Skip to main content

Computations on abelian groups.

Project description

Documentation Status

abelian is a Python library for computations on elementary locally compact abelian groups (LCAs). The elementary LCAs are the groups R, Z, T = R/Z, Z_n and direct sums of these. The Fourier transformation is defined on these groups. With abelian it is possible to sample, periodize and perform Fourier analysis on elementary LCAs using homomorphisms between groups.

http://tommyodland.com/abelian/intro_figure.png

Classes and methods

  • The LCA class represents elementary LCAs, i.e. R, Z, T = R/Z, Z_n and direct sums.
    • Fundamental methods: identity LCA, direct sums, equality, isomorphic, element projection, Pontryagin dual.

  • The HomLCA class represents homomorphisms between LCAs.
    • Fundamental methods: identity morphism, zero morphism, equality, composition, evaluation, stacking, element-wise operations, kernel, cokernel, image, coimage, dual (adjoint) morphism.

  • The LCAFunc class represents functions from LCAs to complex numbers.
    • Fundamental methods: evaluation, composition, shift (translation), pullback, pushforward, point-wise operators (i.e. addition).

Example

http://tommyodland.com/abelian/fourier_hexa_25.png

We create a Gaussian on R^2 and a homomorphism for sampling.

from abelian import LCA, HomLCA, LCAFunc, voronoi
from math import exp, pi, sqrt
Z = LCA(orders = [0], discrete = [True])
R = LCA(orders = [0], discrete = [False])

# Create the Gaussian function on R^2
function = LCAFunc(lambda x: exp(-pi*sum(j**2 for j in x)), domain = R**2)

# Create an hexagonal sampling homomorphism (lattice on R^2)
phi = HomLCA([[1, 1/2], [0, sqrt(3)/2]], source = Z**2, target = R**2)
phi = phi * (1/7) # Downcale the hexagon
function_sampled = function.pullback(phi)

Next we approximate the two-dimensional integral of the Gaussian.

# Approximate the two dimensional integral of the Gaussian
scaling_factor = phi.A.det()
integral_sum = 0
for element in phi.source.elements_by_maxnorm(list(range(20))):
    integral_sum += function_sampled(element)
print(integral_sum * scaling_factor) # 0.999999997457763

We use the FFT to move approximate the Fourier transform of the Gaussian.

# Sample, periodize and take DFT of the Gaussian
phi_p = HomLCA([[10, 0], [0, 10]], source = Z**2, target = Z**2)
periodized = function_sampled.pushforward(phi_p.cokernel())
dual_func = periodized.dft()

# Interpret the output of the DFT on R^2
phi_periodize_ann = phi_p.annihilator()

# Compute a Voronoi transversal function, interpret on R^2
sigma = voronoi(phi.dual(), norm_p=2)
factor = phi_p.A.det() * scaling_factor
total_error = 0
for element in dual_func.domain.elements_by_maxnorm():
    value = dual_func(element)
    coords_on_R = sigma(phi_periodize_ann(element))

    # The Gaussian is invariant under Fourier transformation, so we can
    # compare the error using the analytical expression
    true_val = function(coords_on_R)
    approximated_val = abs(value)
    total_error += abs(true_val - approximated_val*factor)

assert total_error < 10e-15

Please see the documentation for more examples and information.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

abelian-0.2.0.tar.gz (542.2 kB view details)

Uploaded Source

File details

Details for the file abelian-0.2.0.tar.gz.

File metadata

  • Download URL: abelian-0.2.0.tar.gz
  • Upload date:
  • Size: 542.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for abelian-0.2.0.tar.gz
Algorithm Hash digest
SHA256 8d125515745588e8fb16339aba0ec6e2f24aa6af5bca13b2d9fe242fe5ef4e00
MD5 b7bc7d3960506a20716e5438c79a37d0
BLAKE2b-256 6a364387de06c8339ad5b712b55bf05008a01b5cd80fe8be7ed517da80fde293

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page