Skip to main content

Systematic Generation of potential MetAbolites

Project description

SyGMa is a python library for the Systematic Generation of potential Metabolites. It is a reimplementation of the metabolic rules outlined in Ridder, L., & Wagener, M. (2008) SyGMa: combining expert knowledge and empirical scoring in the prediction of metabolites. ChemMedChem, 3(5), 821-832.

https://travis-ci.org/3D-e-Chem/sygma.svg?branch=master https://api.codacy.com/project/badge/Grade/7f18ab1d1a80437f8e28ac1676c70519 https://api.codacy.com/project/badge/Coverage/7f18ab1d1a80437f8e28ac1676c70519 https://img.shields.io/badge/docker-ready-blue.svg https://anaconda.org/3d-e-chem/sygma/badges/installer/conda.svg

Requirements

SyGMa requires RDKit with INCHI support

Installation

  • Install with Anaconda: conda install -c 3d-e-Chem -c rdkit sygma

OR

AND

  • pip install sygma OR, after downloading sygma, python setup.py install

Example: generating metabolites of phenol

import sygma
from rdkit import Chem

# Each step in a scenario lists the ruleset and the number of reaction cycles to be applied
scenario = sygma.Scenario([
    [sygma.ruleset['phase1'], 1],
    [sygma.ruleset['phase2'], 1]])

# An rdkit molecule, optionally with 2D coordinates, is required as parent molecule
parent = Chem.MolFromSmiles("c1ccccc1O")

metabolic_tree = scenario.run(parent)
metabolic_tree.calc_scores()

print metabolic_tree.to_smiles()

Docker

SyGMa can be executed in a Docker (https://www.docker.com/) container as follows:

docker run 3dechem/sygma c1ccccc1O

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SyGMa-1.1.0.tar.gz (13.8 kB view details)

Uploaded Source

File details

Details for the file SyGMa-1.1.0.tar.gz.

File metadata

  • Download URL: SyGMa-1.1.0.tar.gz
  • Upload date:
  • Size: 13.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for SyGMa-1.1.0.tar.gz
Algorithm Hash digest
SHA256 7daf933862c25851176086ee15ef9210bc1b73f7c0d9dc26e68be73c9c47b244
MD5 0a398b1d2633e5153c8b588fd823232c
BLAKE2b-256 010d7960ca6076d00ff33bf2aa0ac925074a07820900b8b8ae1edae83d12e488

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page