Skip to main content

Database Abstraction Library

Project description

PyPI PyPI - Python Version PyPI - Downloads

The Python SQL Toolkit and Object Relational Mapper

Introduction

SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives application developers the full power and flexibility of SQL. SQLAlchemy provides a full suite of well known enterprise-level persistence patterns, designed for efficient and high-performing database access, adapted into a simple and Pythonic domain language.

Major SQLAlchemy features include:

  • An industrial strength ORM, built from the core on the identity map, unit of work, and data mapper patterns. These patterns allow transparent persistence of objects using a declarative configuration system. Domain models can be constructed and manipulated naturally, and changes are synchronized with the current transaction automatically.

  • A relationally-oriented query system, exposing the full range of SQL’s capabilities explicitly, including joins, subqueries, correlation, and most everything else, in terms of the object model. Writing queries with the ORM uses the same techniques of relational composition you use when writing SQL. While you can drop into literal SQL at any time, it’s virtually never needed.

  • A comprehensive and flexible system of eager loading for related collections and objects. Collections are cached within a session, and can be loaded on individual access, all at once using joins, or by query per collection across the full result set.

  • A Core SQL construction system and DBAPI interaction layer. The SQLAlchemy Core is separate from the ORM and is a full database abstraction layer in its own right, and includes an extensible Python-based SQL expression language, schema metadata, connection pooling, type coercion, and custom types.

  • All primary and foreign key constraints are assumed to be composite and natural. Surrogate integer primary keys are of course still the norm, but SQLAlchemy never assumes or hardcodes to this model.

  • Database introspection and generation. Database schemas can be “reflected” in one step into Python structures representing database metadata; those same structures can then generate CREATE statements right back out - all within the Core, independent of the ORM.

SQLAlchemy’s philosophy:

  • SQL databases behave less and less like object collections the more size and performance start to matter; object collections behave less and less like tables and rows the more abstraction starts to matter. SQLAlchemy aims to accommodate both of these principles.

  • An ORM doesn’t need to hide the “R”. A relational database provides rich, set-based functionality that should be fully exposed. SQLAlchemy’s ORM provides an open-ended set of patterns that allow a developer to construct a custom mediation layer between a domain model and a relational schema, turning the so-called “object relational impedance” issue into a distant memory.

  • The developer, in all cases, makes all decisions regarding the design, structure, and naming conventions of both the object model as well as the relational schema. SQLAlchemy only provides the means to automate the execution of these decisions.

  • With SQLAlchemy, there’s no such thing as “the ORM generated a bad query” - you retain full control over the structure of queries, including how joins are organized, how subqueries and correlation is used, what columns are requested. Everything SQLAlchemy does is ultimately the result of a developer- initiated decision.

  • Don’t use an ORM if the problem doesn’t need one. SQLAlchemy consists of a Core and separate ORM component. The Core offers a full SQL expression language that allows Pythonic construction of SQL constructs that render directly to SQL strings for a target database, returning result sets that are essentially enhanced DBAPI cursors.

  • Transactions should be the norm. With SQLAlchemy’s ORM, nothing goes to permanent storage until commit() is called. SQLAlchemy encourages applications to create a consistent means of delineating the start and end of a series of operations.

  • Never render a literal value in a SQL statement. Bound parameters are used to the greatest degree possible, allowing query optimizers to cache query plans effectively and making SQL injection attacks a non-issue.

Documentation

Latest documentation is at:

https://www.sqlalchemy.org/docs/

Installation / Requirements

Full documentation for installation is at Installation.

Getting Help / Development / Bug reporting

Please refer to the SQLAlchemy Community Guide.

Code of Conduct

Above all, SQLAlchemy places great emphasis on polite, thoughtful, and constructive communication between users and developers. Please see our current Code of Conduct at Code of Conduct.

License

SQLAlchemy is distributed under the MIT license.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SQLAlchemy-1.4.50.tar.gz (8.5 MB view details)

Uploaded Source

Built Distributions

SQLAlchemy-1.4.50-cp312-cp312-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

SQLAlchemy-1.4.50-cp312-cp312-win32.whl (1.6 MB view details)

Uploaded CPython 3.12 Windows x86

SQLAlchemy-1.4.50-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.50-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.50-cp312-cp312-macosx_10_9_universal2.whl (1.6 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

SQLAlchemy-1.4.50-cp311-cp311-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

SQLAlchemy-1.4.50-cp311-cp311-win32.whl (1.6 MB view details)

Uploaded CPython 3.11 Windows x86

SQLAlchemy-1.4.50-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.50-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.50-cp311-cp311-macosx_10_9_universal2.whl (1.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

SQLAlchemy-1.4.50-cp310-cp310-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

SQLAlchemy-1.4.50-cp310-cp310-win32.whl (1.6 MB view details)

Uploaded CPython 3.10 Windows x86

SQLAlchemy-1.4.50-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.50-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.50-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.50-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.50-cp310-cp310-macosx_11_0_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

SQLAlchemy-1.4.50-cp39-cp39-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

SQLAlchemy-1.4.50-cp39-cp39-win32.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86

SQLAlchemy-1.4.50-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.50-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.50-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.50-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.50-cp39-cp39-macosx_11_0_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

SQLAlchemy-1.4.50-cp38-cp38-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

SQLAlchemy-1.4.50-cp38-cp38-win32.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86

SQLAlchemy-1.4.50-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.50-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.50-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.50-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.50-cp38-cp38-macosx_11_0_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ x86-64

SQLAlchemy-1.4.50-cp37-cp37m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

SQLAlchemy-1.4.50-cp37-cp37m-win32.whl (1.6 MB view details)

Uploaded CPython 3.7m Windows x86

SQLAlchemy-1.4.50-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.50-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.50-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.50-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.50-cp37-cp37m-macosx_11_0_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m macOS 11.0+ x86-64

SQLAlchemy-1.4.50-cp36-cp36m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

SQLAlchemy-1.4.50-cp36-cp36m-win32.whl (1.6 MB view details)

Uploaded CPython 3.6m Windows x86

SQLAlchemy-1.4.50-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

SQLAlchemy-1.4.50-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.50-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.50-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SQLAlchemy-1.4.50-cp36-cp36m-macosx_10_14_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file SQLAlchemy-1.4.50.tar.gz.

File metadata

  • Download URL: SQLAlchemy-1.4.50.tar.gz
  • Upload date:
  • Size: 8.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for SQLAlchemy-1.4.50.tar.gz
Algorithm Hash digest
SHA256 3b97ddf509fc21e10b09403b5219b06c5b558b27fc2453150274fa4e70707dbf
MD5 0796f9734d5898945d7802ad00ac1723
BLAKE2b-256 5a0adabe332c40afebb0a979d3e66b34570fce2f8611bae19b186f0c69f54643

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 6b3df20fbbcbcd1c1d43f49ccf3eefb370499088ca251ded632b8cbaee1d497d
MD5 eba63abf96455a6d88ad99dd0cade09c
BLAKE2b-256 f92459bf0b94a619e16743e5bf51ebd10cbe97b8c946b6bd57dbf37189bd38dc

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp312-cp312-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.50-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.50-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 e86c920b7d362cfa078c8b40e7765cbc34efb44c1007d7557920be9ddf138ec7
MD5 7b5c18b8da0a5dcf6eafdf6392fe1c75
BLAKE2b-256 573beff9b34517b4db4eadd95e86a79791deae505d18e19ea50af8ef8d1ea7a6

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c4cb501d585aa74a0f86d0ea6263b9c5e1d1463f8f9071392477fd401bd3c7cc
MD5 fb1bbee08ae386c2793fe89d2eaccd60
BLAKE2b-256 b8e5eb51bcc247017e4630bb107b15d1ceb8490f588da92b3449905231a61519

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8a7a66297e46f85a04d68981917c75723e377d2e0599d15fbe7a56abed5e2d75
MD5 03cc5ff67f0202cf61c37bc2d4c138c8
BLAKE2b-256 b7cf4bf87f387b5360d14ef6cbcca64decf5a37ed2f6aa734724825d5146f821

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 77fde9bf74f4659864c8e26ac08add8b084e479b9a18388e7db377afc391f926
MD5 7bbd31e64c867aafd789b84d1d5738fb
BLAKE2b-256 5eff72d6f3261ed05b76f7d4127cfc2e5e6590cf16bd87061331ece5066cdfe8

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 52e01d60b06f03b0a5fc303c8aada405729cbc91a56a64cead8cb7c0b9b13c1a
MD5 990ade082b48f8d2f8502ca24a1877dd
BLAKE2b-256 5fb00d6f46d820bcaf6f7a192c40f89c23fef0f12e5519259b2adcd2a0e92dad

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp311-cp311-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.50-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.50-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 8bdab03ff34fc91bfab005e96f672ae207d87e0ac7ee716d74e87e7046079d8b
MD5 aee8830aba6ae929e54d585cd5ac5d12
BLAKE2b-256 a51072ff432330aa0931323039a74cdb09a4934e855449c61221acbdd947869b

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 14b0cacdc8a4759a1e1bd47dc3ee3f5db997129eb091330beda1da5a0e9e5bd7
MD5 d6c7014276d1e228c3baadcd27d93d50
BLAKE2b-256 82609210ac87f2eecb047c291b9b415aad3d2a1931666b5489e5a2e474448e8c

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1fb9cb60e0f33040e4f4681e6658a7eb03b5cb4643284172f91410d8c493dace
MD5 855444d0e2e86b3e8428f5c536dcb1d3
BLAKE2b-256 ead0ba24be8ae3371efd477435e46d117431ca7c458e6c2a06fff3b2aa1c6b74

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 324b1fdd50e960a93a231abb11d7e0f227989a371e3b9bd4f1259920f15d0304
MD5 738f91632c070a7be6d3ffd61c642f0a
BLAKE2b-256 5699e0f6a9e0e91d4ab5397d5a9b53ad5f968cb2b623032e2172a7da89b43026

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d55f7a33e8631e15af1b9e67c9387c894fedf6deb1a19f94be8731263c51d515
MD5 3f9c2a3a63a1185bc990008c616a39f6
BLAKE2b-256 85eb1571cf911c35dbe651169bb35d43345ad1901eaf8a0fde20408f56d5b0be

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp310-cp310-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.50-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.50-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 6c78e3fb4a58e900ec433b6b5f4efe1a0bf81bbb366ae7761c6e0051dd310ee3
MD5 f6519487efd5707c3045fac67957073f
BLAKE2b-256 a0600c957f6612ea2c4b10a80609c85f98e56ebbeaf9c946c7f2f0451c87fe0f

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d00665725063692c42badfd521d0c4392e83c6c826795d38eb88fb108e5660e5
MD5 edd560b9a897067e32832afd904ea919
BLAKE2b-256 951dc328c12c5ce70d7f5d28e1794961658fe1da859b0352d7f6b6bff8a40809

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 db4db3c08ffbb18582f856545f058a7a5e4ab6f17f75795ca90b3c38ee0a8ba4
MD5 eeffdd290cc7a9a0eae0616b8d7c651c
BLAKE2b-256 b0be9e92e3dbe3f6bde6f4c7dd26f3f387de74c89df36b88d233bbe5edee1494

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d0fed0f791d78e7767c2db28d34068649dfeea027b83ed18c45a423f741425cb
MD5 5cf8809bdde952bf42a2f407a86b46b5
BLAKE2b-256 f516cfdd8ab33eef5db78bfc6f0e87617f14cc4669979b4f228ecce9e58f2624

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 85292ff52ddf85a39367057c3d7968a12ee1fb84565331a36a8fead346f08796
MD5 7744e0ddb2b80181d2bfd8ac487aa115
BLAKE2b-256 6b6173cf32903c84ade5e4dffd2eec2b1848545418cd3c788c6d0435fb8a4937

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 54138aa80d2dedd364f4e8220eef284c364d3270aaef621570aa2bd99902e2e8
MD5 6604c2bfde6336844f646a0dcf6fcec6
BLAKE2b-256 c8c552baa25efb77804b23c9f30820852270e0e98950949a7c82662f70492008

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 df200762efbd672f7621b253721644642ff04a6ff957236e0e2fe56d9ca34d2c
MD5 58acf12895ca4a9dafab4d0e4e60c366
BLAKE2b-256 9e146eea011856faa6092a70ff1aae826d564171f09cf45ba0be3cfb410d5054

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp39-cp39-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.50-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.50-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 a7c9b9dca64036008962dd6b0d9fdab2dfdbf96c82f74dbd5d86006d8d24a30f
MD5 b2b4c3df5e227eef208a3c957ae1863e
BLAKE2b-256 1564ef8312df131f53cec0a293493187911bd248420f63a0225ee1565d623894

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3f6997da81114daef9203d30aabfa6b218a577fc2bd797c795c9c88c9eb78d49
MD5 a7e70d427e504f62ea93e02daf3f7fd6
BLAKE2b-256 a374b19f21e7ecd6ee313c0c36c93d4c401ad771aa9e096f537dadbffb444acd

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f2d526aeea1bd6a442abc7c9b4b00386fd70253b80d54a0930c0a216230a35be
MD5 8da396fd4d95ab5e1812ab7314144115
BLAKE2b-256 4ddca2e1abac94ebdf98f02d14813a4b81ab552a7527b066f215c167581a6749

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 128a948bd40780667114b0297e2cc6d657b71effa942e0a368d8cc24293febb3
MD5 d911ff9abce0fe1be9c45bed5ad2f50f
BLAKE2b-256 687492b68fe6a783f462da50343f338c2560a65386380f1e5bde7d60e33bdf81

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bdb77e1789e7596b77fd48d99ec1d2108c3349abd20227eea0d48d3f8cf398d9
MD5 57c850d6b5377db389d86060a27d5620
BLAKE2b-256 bb484e2901bb3a68653c9f2765b55b3cfc9832d301e427c56768a37774acf3ea

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 4be4da121d297ce81e1ba745a0a0521c6cf8704634d7b520e350dce5964c71ac
MD5 3acb28e5f004041fb55a8e3e252889c0
BLAKE2b-256 6bf98f9b99f9f566008eec67fb14cf20043eaac2cab6b1893a2ba6be5df6bdd4

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a648770db002452703b729bdcf7d194e904aa4092b9a4d6ab185b48d13252f63
MD5 f0d2198035303f687613edb30a7f0e65
BLAKE2b-256 f1142c475f434d1f21cb1f533e8db2604586a640916621658f1a23031a8012bf

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp38-cp38-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.50-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.50-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 8a219688297ee5e887a93ce4679c87a60da4a5ce62b7cb4ee03d47e9e767f558
MD5 ca6093f0a45320b520980980b191b003
BLAKE2b-256 32fa31ac3dd8d4cd38dc0c9b8f160c4316a26c6ae90a4a96ac86b05304637459

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f1fcee5a2c859eecb4ed179edac5ffbc7c84ab09a5420219078ccc6edda45436
MD5 e3e2f759cf664895a17db866df1deece
BLAKE2b-256 9c1559535f50f8a9b7ffc7d122b138019ae878165849704e5c5b51dbed03c8ca

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8b881ac07d15fb3e4f68c5a67aa5cdaf9eb8f09eb5545aaf4b0a5f5f4659be18
MD5 90c01863e6f556add4d6d16208832fb2
BLAKE2b-256 ce4bb5afbaf063b18bd6decffe8d64184ca5ecb25cc6be2ffc1cd8664ac3a5c2

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2e70e0673d7d12fa6cd363453a0d22dac0d9978500aa6b46aa96e22690a55eab
MD5 9ddfd3c42f2d36c767aeee65b28c70a3
BLAKE2b-256 07b4658cb46d1bacc3221c09c9fe9d32a267245c6faaee12a73e3df91f2e9239

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fbaf6643a604aa17e7a7afd74f665f9db882df5c297bdd86c38368f2c471f37d
MD5 8773bd45a09b422a0cd1a1bccc1fcddc
BLAKE2b-256 f5f22c8095990baa74092252851cad402cf9aa934f66483da488a34000437e49

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp38-cp38-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp38-cp38-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 35c7ed095a4b17dbc8813a2bfb38b5998318439da8e6db10a804df855e3a9e3a
MD5 808ee80a5912cf33b1a9f6bba722d39e
BLAKE2b-256 e943b662f3510908d0373eb1966dd24137fd8577fa70545941cc24a2ea902eea

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 752f9df3dddbacb5f42d8405b2d5885675a93501eb5f86b88f2e47a839cf6337
MD5 337224c3db5bb9bd2f6b46b9bfe47e49
BLAKE2b-256 873c0381ffb9001eacddb71da4d8b2284c1434e56438fcbb693eb706c9974fcb

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp37-cp37m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.50-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.50-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 7b4396452273aedda447e5aebe68077aa7516abf3b3f48408793e771d696f397
MD5 c30af9b2bf29eb90ed36bf4107351af7
BLAKE2b-256 604eb896fbd5ba8ff89480c0b4baa92517b9ca5ce0fe3cf32489d6c065ed89c0

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 273505fcad22e58cc67329cefab2e436006fc68e3c5423056ee0513e6523268a
MD5 2b0bb34e702c3310004531ee4c77657c
BLAKE2b-256 220c9bece3436b0d7467486a2a6daea159c9201c3b5fb3c1de19e004841e0588

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 34e1c5d9cd3e6bf3d1ce56971c62a40c06bfc02861728f368dcfec8aeedb2814
MD5 e30de5e34d1ac1c0935f95aae5356abc
BLAKE2b-256 1004dd01440cef28de8ce5e9aa013d8801431a1e3b50057e69342d10732c47eb

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d69738d582e3a24125f0c246ed8d712b03bd21e148268421e4a4d09c34f521a5
MD5 235c621e6ae473d10d8c40908fa795fa
BLAKE2b-256 3e6463cc1a39dc936e6c499ad47471f0f8f37b6db7bed217f0953c89d6f4bf1e

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a3257a6e09626d32b28a0c5b4f1a97bced585e319cfa90b417f9ab0f6145c33c
MD5 99ca233aff980e0b0acb4ff8e2f1beb6
BLAKE2b-256 f1573fa6d8d14cba2f0c684fa3a35f0e47568c1c9badf8a840395cfcae74f1f3

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp37-cp37m-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp37-cp37m-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 f5b1fb2943d13aba17795a770d22a2ec2214fc65cff46c487790192dda3a3ee7
MD5 f7efda921054b4a78870b3160bb71ab6
BLAKE2b-256 c14e392dc11472e30fa6e7a096acec886f61b4c84397b19a116e23b7aad8eb91

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 35e4520f7c33c77f2636a1e860e4f8cafaac84b0b44abe5de4c6c8890b6aaa6d
MD5 3e9c4d5577f0bc00b90a36a2448ba239
BLAKE2b-256 3c107e88be7a875e4482587adaa3762790d860c4df352a818eb3dfc4d3e417c9

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp36-cp36m-win32.whl.

File metadata

  • Download URL: SQLAlchemy-1.4.50-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for SQLAlchemy-1.4.50-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 1b9c4359d3198f341480e57494471201e736de459452caaacf6faa1aca852bd8
MD5 56ccbb3387b6cc82c4ec6d636ed03263
BLAKE2b-256 c2de1464f8a23828658665702a5e673f87059ccddcb188461e4b0b7356a5bded

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c1db0221cb26d66294f4ca18c533e427211673ab86c1fbaca8d6d9ff78654293
MD5 19d4c50d937fe7f665d282a85f5412f0
BLAKE2b-256 56cc34eaf6f93c0a400b026b541ef1c0da37cc7f3b22c2911b61ad08acca8791

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 82dd4131d88395df7c318eeeef367ec768c2a6fe5bd69423f7720c4edb79473c
MD5 dbf55cf24f0f71180a5b490459f5c7fd
BLAKE2b-256 405eceb49eb418c70ab5ef319ad10b1525d893a0bccd6ea0059b2689e4adc2fd

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a9bddb60566dc45c57fd0a5e14dd2d9e5f106d2241e0a2dc0c1da144f9444516
MD5 25c4bb190df4807cd617b671915ad97d
BLAKE2b-256 8f50cf269ff69aff0cb725d984a5f4c12152ef507c17ed055913c0831945f5f8

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0b7dbe6369677a2bea68fe9812c6e4bbca06ebfa4b5cde257b2b0bf208709131
MD5 3bba2cae3686b787eb2f0f667867c0c7
BLAKE2b-256 e4d2b69f95ed3adb43f74afc974b159b5439ca8e59608354b5ad918bdd2af486

See more details on using hashes here.

File details

Details for the file SQLAlchemy-1.4.50-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for SQLAlchemy-1.4.50-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 fb9adc4c6752d62c6078c107d23327aa3023ef737938d0135ece8ffb67d07030
MD5 6ed4f9bc125a97b4c472ed3745de4edc
BLAKE2b-256 04c19e1c782fd8ad3accf93419e1ea36d4416aa16b7ba65f80d83c0f41445098

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page