Skip to main content

Database Abstraction Library

Project description

PyPI PyPI - Python Version PyPI - Downloads

The Python SQL Toolkit and Object Relational Mapper

Introduction

SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives application developers the full power and flexibility of SQL. SQLAlchemy provides a full suite of well known enterprise-level persistence patterns, designed for efficient and high-performing database access, adapted into a simple and Pythonic domain language.

Major SQLAlchemy features include:

  • An industrial strength ORM, built from the core on the identity map, unit of work, and data mapper patterns. These patterns allow transparent persistence of objects using a declarative configuration system. Domain models can be constructed and manipulated naturally, and changes are synchronized with the current transaction automatically.

  • A relationally-oriented query system, exposing the full range of SQL’s capabilities explicitly, including joins, subqueries, correlation, and most everything else, in terms of the object model. Writing queries with the ORM uses the same techniques of relational composition you use when writing SQL. While you can drop into literal SQL at any time, it’s virtually never needed.

  • A comprehensive and flexible system of eager loading for related collections and objects. Collections are cached within a session, and can be loaded on individual access, all at once using joins, or by query per collection across the full result set.

  • A Core SQL construction system and DBAPI interaction layer. The SQLAlchemy Core is separate from the ORM and is a full database abstraction layer in its own right, and includes an extensible Python-based SQL expression language, schema metadata, connection pooling, type coercion, and custom types.

  • All primary and foreign key constraints are assumed to be composite and natural. Surrogate integer primary keys are of course still the norm, but SQLAlchemy never assumes or hardcodes to this model.

  • Database introspection and generation. Database schemas can be “reflected” in one step into Python structures representing database metadata; those same structures can then generate CREATE statements right back out - all within the Core, independent of the ORM.

SQLAlchemy’s philosophy:

  • SQL databases behave less and less like object collections the more size and performance start to matter; object collections behave less and less like tables and rows the more abstraction starts to matter. SQLAlchemy aims to accommodate both of these principles.

  • An ORM doesn’t need to hide the “R”. A relational database provides rich, set-based functionality that should be fully exposed. SQLAlchemy’s ORM provides an open-ended set of patterns that allow a developer to construct a custom mediation layer between a domain model and a relational schema, turning the so-called “object relational impedance” issue into a distant memory.

  • The developer, in all cases, makes all decisions regarding the design, structure, and naming conventions of both the object model as well as the relational schema. SQLAlchemy only provides the means to automate the execution of these decisions.

  • With SQLAlchemy, there’s no such thing as “the ORM generated a bad query” - you retain full control over the structure of queries, including how joins are organized, how subqueries and correlation is used, what columns are requested. Everything SQLAlchemy does is ultimately the result of a developer- initiated decision.

  • Don’t use an ORM if the problem doesn’t need one. SQLAlchemy consists of a Core and separate ORM component. The Core offers a full SQL expression language that allows Pythonic construction of SQL constructs that render directly to SQL strings for a target database, returning result sets that are essentially enhanced DBAPI cursors.

  • Transactions should be the norm. With SQLAlchemy’s ORM, nothing goes to permanent storage until commit() is called. SQLAlchemy encourages applications to create a consistent means of delineating the start and end of a series of operations.

  • Never render a literal value in a SQL statement. Bound parameters are used to the greatest degree possible, allowing query optimizers to cache query plans effectively and making SQL injection attacks a non-issue.

Documentation

Latest documentation is at:

https://www.sqlalchemy.org/docs/

Installation / Requirements

Full documentation for installation is at Installation.

Getting Help / Development / Bug reporting

Please refer to the SQLAlchemy Community Guide.

Code of Conduct

Above all, SQLAlchemy places great emphasis on polite, thoughtful, and constructive communication between users and developers. Please see our current Code of Conduct at Code of Conduct.

License

SQLAlchemy is distributed under the MIT license.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SQLAlchemy-1.4.48.tar.gz (8.4 MB view details)

Uploaded Source

Built Distributions

SQLAlchemy-1.4.48-cp311-cp311-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

SQLAlchemy-1.4.48-cp311-cp311-win32.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows x86

SQLAlchemy-1.4.48-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.48-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.48-cp311-cp311-macosx_10_9_universal2.whl (1.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

SQLAlchemy-1.4.48-cp310-cp310-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

SQLAlchemy-1.4.48-cp310-cp310-win32.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86

SQLAlchemy-1.4.48-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.48-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.48-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.48-cp310-cp310-macosx_11_0_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

SQLAlchemy-1.4.48-cp39-cp39-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

SQLAlchemy-1.4.48-cp39-cp39-win32.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86

SQLAlchemy-1.4.48-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.48-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.48-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.48-cp39-cp39-macosx_11_0_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

SQLAlchemy-1.4.48-cp38-cp38-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

SQLAlchemy-1.4.48-cp38-cp38-win32.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86

SQLAlchemy-1.4.48-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.48-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.48-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.48-cp38-cp38-macosx_10_15_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

SQLAlchemy-1.4.48-cp37-cp37m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

SQLAlchemy-1.4.48-cp37-cp37m-win32.whl (1.6 MB view details)

Uploaded CPython 3.7m Windows x86

SQLAlchemy-1.4.48-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.48-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.48-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.48-cp37-cp37m-macosx_10_15_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

SQLAlchemy-1.4.48-cp36-cp36m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

SQLAlchemy-1.4.48-cp36-cp36m-win32.whl (1.6 MB view details)

Uploaded CPython 3.6m Windows x86

SQLAlchemy-1.4.48-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.48-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.48-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.48-cp36-cp36m-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

SQLAlchemy-1.4.48-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.48-cp27-cp27m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 2.7m Windows x86-64

SQLAlchemy-1.4.48-cp27-cp27m-win32.whl (1.6 MB view details)

Uploaded CPython 2.7m Windows x86

SQLAlchemy-1.4.48-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.48-cp27-cp27m-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 2.7m macOS 10.14+ x86-64

File details

Details for the file SQLAlchemy-1.4.48.tar.gz.

File metadata

  • Download URL: SQLAlchemy-1.4.48.tar.gz
  • Upload date:
  • Size: 8.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.0

File hashes

Hashes for SQLAlchemy-1.4.48.tar.gz
Algorithm Hash digest
SHA256 b47bc287096d989a0838ce96f7d8e966914a24da877ed41a7531d44b55cdb8df
MD5 a1b3aec4acc9cdceda7a6cb31024d568
BLAKE2b-256 b97a6f075e189257f2b70cca85b6f3afeb7ca9cef80f0869e9f43b3e3eadd66d

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 cef2e2abc06eab187a533ec3e1067a71d7bbec69e582401afdf6d8cad4ba3515
MD5 231b053b4aafd549ee929c0d2aa6a962
BLAKE2b-256 f71a86055cc600d9b97b161270ae822488f6735daa5aeb5f456d4f12c1c24d99

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp311-cp311-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.48-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.48-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 49c312bcff4728bffc6fb5e5318b8020ed5c8b958a06800f91859fe9633ca20e
MD5 120fe6ebdcc22c31f9f61a83acf7687e
BLAKE2b-256 91b35b869b774e2c9bd901d1857420f79bc18b118b6472f31990caef26ba2003

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c99bf13e07140601d111a7c6f1fc1519914dd4e5228315bbda255e08412f61a4
MD5 689343cfa911f92e92cda604ca241709
BLAKE2b-256 385f6df9c80aea80ae427199714a007df609585c8e65da4fb39835bb7b9a4da2

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2ee26276f12614d47cc07bc85490a70f559cba965fb178b1c45d46ffa8d73fda
MD5 a2f92332d647936a134399bcd4b9bd60
BLAKE2b-256 dda3b4602b7593da6d9f68cdc8ea7938245aa213e09a95999c053ec7dfa06d25

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 066c2b0413e8cb980e6d46bf9d35ca83be81c20af688fedaef01450b06e4aa5e
MD5 d38e148074f26f6b129e4c1735c40d9a
BLAKE2b-256 0682c273ae3003b427fa41df06b75d7665eb86199a92eb265c14bf63692cb873

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4355e5915844afdc5cf22ec29fba1010166e35dd94a21305f49020022167556b
MD5 aba925fc910ab4d9a7c986159af0d2d7
BLAKE2b-256 524c8f2a0cdd0bd57370838a96bfd610d08f01b864d7b5c95690ae928e3bbbe4

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp310-cp310-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.48-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.48-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 d53cd8bc582da5c1c8c86b6acc4ef42e20985c57d0ebc906445989df566c5603
MD5 c0f22f6a6e8a999da272f2f7d88cb810
BLAKE2b-256 1a140e14f5ce169f961677077f67545c4eee6ccdb9f519477d520d54f1e38770

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5381ddd09a99638f429f4cbe1b71b025bed318f6a7b23e11d65f3eed5e181c33
MD5 a8d3f40e14025683862b11e902375d16
BLAKE2b-256 cf4d62ac13eef2cbad6f5f06900466a570df9a202f4e9f57e9f0da76fc2ba652

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fb0808ad34167f394fea21bd4587fc62f3bd81bba232a1e7fbdfa17e6cfa7cd7
MD5 3e420fdc4ce77d418ae9b76142455a23
BLAKE2b-256 26eb365267460132cfe79822e9f2820323993c94189b69ced91a874b1f8ee517

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 87609f6d4e81a941a17e61a4c19fee57f795e96f834c4f0a30cee725fc3f81d9
MD5 32edcefe305b94c57c6bfcf679575d46
BLAKE2b-256 56f96c75613201e50dbc5d438dbadc38a0a772208931b345fa7d16081433223e

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 ce7915eecc9c14a93b73f4e1c9d779ca43e955b43ddf1e21df154184f39748e5
MD5 d1c40c63896e5868a658fc4e90f6c5ca
BLAKE2b-256 7857572bfc630f5a60e631d7a35cd3f8e9f89bdb03d24fec2a686e75d3749195

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7ad2b0f6520ed5038e795cc2852eb5c1f20fa6831d73301ced4aafbe3a10e1f6
MD5 8b3b0954d25177eb15c85ee146495b69
BLAKE2b-256 2f56807e68621d4947af55a17aac9887f50ed400a223ca9dcab30531cc25fdd2

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp39-cp39-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.48-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.48-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 eee09350fd538e29cfe3a496ec6f148504d2da40dbf52adefb0d2f8e4d38ccc4
MD5 5faeb70c05837965e027c0d45d915b17
BLAKE2b-256 1f398f86e46cdbd7590671907ccd351bb8589677eb1cba9811cd64e38bc19d55

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9d9b55252d2ca42a09bcd10a697fa041e696def9dfab0b78c0aaea1485551a08
MD5 22e75d146f56dfe541c106ba524f65fe
BLAKE2b-256 027aa3568442fcae49073caee663f9fe100090f46fd031393c5dbfe56124cf5d

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1fd8b5ee5a3acc4371f820934b36f8109ce604ee73cc668c724abb054cebcb6e
MD5 b9cb067b9e2a80c7dce4cf8cd8f729b2
BLAKE2b-256 d92ad2a38c5b870cbd56c789f6d5eed6685d1b04af6b202a91f97ca65db70891

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6dab89874e72a9ab5462997846d4c760cdb957958be27b03b49cf0de5e5c327c
MD5 055cb58215d971bd02914c6178123cc7
BLAKE2b-256 767a0ab9f8204ffd422c4c385e4d86e071f0847d28a9bbb281c87736d64fe56c

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 a1fc046756cf2a37d7277c93278566ddf8be135c6a58397b4c940abf837011f4
MD5 0ec859d61342c16c2543241454e73f23
BLAKE2b-256 10d2df7e401fd1fef661df29cedaf51cafb06694623b9cec84197d8448381806

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2b562e9d1e59be7833edf28b0968f156683d57cabd2137d8121806f38a9d58f4
MD5 c03bac4068146d787d6b93e9bd0f8ded
BLAKE2b-256 b02cdecd44e3b1a792131a7e002d07d0daf19fefdad87404f40df27e8e18b094

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp38-cp38-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.48-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.48-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 2b9af65cc58726129d8414fc1a1a650dcdd594ba12e9c97909f1f57d48e393d3
MD5 be8453e0ba9ee2adca422ad997d496e6
BLAKE2b-256 d8e1a989b9638ee81e07f78bfaa21bd8d917e4366bb48f5f5c7b6cca30306609

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 44d29a3fc6d9c45962476b470a81983dd8add6ad26fdbfae6d463b509d5adcda
MD5 15a94b23cd7bcb4c8dfe4ea98e600d7a
BLAKE2b-256 7a62d39a403944c41db87e29ee1b87304371d28930ba7086f8541f51c6381e83

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9c8cfe951ed074ba5e708ed29c45397a95c4143255b0d022c7c8331a75ae61f3
MD5 6975911c1f7bede08b432c2a6c296a7d
BLAKE2b-256 61df4e0f3d9a442a8bb75aeffa2fd780af11b8a82cf0b5eeb8574eb747b4f241

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 005e942b451cad5285015481ae4e557ff4154dde327840ba91b9ac379be3b6ce
MD5 22810a941c8dc167aa7186665dc614bc
BLAKE2b-256 56a802127ba289999dff0701fdfc6acd030aea0fc02c3f940f3cb98b7eea9a85

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 92e6133cf337c42bfee03ca08c62ba0f2d9695618c8abc14a564f47503157be9
MD5 57f2dd74a111a34030efa133708cd24a
BLAKE2b-256 8c56e737235cbf33473c117d5aeb5aadf52b30654233388c7bd2742bb47d0a7c

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 eb5464ee8d4bb6549d368b578e9529d3c43265007193597ddca71c1bae6174e6
MD5 d24aeed685c97df62a4815fb8ac86746
BLAKE2b-256 96d2e6b6974af5f4e2eb56e521a006506b1b05a1bd1c3c0acb967e73a1c82b3d

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp37-cp37m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.48-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.48-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 11c6b1de720f816c22d6ad3bbfa2f026f89c7b78a5c4ffafb220e0183956a92a
MD5 92beac8572a9fc8196c6e757a305a2a6
BLAKE2b-256 c054cabea7d0f8205f94eb2b4d326263174d45bf3e4fa0b642428414c9678d73

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fe1dd2562313dd9fe1778ed56739ad5d9aae10f9f43d9f4cf81d65b0c85168bb
MD5 1d252341900c1b8d7237cc2c8b3a54ef
BLAKE2b-256 dd6201343d46a0f8652bcff2528a8cc2eb6889a25cdcd9f4edd2ffeb3e7f8d66

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fbde5642104ac6e95f96e8ad6d18d9382aa20672008cf26068fe36f3004491df
MD5 b20938a9cd60ef8beb41ac7d14b3d6ed
BLAKE2b-256 e30c817243f90e6614f7fd6a01370a590f6176a36a2e1f9ebf6226c160a5d8cb

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 68413aead943883b341b2b77acd7a7fe2377c34d82e64d1840860247cec7ff7c
MD5 cf7279f8f53e4ca635aae9b96515d33a
BLAKE2b-256 37303225c70e4f61ab540b21e8cb94265dadd562c1919937420e3dc9d9396b1d

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 0817c181271b0ce5df1aa20949f0a9e2426830fed5ecdcc8db449618f12c2730
MD5 473462fc129dae094991a15e996f9bec
BLAKE2b-256 8c2ec3918f1717dc7c0e678afde023bcbf1c0df4f4995a45782eb8f164f033df

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 25887b4f716e085a1c5162f130b852f84e18d2633942c8ca40dfb8519367c14f
MD5 77eb05c2cc7e29a4d57b05046435aa36
BLAKE2b-256 0227bd153ccafb21cef8dc3c480985e30da903e3c29a854a19386af76d1e1b1b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp36-cp36m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.48-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.48-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 e3e98d4907805b07743b583a99ecc58bf8807ecb6985576d82d5e8ae103b5272
MD5 0ec90343776d18ae746141a2057490c8
BLAKE2b-256 5d07b8cbe6f4535fd2d1b84b9d07ef882d42864ceaee59ca03b6fff91a0a7f05

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2fc2ab4d9f6d9218a5caa4121bdcf1125303482a1cdcfcdbd8567be8518969c0
MD5 036009fc2dac837f703befe852ff7379
BLAKE2b-256 8c3ada494335eadc2a2c6334fa657921476e78f698e3559c8170aab17989f22e

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6f82d8efea1ca92b24f51d3aea1a82897ed2409868a0af04247c8c1e4fef5890
MD5 c30b1d236c5ee2aa93cc0eff6fa7e794
BLAKE2b-256 a98f245ef21625d2c6f93f33eaca21d98935acbf15c4d93b4abbacf0e435cc03

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e1ddbbcef9bcedaa370c03771ebec7e39e3944782bef49e69430383c376a250b
MD5 2bfbd6a214875931503c54f11b7d34d1
BLAKE2b-256 ddcdca073049385c86d759900891962c6e10776f07cb3bae467b1a9248d1bff7

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3509159e050bd6d24189ec7af373359f07aed690db91909c131e5068176c5a5d
MD5 a03909007c0da0e6ec37053b2b0e3786
BLAKE2b-256 a7f7cba2ca9f8663d392727caee75ab5f0a853c5b1053d57de0590fb35aefb12

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp27-cp27mu-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9af1db7a287ef86e0f5cd990b38da6bd9328de739d17e8864f1817710da2d217
MD5 b8a48a9bd60b64e2f1ce40001b0ef69f
BLAKE2b-256 2e5ab16d79fc5c56dc2b038647449001cd8e69625b2f5f38d0121820dd4a2233

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 627e04a5d54bd50628fc8734d5fc6df2a1aa5962f219c44aad50b00a6cdcf965
MD5 ea08c88e4778a4d689fdfea28178b2ee
BLAKE2b-256 789c8aeb443ebb829239b18a3668a7df5c51e10b2efdf77bd7efdbe2d0043c9b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp27-cp27m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.48-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.48-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 cbbe8b8bffb199b225d2fe3804421b7b43a0d49983f81dc654d0431d2f855543
MD5 b7f134594c61b744b996e8b753dd8bc1
BLAKE2b-256 887613d1f11a3bac70510ac4c5db61371d9bf2b3fa0b4c4d0beb2b4c0c9697e7

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp27-cp27m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 dbcae0e528d755f4522cad5842f0942e54b578d79f21a692c44d91352ea6d64e
MD5 4f94be7e793e73c2db78a1de775002bc
BLAKE2b-256 c3e58e29370d82a4c19620b0d669297f8fd55df4cb57d902b787db731a3ba82b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.48-cp27-cp27m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.48-cp27-cp27m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4bac3aa3c3d8bc7408097e6fe8bf983caa6e9491c5d2e2488cfcfd8106f13b6a
MD5 c963059bb5cc562426e7467b51765221
BLAKE2b-256 634bf25378dfaddd294b7d0b893b833ed824dedcd31f6e99f480e449d984613b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page