Skip to main content

Database Abstraction Library

Project description

PyPI PyPI - Python Version PyPI - Downloads

The Python SQL Toolkit and Object Relational Mapper

Introduction

SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives application developers the full power and flexibility of SQL. SQLAlchemy provides a full suite of well known enterprise-level persistence patterns, designed for efficient and high-performing database access, adapted into a simple and Pythonic domain language.

Major SQLAlchemy features include:

  • An industrial strength ORM, built from the core on the identity map, unit of work, and data mapper patterns. These patterns allow transparent persistence of objects using a declarative configuration system. Domain models can be constructed and manipulated naturally, and changes are synchronized with the current transaction automatically.

  • A relationally-oriented query system, exposing the full range of SQL’s capabilities explicitly, including joins, subqueries, correlation, and most everything else, in terms of the object model. Writing queries with the ORM uses the same techniques of relational composition you use when writing SQL. While you can drop into literal SQL at any time, it’s virtually never needed.

  • A comprehensive and flexible system of eager loading for related collections and objects. Collections are cached within a session, and can be loaded on individual access, all at once using joins, or by query per collection across the full result set.

  • A Core SQL construction system and DBAPI interaction layer. The SQLAlchemy Core is separate from the ORM and is a full database abstraction layer in its own right, and includes an extensible Python-based SQL expression language, schema metadata, connection pooling, type coercion, and custom types.

  • All primary and foreign key constraints are assumed to be composite and natural. Surrogate integer primary keys are of course still the norm, but SQLAlchemy never assumes or hardcodes to this model.

  • Database introspection and generation. Database schemas can be “reflected” in one step into Python structures representing database metadata; those same structures can then generate CREATE statements right back out - all within the Core, independent of the ORM.

SQLAlchemy’s philosophy:

  • SQL databases behave less and less like object collections the more size and performance start to matter; object collections behave less and less like tables and rows the more abstraction starts to matter. SQLAlchemy aims to accommodate both of these principles.

  • An ORM doesn’t need to hide the “R”. A relational database provides rich, set-based functionality that should be fully exposed. SQLAlchemy’s ORM provides an open-ended set of patterns that allow a developer to construct a custom mediation layer between a domain model and a relational schema, turning the so-called “object relational impedance” issue into a distant memory.

  • The developer, in all cases, makes all decisions regarding the design, structure, and naming conventions of both the object model as well as the relational schema. SQLAlchemy only provides the means to automate the execution of these decisions.

  • With SQLAlchemy, there’s no such thing as “the ORM generated a bad query” - you retain full control over the structure of queries, including how joins are organized, how subqueries and correlation is used, what columns are requested. Everything SQLAlchemy does is ultimately the result of a developer- initiated decision.

  • Don’t use an ORM if the problem doesn’t need one. SQLAlchemy consists of a Core and separate ORM component. The Core offers a full SQL expression language that allows Pythonic construction of SQL constructs that render directly to SQL strings for a target database, returning result sets that are essentially enhanced DBAPI cursors.

  • Transactions should be the norm. With SQLAlchemy’s ORM, nothing goes to permanent storage until commit() is called. SQLAlchemy encourages applications to create a consistent means of delineating the start and end of a series of operations.

  • Never render a literal value in a SQL statement. Bound parameters are used to the greatest degree possible, allowing query optimizers to cache query plans effectively and making SQL injection attacks a non-issue.

Documentation

Latest documentation is at:

https://www.sqlalchemy.org/docs/

Installation / Requirements

Full documentation for installation is at Installation.

Getting Help / Development / Bug reporting

Please refer to the SQLAlchemy Community Guide.

Code of Conduct

Above all, SQLAlchemy places great emphasis on polite, thoughtful, and constructive communication between users and developers. Please see our current Code of Conduct at Code of Conduct.

License

SQLAlchemy is distributed under the MIT license.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SQLAlchemy-1.4.47.tar.gz (8.6 MB view details)

Uploaded Source

Built Distributions

SQLAlchemy-1.4.47-cp311-cp311-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

SQLAlchemy-1.4.47-cp311-cp311-win32.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows x86

SQLAlchemy-1.4.47-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.47-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.47-cp311-cp311-macosx_10_9_universal2.whl (1.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

SQLAlchemy-1.4.47-cp310-cp310-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

SQLAlchemy-1.4.47-cp310-cp310-win32.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86

SQLAlchemy-1.4.47-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.47-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.47-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.47-cp310-cp310-macosx_11_0_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

SQLAlchemy-1.4.47-cp39-cp39-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

SQLAlchemy-1.4.47-cp39-cp39-win32.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86

SQLAlchemy-1.4.47-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.47-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.47-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.47-cp39-cp39-macosx_11_0_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

SQLAlchemy-1.4.47-cp38-cp38-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

SQLAlchemy-1.4.47-cp38-cp38-win32.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86

SQLAlchemy-1.4.47-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.47-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.47-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.47-cp38-cp38-macosx_10_15_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

SQLAlchemy-1.4.47-cp37-cp37m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

SQLAlchemy-1.4.47-cp37-cp37m-win32.whl (1.6 MB view details)

Uploaded CPython 3.7m Windows x86

SQLAlchemy-1.4.47-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.47-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.47-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.47-cp37-cp37m-macosx_10_15_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

SQLAlchemy-1.4.47-cp36-cp36m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

SQLAlchemy-1.4.47-cp36-cp36m-win32.whl (1.6 MB view details)

Uploaded CPython 3.6m Windows x86

SQLAlchemy-1.4.47-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.47-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.47-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.47-cp36-cp36m-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

SQLAlchemy-1.4.47-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.47-cp27-cp27m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 2.7m Windows x86-64

SQLAlchemy-1.4.47-cp27-cp27m-win32.whl (1.6 MB view details)

Uploaded CPython 2.7m Windows x86

SQLAlchemy-1.4.47-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.47-cp27-cp27m-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7m macOS 10.14+ x86-64

File details

Details for the file SQLAlchemy-1.4.47.tar.gz.

File metadata

  • Download URL: SQLAlchemy-1.4.47.tar.gz
  • Upload date:
  • Size: 8.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.0

File hashes

Hashes for SQLAlchemy-1.4.47.tar.gz
Algorithm Hash digest
SHA256 95fc02f7fc1f3199aaa47a8a757437134cf618e9d994c84effd53f530c38586f
MD5 7ca853fdb7354879cfdeffe2fb6f3b43
BLAKE2b-256 a0083e8923b1094b61736960dc372633b0dfddbf2e12f5a0b8dd1203f7dcc8f7

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 03be6f3cb66e69fb3a09b5ea89d77e4bc942f3bf84b207dba84666a26799c166
MD5 6441a4b0374770538f01175db9471c97
BLAKE2b-256 b41f3e759e8b30074478cf80c860bc644fd5d60f340d9ace0909ceadb967587a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp311-cp311-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.47-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.47-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 9a198f690ac12a3a807e03a5a45df6a30cd215935f237a46f4248faed62e69c8
MD5 1ad2deb841207529d50ae3324268c573
BLAKE2b-256 985a52aaa9da3cecbb1ce141b70e228263dd48153d6a474069980ab63fb49d87

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 989c62b96596b7938cbc032e39431e6c2d81b635034571d6a43a13920852fb65
MD5 102faffeec76a14f1306c217be5d9c1f
BLAKE2b-256 b3a483e82039405186102842ccc7a522b67dcca7a500ccd5686467f53e32b9e3

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e3b67bda733da1dcdccaf354e71ef01b46db483a4f6236450d3f9a61efdba35a
MD5 b23e999b6b84d52524f8960ad7b8d06c
BLAKE2b-256 bceee7678a05310ebeba2655e4651426e3933cd3d076c57bf2df5e0a827ec3e6

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 795b5b9db573d3ed61fae74285d57d396829e3157642794d3a8f72ec2a5c719b
MD5 5812300931bfaddeb27bc2d3697cb9bb
BLAKE2b-256 8d78e4c2076e6d8cc8e4f27c6cfe19c9bd5b43399d4a7f55cf39f0c7d1307b84

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2bba39b12b879c7b35cde18b6e14119c5f1a16bd064a48dd2ac62d21366a5e17
MD5 bfacc52bc5ea47d240f922e19d133e01
BLAKE2b-256 fb1e6fd721b58448a70d563c6adce617a6f26e538e3db7b568bb2c4e0aa3adfb

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp310-cp310-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.47-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.47-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 684e5c773222781775c7f77231f412633d8af22493bf35b7fa1029fdf8066d10
MD5 5a619934c90895ece5ffec392551d3ef
BLAKE2b-256 dd5019470f1df75b73e7fda397b8fbfc067fcd010a4080e603d36c9b3bf400ec

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dbe57f39f531c5d68d5594ea4613daa60aba33bb51a8cc42f96f17bbd6305e8d
MD5 2d68a2da50ec55a4233d135a3560acdc
BLAKE2b-256 10a6ff0566e8225e28d22bfa357a6417a56beacef47e45567dadd82828f6bd97

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 299b5c5c060b9fbe51808d0d40d8475f7b3873317640b9b7617c7f988cf59fda
MD5 2740c92a6977cf7c02d23f8d5f64fdfc
BLAKE2b-256 f479d35283a9a335b83f2f0c45df1d4e187fdb239518f67cc81f2e9c0cd843ce

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ca8ab6748e3ec66afccd8b23ec2f92787a58d5353ce9624dccd770427ee67c82
MD5 99086fbd1605d4e3f744665720a81884
BLAKE2b-256 aeb47d016b07fad0aa9a77d4e08cba500035e934e525b911798e94806b4ee031

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 511d4abc823152dec49461209607bbfb2df60033c8c88a3f7c93293b8ecbb13d
MD5 c8d00cf76b85e7b9f912842ea2fd765e
BLAKE2b-256 bcdbfbdc28811fa08b80a2e0ec50aaf27c47ebc1b98caed979ac8196013352a8

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 fc700b862e0a859a37faf85367e205e7acaecae5a098794aff52fdd8aea77b12
MD5 cb0079daca5b734fbca2cee4d82e5210
BLAKE2b-256 5e9fd77d91aa2dba1df496969ecc9054a309bf21a4464e878f5be9cf5de93b92

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp39-cp39-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.47-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.47-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 f80915681ea9001f19b65aee715115f2ad310730c8043127cf3e19b3009892dd
MD5 94847916586db41d7d2a7edfd06933a7
BLAKE2b-256 ec206088274a51b320db052ee0bb03f66d189cfcda170dae5ade876ea2bb76be

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1e2a42017984099ef6f56438a6b898ce0538f6fadddaa902870c5aa3e1d82583
MD5 e639bb6017e74ce6419f3b82a21e7e1d
BLAKE2b-256 702a3444a79ba91c88ef4f5765c6b448aaed763c576f6aa5062ea1c21cd62214

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6a94632ba26a666e7be0a7d7cc3f7acab622a04259a3aa0ee50ff6d44ba9df0d
MD5 8e79020efb00938055c3256fc6d62f34
BLAKE2b-256 56680fc16c12fbe16e159877876c3b90e3ecee0fa36864e649d0d3e928176652

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6b6d807c76c20b4bc143a49ad47782228a2ac98bdcdcb069da54280e138847fc
MD5 ff838b5401d9e10abfc69a1844cf9957
BLAKE2b-256 92424b21bd464be188cc6aac800b7b1e9517871d89c9099c2218e34317aa15f7

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 07764b240645627bc3e82596435bd1a1884646bfc0721642d24c26b12f1df194
MD5 3a0dfb9fae708c22a2eafa3754cfc3ec
BLAKE2b-256 61ad6e6a682c182459fa4a610530bff9ac48754285ca25475698c0ad478af807

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 32ab09f2863e3de51529aa84ff0e4fe89a2cb1bfbc11e225b6dbc60814e44c94
MD5 e1d8575a6b1cc8eeef9c3a4806f10d11
BLAKE2b-256 5603910e3eaa217f931b9921681a889a58fd8adb4700844b6517abfd5fb6ef2d

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp38-cp38-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.47-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.47-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 bd988b3362d7e586ef581eb14771bbb48793a4edb6fcf62da75d3f0f3447060b
MD5 18f2565009166adda6230c4b88e31d1a
BLAKE2b-256 3f638e411418c583d81634ee87b2f5037a22952eaffc4ec7d7432291abc5fcef

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dd45c60cc4f6d68c30d5179e2c2c8098f7112983532897566bb69c47d87127d3
MD5 603a23c8b5242c51d655092001727f9c
BLAKE2b-256 2e5f9b85b02c10252bcba24eec6aff2e2f1ce128ac8a5ed7815369d3a2793c66

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8f216a51451a0a0466e082e163591f6dcb2f9ec182adb3f1f4b1fd3688c7582c
MD5 bd1aecc217bbfd2860299d6d470ae814
BLAKE2b-256 3267254ae35c568c132242f02d669b885cd22d03281f063c54b1b514374dc356

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0fdbb8e9d4e9003f332a93d6a37bca48ba8095086c97a89826a136d8eddfc455
MD5 a77c7e9d0e23534261b31304834d762e
BLAKE2b-256 3b75631d0f0559de053c9486e1d9920c2295d7e7e70cbbc193b387e52c29ac78

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 71d4bf7768169c4502f6c2b0709a02a33703544f611810fb0c75406a9c576ee1
MD5 8e3f8cb448a8351f9530647d100f807f
BLAKE2b-256 6fd11bcdd2f661d1bd63a8209c3fdaec9acf5f57de20c7da825afa41f2d8a245

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a6c3929df5eeaf3867724003d5c19fed3f0c290f3edc7911616616684f200ecf
MD5 cc3157b6f3fef115e3574168dac54f1c
BLAKE2b-256 6c934d2f448a92852efc2b8518da6f25db2ea0f44f9f77c96c48c4f71d7b862f

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp37-cp37m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.47-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.47-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 6572d7c96c2e3e126d0bb27bfb1d7e2a195b68d951fcc64c146b94f088e5421a
MD5 e5c2238fccbc7f13705ccef279591a5e
BLAKE2b-256 835a34730ef7c315337b0125deecfb7173a397ef0a63ee6cac3c61762ff23210

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 14a3879853208a242b5913f3a17c6ac0eae9dc210ff99c8f10b19d4a1ed8ed9b
MD5 0c6ed73b1b72f2c3bde1ba1ed7be2d53
BLAKE2b-256 b099c2a52342bbce18b5f164039cdc2b12f830ca0c6ba7e93f5bb030adbbf0ee

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 048509d7f3ac27b83ad82fd96a1ab90a34c8e906e4e09c8d677fc531d12c23c5
MD5 8908286f3f169fb650bc2141823eee2b
BLAKE2b-256 bb944e98fc6e59b4805296ce80977b8c9fdef6ffc302b52b285bd4d6dc6f8b52

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7120a2f72599d4fed7c001fa1cbbc5b4d14929436135768050e284f53e9fbe5e
MD5 bfaf666677a92b4e119d0a5843884576
BLAKE2b-256 aaaa53779d53ee049ec7cde65945898c5b20a8efb4f548d9483963f9390d4ddf

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 e98ef1babe34f37f443b7211cd3ee004d9577a19766e2dbacf62fce73c76245a
MD5 fe5e9eb25dc586daf617d0e31583ef8d
BLAKE2b-256 7b3d5b041e651cf58d29895aca46093cae2bf4b82a73678f538b335ed9b97158

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 dde4d02213f1deb49eaaf8be8a6425948963a7af84983b3f22772c63826944de
MD5 17387336c5fed00c4ec98ca0f53d6ead
BLAKE2b-256 cafad6c0f523a9f82c63860b49acfd4c6893ec54232c5a7abcecc30598f9226a

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp36-cp36m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.47-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.47-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 998e782c8d9fd57fa8704d149ccd52acf03db30d7dd76f467fd21c1c21b414fa
MD5 36d49e54e4122f16c030e984dce7e59e
BLAKE2b-256 7eb3876096a6895b1ee0da837896a7c5dbf38e371ce85bed3316fbd1fe4c1183

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 557675e0befafa08d36d7a9284e8761c97490a248474d778373fb96b0d7fd8de
MD5 0ff8b4263100f1eaa59b07651b10b2df
BLAKE2b-256 7916e4039979ee8d9d85f4a642efe3a8e1208aaa3525929aad3bf36e96a25770

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 28297aa29e035f29cba6b16aacd3680fbc6a9db682258d5f2e7b49ec215dbe40
MD5 34fc473d3b3fa15f4623aa9adc231272
BLAKE2b-256 143c12881676d5e05366ff9bde9b8415a83487d3f49041d4545b3802542b01f7

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 bb2797fee8a7914fb2c3dc7de404d3f96eb77f20fc60e9ee38dc6b0ca720f2c2
MD5 87d2f9e7eb7944a6a36fe0ae04660020
BLAKE2b-256 e7aa0387f229736bf2fefea425994ef473bb28cbef5dff9a83db26a3ff2cb0cb

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 16ee6fea316790980779268da47a9260d5dd665c96f225d28e7750b0bb2e2a04
MD5 74f9583509e92f1656fb21c892b90d06
BLAKE2b-256 9d5dd03ccb046fa7245306d519195c458e94d71e0721678e3ff62094f5830e09

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7a4df53472c9030a8ddb1cce517757ba38a7a25699bbcabd57dcc8a5d53f324e
MD5 2366988b235197aef401a3c05237d5e9
BLAKE2b-256 87425e606be4e27c12da5316bc69de316b6327dcb9157eaf65acf1b6d0b9dde8

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 10edbb92a9ef611f01b086e271a9f6c1c3e5157c3b0c5ff62310fb2187acbd4a
MD5 c6304ca4a3ed0c2597c671098b11183e
BLAKE2b-256 fa424d20bc839294f99285ad20a6a3d9a751a70b2829f537e9191d61f32b5993

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp27-cp27m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.47-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.47-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 45e799c1a41822eba6bee4e59b0e38764e1a1ee69873ab2889079865e9ea0e23
MD5 70cfc0769815c6080c3b9e8aec362272
BLAKE2b-256 ae65b9f8ff373b418fed65932696afbf66b3facc05dab028d85dac3707452de6

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 28fda5a69d6182589892422c5a9b02a8fd1125787aab1d83f1392aa955bf8d0a
MD5 6503f8856524f4b09831b9a466e354bc
BLAKE2b-256 cbc6ce5fb8fc934dc3995e9e2e73f5493ab9e4c7e643f8c3765d875c09a8e77f

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.47-cp27-cp27m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.47-cp27-cp27m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 dcfb480bfc9e1fab726003ae00a6bfc67a29bad275b63a4e36d17fe7f13a624e
MD5 51c49cb79e806715e9722676d1acd41f
BLAKE2b-256 4e226758fbd40576fa33229ef8ee0a477abef48317b402f195617eaf23088c16

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page