Skip to main content

Computations on abelian groups.

Project description

Documentation Status

abelian is a Python library for computations on elementary locally compact abelian groups (LCAs). The elementary LCAs are the groups R, Z, T = R/Z, Z_n and direct sums of these. The Fourier transformation is defined on these groups. With abelian it is possible to sample, periodize and perform Fourier analysis on elementary LCAs using homomorphisms between groups.

http://tommyodland.com/abelian/intro_figure_75.png

Classes and methods

The most important classes are listed below. The software contains many other functions and methods not listed.

  • The LCA class represents elementary LCAs, i.e. R, Z, T = R/Z, Z_n and direct sums of these groups.
    • Fundamental methods: identity LCA, direct sums, equality, isomorphic, element projection, Pontryagin dual.

  • The HomLCA class represents homomorphisms between LCAs.
    • Fundamental methods: identity morphism, zero morphism, equality, composition, evaluation, stacking, element-wise operations, kernel, cokernel, image, coimage, dual (adjoint) morphism.

  • The LCAFunc class represents functions from LCAs to complex numbers.
    • Fundamental methods: evaluation, composition, shift (translation), pullback, pushforward, point-wise operators (i.e. addition).

Example

http://tommyodland.com/abelian/fourier_hexa_33.png

The following example shows Fourier analysis on a hexagonal lattice.

We create a Gaussian on R^2 and a homomorphism for sampling.

from abelian import LCA, HomLCA, LCAFunc, voronoi
from math import exp, pi, sqrt
Z = LCA(orders = [0], discrete = [True])
R = LCA(orders = [0], discrete = [False])

# Create the Gaussian function on R^2
function = LCAFunc(lambda x: exp(-pi*sum(j**2 for j in x)), domain = R**2)

# Create an hexagonal sampling homomorphism (lattice on R^2)
phi = HomLCA([[1, 1/2], [0, sqrt(3)/2]], source = Z**2, target = R**2)
phi = phi * (1/7) # Downcale the hexagon
function_sampled = function.pullback(phi)

Next we approximate the two-dimensional integral of the Gaussian.

# Approximate the two dimensional integral of the Gaussian
scaling_factor = phi.A.det()
integral_sum = 0
for element in phi.source.elements_by_maxnorm(list(range(20))):
    integral_sum += function_sampled(element)
print(integral_sum * scaling_factor) # 0.999999997457763

We use the FFT to move approximate the Fourier transform of the Gaussian.

# Sample, periodize and take DFT of the Gaussian
phi_p = HomLCA([[10, 0], [0, 10]], source = Z**2, target = Z**2)
periodized = function_sampled.pushforward(phi_p.cokernel())
dual_func = periodized.dft()

# Interpret the output of the DFT on R^2
phi_periodize_ann = phi_p.annihilator()

# Compute a Voronoi transversal function, interpret on R^2
sigma = voronoi(phi.dual(), norm_p=2)
factor = phi_p.A.det() * scaling_factor
total_error = 0
for element in dual_func.domain.elements_by_maxnorm():
    value = dual_func(element)
    coords_on_R = sigma(phi_periodize_ann(element))

    # The Gaussian is invariant under Fourier transformation, so we can
    # compare the error using the analytical expression
    true_val = function(coords_on_R)
    approximated_val = abs(value)
    total_error += abs(true_val - approximated_val*factor)

assert total_error < 10e-15

Please see the documentation for more examples and information.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

abelian-1.0.1-py2.py3-none-any.whl (42.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file abelian-1.0.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for abelian-1.0.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 59398440bb2d97e89fd6c3653a64f092c6a47205555b692337bdb7d2aede7f58
MD5 3c92cb2089318f497e13b4afc1b3f9b1
BLAKE2b-256 0997af1c191089833eb492afab0974bc34570729324badece2737c931966831e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page