26aefc299dd5151e355eb5199cd9516b57340be
MD5 b67e505ffb9e754e3b1b6be7814b3d2f
BLAKE2b-256 88b547f5c394b2ff2a0997c05d4cc999537a576e6c2fd8298c996fa7deea6991

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 5f752676fc126edc1c4af0ec2e4d2adca48ddfae5de46bb40adbd3f903eb2120
MD5 bdd05a2e7aa90b23f5dea805aeb5f5aa
BLAKE2b-256 e17e92a4c30859e7950c8f4f5de0388b953b4b7e560e8d48a50f503d1d8e3980

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5dbf17ac9a61e7a3f1c7ca47237aac93cabd7f08ad92ac5b96d6f8dea4287fc1
MD5 bc99ec211c8e3ec97a676fd1f33727f7
BLAKE2b-256 a46ec1d1c8c675630d267363b2d42592c57e7a6fba618787bd9af9761f67b3b5

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 64cb0ad8a190bc22d2112001cfecdec45baffdf41871de777239da6a28ed74b6
MD5 fd16459ed2984aef7c156dd4021fe595
BLAKE2b-256 eb8d1b52215b53a4a7f3bc0e532c7491cd48fd30a9c2c76470c505db1229a8c8

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7f8267682eb41a0584cf66d8a697fef64b53281d01c93a503e1344197f2e01fe
MD5 0d3299c4dc8d9490c92f3b09662cd54c
BLAKE2b-256 00ef3d1f7491eb4782dcd5e0494c650b4e52d02b17436db06510e5707fdee2be

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 b7f4b6aa6e87991ec7ce0e769689a977776db6704947e562102431474799a857
MD5 35794cddc53a28255701270006ccf30f
BLAKE2b-256 6a4c34ee83616714e6194980e0429a8d58746f011848ea766cd61083a6ae5535

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 315676344e3558f1f80d02535f410e80ea4e8fddba31ec78fe390eff5fb8f466
MD5 31e78bac39a86b97509910ae720bb1e3
BLAKE2b-256 5d8de80ccbb290db8de2faccceb1e121886b45ea1463253dabb3e88a6195c276

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp39-cp39-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.46-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.46-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 51e1ba2884c6a2b8e19109dc08c71c49530006c1084156ecadfaadf5f9b8b053
MD5 0fb93df40deee58695013081d62f493a
BLAKE2b-256 93d5343f29c27892d34ce774afc421d6174d71586915ebf6bdcc0b4f2b0e946c

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a3714e5b33226131ac0da60d18995a102a17dddd42368b7bdd206737297823ad
MD5 7896ec1e38ef37b3598157457c1bd556
BLAKE2b-256 3828621616b6d80cead1efd6a50913a83bb263caed2c532e0084f7ff09c80b3d

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b6e4cb5c63f705c9d546a054c60d326cbde7421421e2d2565ce3e2eee4e1a01f
MD5 bb88440fa9ce3d3bda17b501290b7038
BLAKE2b-256 733eb82293fc17612488ff068c5235e743ebfe05310301984ca0467f88237572

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 955162ad1a931fe416eded6bb144ba891ccbf9b2e49dc7ded39274dd9c5affc5
MD5 d007b07edc3a92c0c7f5eef33497eff1
BLAKE2b-256 6cd9b1718d3a189d34fc018ace5caeb965370b509f760e7b661b12f2238a21ca

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 1b1e5e96e2789d89f023d080bee432e2fef64d95857969e70d3cadec80bd26f0
MD5 42d58596f532d46136056074733a8f06
BLAKE2b-256 a6816ffe04515b539f001168b3d63ff5305fdc2db90696d18ba1be7ab340cde2

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 07e48cbcdda6b8bc7a59d6728bd3f5f574ffe03f2c9fb384239f3789c2d95c2e
MD5 7207e528e5ddcd88226723b3cc50c671
BLAKE2b-256 145868e00f073d1f0daac7038714f061a4ff8a0a2bdaeaca46451fa7c15d4c4c

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp38-cp38-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.46-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.46-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 f8cb80fe8d14307e4124f6fad64dfd87ab749c9d275f82b8b4ec84c84ecebdbe
MD5 21a0d17e89f7d81ad1c2e6e2e5c183dc
BLAKE2b-256 c475a11c507ba2db8526854c77d1f81ab3b8032c7e1d5011d97fb89b8aef15f8

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d4d164df3d83d204c69f840da30b292ac7dc54285096c6171245b8d7807185aa
MD5 99e78c4d258f5b25ffbd8a185d5d2ee4
BLAKE2b-256 a4b82f83a1f8bef7208b8a3d342399c4fe39cc924f73dcaa325a44fcc86df927

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3d94682732d1a0def5672471ba42a29ff5e21bb0aae0afa00bb10796fc1e28dd
MD5 aa054fef3ab4451dcdf82b2d33957605
BLAKE2b-256 e6636955303508cfcf1c69428071eaf33eebcda1d6ed2fdade92617355053815

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b33ffbdbbf5446cf36cd4cc530c9d9905d3c2fe56ed09e25c22c850cdb9fac92
MD5 93bdd173824ec5d9d86608d704bbe434
BLAKE2b-256 b3c0a4fc7abdddbffe8e2f1c5300fa7f89c0a514f7944885d424d547ad607c37

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 e3c1808008124850115a3f7e793a975cfa5c8a26ceeeb9ff9cbb4485cac556df
MD5 c875bc042995d5edf7a0d7d8af41ed0b
BLAKE2b-256 d1df84451523051fc2c56f01c653052a962e15670a26ae84aeeaf881e3c64d83

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ae067ab639fa499f67ded52f5bc8e084f045d10b5ac7bb928ae4ca2b6c0429a5
MD5 14de1cc06c36427b7c12d2993755faae
BLAKE2b-256 f774de48d2c7875016fe507b9d1be76c901be22f03c64a985735c38e7e2612d7

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp37-cp37m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.46-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.46-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 c522e496f9b9b70296a7675272ec21937ccfc15da664b74b9f58d98a641ce1b6
MD5 4dd82738657ec9048b81488bfed8acea
BLAKE2b-256 5b4ea64f3d419ad7c3ad79e76d53f1556e0a1a75bc07a7346f49b974f1ec807b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4847f4b1d822754e35707db913396a29d874ee77b9c3c3ef3f04d5a9a6209618
MD5 99cf071eed611658684b74e1755294bc
BLAKE2b-256 5fb79421002f9c0ae7e9db2b7aaf97698d805d0f179d6283ec46adcb0d0b66f5

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d4b1cc7835b39835c75cf7c20c926b42e97d074147c902a9ebb7cf2c840dc4e2
MD5 cd4ef38f09c1616649eb8aca3b21826e
BLAKE2b-256 5be4346df4ff1aa5caa3e206e932e102f1ba1035a8e86a918b5a38f9b1427aa4

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c5a99282848b6cae0056b85da17392a26b2d39178394fc25700bcf967e06e97a
MD5 3f6c4ee7b00c0f60de0f4b4924eba96f
BLAKE2b-256 c0e6af951324613121a4e4fd1ad8fd2f49b6e6bef65d064f7dc832a8c5eb818b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 a1ad90c97029cc3ab4ffd57443a20fac21d2ec3c89532b084b073b3feb5abff3
MD5 378c9a52d31ff102e6295ea7ceb2a76f
BLAKE2b-256 5fbdb23e433270f26f3f9279c73801f88b3d879d82f98f1b9923f1a5067d18f3

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 18cafdb27834fa03569d29f571df7115812a0e59fd6a3a03ccb0d33678ec8420
MD5 54ab2d13e5054f5eeac0adfd49695987
BLAKE2b-256 461d656221fc0369ad40bf26a3a42464ef20843644553a54fc841f70eb06feef

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp36-cp36m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.46-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.46-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 535377e9b10aff5a045e3d9ada8a62d02058b422c0504ebdcf07930599890eb0
MD5 c74a808fcff6c98e93da3bb50b90a793
BLAKE2b-256 d3822ae770d75848139f34ac3443837403eb869ea7e4aecc919b87426528fa07

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d61e9ecc849d8d44d7f80894ecff4abe347136e9d926560b818f6243409f3c86
MD5 512d6dc1d741b50c1b8508b22dfd31a7
BLAKE2b-256 4018d0abc236594d5d3f2f873fbecbf131e35f30810923855e1cb77db47c3131

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9883f5fae4fd8e3f875adc2add69f8b945625811689a6c65866a35ee9c0aea23
MD5 701c009eeb3f59036270b12b8f271180
BLAKE2b-256 fe8327efbfa73ca515d89ada6ab05d0d2739b5fafcfb0bf254df4ae8439441ec

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3ec187acf85984263299a3f15c34a6c0671f83565d86d10f43ace49881a82718
MD5 f9b67da9b037419ed05a3341d072efc5
BLAKE2b-256 a19c912f6e75d0ab6270c48717f16bfd45a499ee096a71657dff296079a4e7a5

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9167d4227b56591a4cc5524f1b79ccd7ea994f36e4c648ab42ca995d28ebbb96
MD5 1fbcf263be33406edb80e668b7b64614
BLAKE2b-256 8391ad08d5142deeb667cede3a3ec1e655f35bd219dd05f1ece195c707a3f52a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 939f9a018d2ad04036746e15d119c0428b1e557470361aa798e6e7d7f5875be0
MD5 0c6da43e1811930beefcb453418ba892
BLAKE2b-256 3d06809cd75a6511ff8c4c6751aa341956d032703408d22dcdc9fab0f2c67d97

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 7b81b1030c42b003fc10ddd17825571603117f848814a344d305262d370e7c34
MD5 e43264df9ad690a7f018a85ab6e1a057
BLAKE2b-256 3c7d6557c5abfd28c9e657a2651ce756528d1956864ef699746f6f0e508006bc

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp27-cp27m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.46-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.46-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 c04144a24103135ea0315d459431ac196fe96f55d3213bfd6d39d0247775c854
MD5 d217f0b05766ba2eb822684043f3afff
BLAKE2b-256 fc87b5df8c50302e0d5eaba079a8f9795c3491f4c7bec76a68b238c804408098

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c7a46639ba058d320c9f53a81db38119a74b8a7a1884df44d09fbe807d028aaf
MD5 7dfb0ec3ca039f1e4c1975feccbfd6d0
BLAKE2b-256 361636924f771581279aba06721ef291f8f976001d9357b03f2b4bd79ac32f07

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.46-cp27-cp27m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.46-cp27-cp27m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7001f16a9a8e06488c3c7154827c48455d1c1507d7228d43e781afbc8ceccf6d
MD5 738e5fa8826bceb32d2a7d97cdf6301d
BLAKE2b-256 66d9dcb5f3ebc054df084eac79f7471a00b2f3d3d3e2643722b3c8b533157cab

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page