Skip to main content

Accera Compilers

Project description

Accera Compilers

Accera

Accera is a programming model, a domain-specific programming language embedded in Python (eDSL), and an optimizing cross-compiler for compute-intensive code. Accera currently supports CPU and GPU targets and focuses on optimization of nested for-loops.

Writing highly optimized compute-intensive code in a traditional programming language is a difficult and time-consuming process. It requires special engineering skills, such as fluency in Assembly language and a deep understanding of computer architecture. Manually optimizing the simplest numerical algorithms already requires a significant engineering effort. Moreover, highly optimized numerical code is prone to bugs, is often hard to read and maintain, and needs to be reimplemented every time a new target architecture is introduced. Accera aims to solve these problems.

Accera has three goals:

  • Performance: generate the fastest implementation of any compute-intensive algorithm.
  • Readability: do so without sacrificing code readability and maintainability.
  • Writability: a user-friendly programming model, designed for agility.

accera-compilers

The accera-compilers package contains pre-compiled compiler binaries used to produce optimized code using the Accera eDSL. It is not designed for standalone use, but is automatically installed when you pip install accera. You can find documentation and examples on Github.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

accera_compilers-1.2.26-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (39.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

accera_compilers-1.2.26-cp310-cp310-macosx_11_0_x86_64.whl (42.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

accera_compilers-1.2.26-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (39.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

accera_compilers-1.2.26-cp39-cp39-macosx_11_0_x86_64.whl (42.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

accera_compilers-1.2.26-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (39.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

accera_compilers-1.2.26-cp38-cp38-macosx_10_15_x86_64.whl (42.6 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

accera_compilers-1.2.26-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (39.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

accera_compilers-1.2.26-cp37-cp37m-macosx_10_15_x86_64.whl (42.6 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file accera_compilers-1.2.26-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_compilers-1.2.26-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5be86957789c7323a75992f1056eb6c7f06682937cf9e0f78e324f0c9ee8fe56
MD5 4fc93ee7abd6caf995cda9ceb7a79422
BLAKE2b-256 6f1137548358577617c8c535e854c4a36d230c536c9f11891942ed0d4710924e

See more details on using hashes here.

File details

Details for the file accera_compilers-1.2.26-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for accera_compilers-1.2.26-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 5c9ece7b2bbb69e759042df647a2f1bfa39beb2bc343b57f7ac317b87ef99b9c
MD5 38cd27af34d96abb16a801e357393c92
BLAKE2b-256 e9a44ac8f4628fe228188a3b8fa44d9a68c5d017cceb3d01fe6843819c3f7746

See more details on using hashes here.

File details

Details for the file accera_compilers-1.2.26-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_compilers-1.2.26-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fa5a1423e457571dd52d53f4ef9509d2805301ea11c0c1c184c5e13f28044ac5
MD5 06c1665b7852dc620eabc963e736dbc9
BLAKE2b-256 ce9c4b5601acd211dfd148e153d0093d0e1254c05527ae028e67548241b21859

See more details on using hashes here.

File details

Details for the file accera_compilers-1.2.26-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for accera_compilers-1.2.26-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 4526026b3c0beb4d99ad46b5516b12a9b57edbbd6124c94e3227a25c567a22cb
MD5 9d62aad8343dd60a8b828ee7120aafb2
BLAKE2b-256 18bdb08405a7ad5ccb4f201f03573b1a5a158a951513aed972e4fa3215528517

See more details on using hashes here.

File details

Details for the file accera_compilers-1.2.26-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_compilers-1.2.26-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a74a2d718f1a8bdc100077db3f9e4b81a4bc5b8830199c8086ae3cc48f85bd31
MD5 c0e8b11a416f7f2ffc6df6dd7ac136a4
BLAKE2b-256 891ca7443fcf6f7e0bd5ae4bdd0cfa1755d325d7146745f5559a7b8c90f9c67e

See more details on using hashes here.

File details

Details for the file accera_compilers-1.2.26-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_compilers-1.2.26-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 d20765e404b396b84331443e0d73d97b592b6e3f1b93a0cb43882e249c3fe49d
MD5 c78f56cac1ff5e5dd5e9acbf269f256a
BLAKE2b-256 46b0ac4ed82d383f1f6af4997eb8d071b72c170abd2e8f2953a1796eeef9533b

See more details on using hashes here.

File details

Details for the file accera_compilers-1.2.26-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_compilers-1.2.26-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1ac3fc0897cb1cfc7dd0bfb67eec1765b245415bcb7990433212beb2dcbd27f9
MD5 ab4126ea052b52da0f22c71e670d810f
BLAKE2b-256 af70ac4c2d569619f710ee61ac07eba2e8b1528d91451a17492b4d24a4f23ffb

See more details on using hashes here.

File details

Details for the file accera_compilers-1.2.26-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_compilers-1.2.26-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 1e1ce5811c24c723b6d9038af912ebfd8475a5da6f09ca21c9f159060f7c2a64
MD5 ea1e2ce62522c356a6c701af2c1efaec
BLAKE2b-256 84fa2f3c874690cd81ff2e9c866dfdabd992fa362b09270214674a47e81a2af4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page