Skip to main content

Accera GPU Support

Project description

Accera GPU

Accera

Accera is a programming model, a domain-specific programming language embedded in Python (eDSL), and an optimizing cross-compiler for compute-intensive code. Accera currently supports CPU and GPU targets and focuses on optimization of nested for-loops.

Writing highly optimized compute-intensive code in a traditional programming language is a difficult and time-consuming process. It requires special engineering skills, such as fluency in Assembly language and a deep understanding of computer architecture. Manually optimizing the simplest numerical algorithms already requires a significant engineering effort. Moreover, highly optimized numerical code is prone to bugs, is often hard to read and maintain, and needs to be reimplemented every time a new target architecture is introduced. Accera aims to solve these problems.

Accera has three goals:

  • Performance: generate the fastest implementation of any compute-intensive algorithm.
  • Readability: do so without sacrificing code readability and maintainability.
  • Writability: a user-friendly programming model, designed for agility.

accera-gpu

The accera-gpu package contains add-ons for GPU support. You can find documentation and examples on Github.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

accera_gpu-1.2.11-cp310-cp310-win_amd64.whl (5.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

accera_gpu-1.2.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (35.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.11-cp310-cp310-macosx_10_15_x86_64.whl (38.8 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

accera_gpu-1.2.11-cp39-cp39-win_amd64.whl (5.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

accera_gpu-1.2.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (35.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.11-cp39-cp39-macosx_10_15_x86_64.whl (38.8 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

accera_gpu-1.2.11-cp38-cp38-win_amd64.whl (5.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

accera_gpu-1.2.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (35.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.11-cp38-cp38-macosx_10_15_x86_64.whl (38.8 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

accera_gpu-1.2.11-cp37-cp37m-win_amd64.whl (5.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

accera_gpu-1.2.11-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (35.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

accera_gpu-1.2.11-cp37-cp37m-macosx_10_15_x86_64.whl (38.8 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file accera_gpu-1.2.11-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.11-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8da5453b9a3600e86845efe60e369685550d3a6d62fd9ed3d920b1d2288ec125
MD5 d60ceff52de90ead3deb201290d56cd6
BLAKE2b-256 9b6d6b5b491d2e02aac0f8b9b7a0e222d97659feeadcae31f14c461c3b009444

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8005f5aa98d4f38cd8e60f2b49dec0d411ece8c04002c5ed641401f466f6259a
MD5 f95aa36f7f3c82cc242a2e9ce52ab2ef
BLAKE2b-256 6480c1c5d313a2deac83751ea5234766546c953fc4a8169fcfeba9714dec6822

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.11-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.11-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 54f117b90ef5ca7824498e4607819704df98d8a855233973b88005b650729740
MD5 7535e47c9758edc7788fdf287bdfde29
BLAKE2b-256 35dc29ad95cbd42a43498154fa6b16eb599d1b4c6b85b70ad788b24593e0e61e

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.11-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.11-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 226bf060de434382835088356183dbe4c5b8df48a1510a317b9810dbaab3233e
MD5 7f96109982959bab4d524f495032b3b7
BLAKE2b-256 327ddc0ff022fb76597e998e3283e5953bee83fa373ba961a4c84751c608afd6

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ec99b4bd2f24dc21169799edf7e5161afcfca57513e60ff7743921d21798cb4a
MD5 5139fa411741bd5261c6522eece2972d
BLAKE2b-256 f48c57a6315c1d1a07b73431752fdf55d0830e276af08afd59d30a4d23a0b27c

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.11-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.11-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 53ba30c250ae6c2296eb79f6386680729e78a7c9ebc6306f4d463627fddfdb9d
MD5 fb657fab13276aeaa8fdb9ee2b73ccf4
BLAKE2b-256 743f593c28c4f52fc6f8960b1558d319c830ca51ede6cfad0f9ea4cc33c14413

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.11-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.11-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9c155735b9e50c354973a44a64918bbe6516732f0a50947637b9dbf3e236b8e4
MD5 e2f3b982f6b497da6d7a6f2843543e63
BLAKE2b-256 eb486c8cc93b3ed4ca94347db0f1ab00f589073a0a41926c338fcd1cfd5d6a65

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8706e2766e355357336d17a23dafe35931889b64cd846c7f60a68509d4692a9f
MD5 9fa8b3e152c7be507446766f5c463f8d
BLAKE2b-256 d74621578719bb212b9ce56d3695cbd9e216faa106ff1713dd5a7bfaac6888aa

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.11-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.11-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 67ed4d37e2b19248ee7736eca8cce00b2edbea8675cb03bc769fccfa8775b816
MD5 362fccdedf89c4038fcfffdc5d2de88f
BLAKE2b-256 629f3e2492fb291ded5e7cea587cc83bf5069c5ba1bd5518380a4f55f5a7e7c4

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.11-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.11-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 8aeeb7ee54ece8e6bc29e35dad9ea15a06a033f26e7a6b1a892c35cc6535496b
MD5 cec61e9acaeec1b3e571f0f1a6ab0ee4
BLAKE2b-256 180411f3271ac3f835fd8c1c8765d6f345dd1e59cf948c6b85bd86706e6c0eee

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.11-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.11-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4c38d52293c1cec1ebd88c6ebff6c5f892cc16af9f6ab4297ac26bd464465c77
MD5 835e3b0cb9827389a9416e4fe49d6404
BLAKE2b-256 0e23f353f613d79676e0cda36d8e84e3e8a36861759139d6e21d5ec6875caf0e

See more details on using hashes here.

File details

Details for the file accera_gpu-1.2.11-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for accera_gpu-1.2.11-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 2ba46fe3d3d7edae3193a5e043ad24a313679950a4fbe8b235873c9174a22f7c
MD5 7231d95eff928347e8bae377f76ba029
BLAKE2b-256 4ed22655a500203e2c47a175c7098bbb68f42c4113e86707c9d49fa73255d897

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page