Systematic Generation of potential MetAbolites
Project description
SyGMa is a python library for the Systematic Generation of potential Metabolites. It is a reimplementation of the metabolic rules outlined in Ridder, L., & Wagener, M. (2008) SyGMa: combining expert knowledge and empirical scoring in the prediction of metabolites. ChemMedChem, 3(5), 821-832.
Requirements
SyGMa requires RDKit with INCHI support
Installation
See http://www.rdkit.org/docs/Install.html for RDKit installation instructions.
python setup.py install
Example: generating metabolites of phenol
import sygma
from rdkit import Chem
# Each step in a scenario lists the ruleset and the number of reaction cycles to be applied
scenario = sygma.Scenario([
[sygma.ruleset['phase1'], 1],
[sygma.ruleset['phase2'], 1]])
# An rdkit molecule, optionally with 2D coordinates, is required as parent molecule
parent = Chem.MolFromSmiles("c1ccccc1O")
metabolic_tree = scenario.run(parent)
metabolic_tree.calc_scores()
print metabolic_tree.to_smiles()
Docker
SyGMa can be executed in a Docker (https://www.docker.com/) container as follows:
docker run 3dechem/sygma c1ccccc1O
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
SyGMa-1.0.tar.gz
(13.6 kB
view details)
File details
Details for the file SyGMa-1.0.tar.gz
.
File metadata
- Download URL: SyGMa-1.0.tar.gz
- Upload date:
- Size: 13.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d679119349a3ca18fca29586b914ba539fa5ec99f6b73477c4f67ff5101646af |
|
MD5 | 5474eea1393f7a6670b5ccfa82bb5d1f |
|
BLAKE2b-256 | caa9f8ce3cc920fa5c0624734531ec487817453c831c25de54e2563f5fcd8103 |